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Ex. 1.1. The process X; = oW, + bt with 0,0 € R and W Brownian motion is observed
at the time points 0 = to,, < t1,, < -+ < tpn = I),. Denote AX,, = Xt;n — Xt;,, and
Ati,n = ti,n - ti*l,n~
a) Compute the MLE 6y for the parameter § = (b,02) and find conditions such that the
MLE is consistent, i.e., éMLE i> 0.

b) Assume that b is known. Compute the Fisher information for the parameter o2.
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Ex. 2.1. Consider the SDE dX; = aX,dt + cdW,, t > 0, Xo = X(© e L2, Make the ansatz
Xi(w) = Cy(w)e. Apply the 1t6 formula to Cy(w) and derive the solution of the SDE in this

way. For a < 0 show that X; —% N(0, —02/(2a)) as t — co. For a < 0 find X(© so that the
solution of the SDE is stationary.

Ex. 2.2.  a) Use the Ito formula to show fot Wy dW, = 3(W? —t) for Brownian motion W.

b) Let ar be the MLE in the Ornstein-Uhlenbeck model with time-continuous observations
(Xt)teo,r) and initial condition X = 0. Consider ar as T — oo under P, i.e., with true
parameter a = 0. Show that ap is consistent and that T'ar converges in distribution. Show
that the limit is not a centred normal distribution.
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Ex. 3.1. Consider the regression model Y; = f(i/n) + ¢;, i = 1,...,n, where ¢; are i.i.d. errors
with E[e;] = 0 and Var(e;) < oo. Let f : [0,1] — R be differentiable and ||f'||cc < M. For
x € [0,1] define the estimator f,(z,h) by

; _ 2ic1 Yillponayn)(i/7)

n(x,h) = - : for Ly poem(i/n) £0
fulie: ) Y it Ye—harn (i/n) ; [o—h,a+n) (1/0) 7

and f,(x, h) = 0 otherwise. Show that | f,(z,n=/3) — f(x)| = Op(n=1/3).
Ex. 3.2. Let dX; = b(t)dt + ﬁ dWs, t € [0,1], Xo = 0, where o > 0, b: [0,1] - R and W is

Brownian motion. For time-continuous observations (X¢)¢cjo,1) we define the estimator

2 fol l[th,:erh] (t) dX;
bn(z,h) = =7 )
fo ]]-[;c—h,x+h] (t) dt

Show that for a-Hélder continuous functions b with « € (0, 1], for h = n=%/e+1) and 2 € [0,1]

‘Bn(x, h) —b(z)| = Op(nfa/(2a+1)).
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Ex. 4.1. Let b, 0 and 1/0 be bounded. Moreover, let b be differentiable and let o be twice
differentiable. Let s(z) = [ exp(— [} 2b(z)/0(2)? dz) dy and assume s(z) — F00 as & — Fo0.
Let (X;):>o satisfy the SDE dX; = b(X;) dt + o(X;) dW; with X, = X(©),

The adjoint of the infinitesimal generator A is given by A*g = —(bg)’'+3(c%g)” for g € CZ(R).
From the theory of semigroups it follows that if we can find any non-negative m € CZ(R), m # 0,
which has finite integral and satisfies A*m = 0, then m is up to normalising the density of a
stationary distribution.

a) Show that Y; = s(X;) satisfies dY; = 5(Y;) dW; with 6(y) = s'(s7(y))o (s~ (y)).

b) Let A* be adjoint of the infinitesimal generator of the SDE in part a). Find a non-negative
function m # 0 satisfying A*m = 0.
¢) Assume G = 7. 1/5(y)*dy < oo with & is as in part a). Let Y be a random variable
having density 1/(G(y)?). Determine the density of X = s~'(Y) in terms of ¢ and b.
Ex. 4.2. Consider the SDE of the linear factor model dX; = 9¥b(X;)dt + o(X;) dW; for a given
¥ > 0. Let b and o be known, measurable and bounded and let inf e 0%(z) > 02 > 0. Let

there be M,~ > 0 such that sign(az)%(x) < — for all x with |z| > M. Let (Xt);ep0,m) be
time-continuous observations of a stationary solution X of the SDE. Let E[b(X()?/a(X0)?] > 0.

Show that - bX,) - b(Xt)z
</ o(X,) th)/ (/ (X, dt)

has positive denominator with probability tending to one and is of order Op(1/v/T).
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Ex. 5.1. Let b and o be measurable and locally bounded and let inf,er o(x) > o2 > 0. Let
there be M,~ > 0 such that sign(z)2b(z)/o(x)? < —v for all x with |z| > M. Let X be a
stationary solution and g be an invariant measure of the SDE dX; = b(X;)dt + o(X;) dW;.
Define Af(z) := 202(z)f"(z) + b(z)f'(x). For f,g € C*(R) with compact support show that A
is symmetric with respect to u, i.e.,

/ " Af(@)g(x) dp() = | " (@) Ag(e) du().

Ex. 5.2. Consider the process X; = xo + fo s)dWy for ¢ € [0,T], where T > 0 fixed, xo € R,
W is Brownian motion and o : [0,7] — R is a bounded deterministic function. For n > 1
the process (X¢):epo,r) is observed at the times 0 = to,, < t1,, < --- < tyn = T. Denote
AX;, = Xt — Xti1ns Atip =tin —ti—1n and A, = maxi<i<n, At; . Let g : 0,7T] — R,
a € (0,1] and R > 0 be such that |g(t) — g(s)| < R|t — s|* and lg(t )| < R for all s,t € [0,7].
Consider the estimator A, (g) = S0, g(ti—1..)(AX; )2 for Ag fo 2 ds.

a) Define M, :=>"" | g(ti—1,n) ( (AX;n) ft o ) Show that there exists a con-
stant C' > 0 depending only on R and T such that E[Mfl] < COlot||ocA

b) Show that there exists a constant D > 0 depending only on R and T such that

E[(An(9) — A(9))%] < Do [loo max(An, AZ®).
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Ex. 6.1. Consider the setting of Ex. 1.1 with n — oo, T;, — oo and both b € R and
o2 > 0 unknown. Construct confidence intervals B,, and S,, for b and o2, respectively, which are
asymptotic of level a € (0,1), i.e.,
Pbe B,) > 1—a asn— oo,
P(c* € S,) = 1—a asn— occ.

Ex. 6.2. In the setting of Ex. 3.1 let z € (0,1), nh, — oo and nh? — 0 as n — oco. Define
o2 := Var(e).

a) Show that /nhy, (f(z, hyn) — f(z)) = N(0,02/2) as n — co.

b) With 02 known construct confidence intervals I,, for f(x) which are of asymptotic level
a € (0,1), ie.,
P(f(z)el,) > 1—a asn— .
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Ex. 7.1. Let X be a d-dimensional Lévy process with Lévy measure v.
a) Let [ral2|L{jz>1) dv(z) < co. Show that E[Xy] = vt with y1 =y + [pa 2L{jz>1y dv(x).

b) Let d = 1 and [ #*dv(z) < co. Show that E[X;] = it for 7, as in a) and Var(X;) =
(02 + 7(R))t for dir(z) = 22 dv(z).

Ex. 7.2. Let ¢ be the characteristic function of a random variable X on IR and ¢,, the empirical
characteristic function of ni.i.d. samples of X. For complex-valued random variables Z; we define
COV(D(Zl, Zg) = E[Z1Z2] - E[Zl]E[ZQ] and Var@ (Zl) = EHZl - E[Z1]|2]

a) Show that En (u)] = ¢(u), Cove (gn(u), ¢n(v)) = 5 (p(u—v)—p(u)p(=v)), Vare(pn(u)) =
(L= lp(u)P?) < 5.

b) Define C,, (1) := v/n(pn(u) — ¢(u)) and conclude from a) that E[C, (v)C,(v)] = p(u — v) —
o(u)p(—v). Show that in combination with C,(u) = C,(—u) this completely determines
the covariance structure of all finite-dimensional distributions, i.e., for all uq,...,u; the
covariance of Re(Cp, (u1)), Im(Cp,(u1)), - - ., Re(Cr(ug)), Im(Cp, (ug)).

c¢) Define I' to be the centred complex-valued Gaussian process with I'(—u) = I'(u) and
Cove(T(u),I'(v)) = p(u —v) — p(u)p(—v). Use the multivariate central limit theorem to

show that C, iy T, i.e., all finite-dimensional distributions converge weakly.
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Ex. 8.1. Let R > 8V/d for d € N. Suppose that the empirical characteristic process C,, satisfies
uniformly for n € N and K > 2

P (ue max [Cy(u)] > R«/log(nK2)> < C(VnEK)(64d-R)/(61d+61)

[7K,K]

Show that the empirical characteristic function converges uniformly on compact sets in LP, p > 1,
to the true characteristic function with rate (log(n)/n)'/2.

Ex. 8.2. The following result is known as Hoeffding’s inequality: If Xi,...,X, are mean
zero independent random variables taking values in [b;, ¢;] for constants b; < ¢;, i = 1,...,n,
respectively, then for v > 0

: (ZX >“> <o (~sry)

of which an obvious consequence is (why?)

Provide a proof of this inequality. [Hint: You may find it useful to first prove the auxiliary result
Elexp(vX;)] < exp(v?(c; — b;)?/8) for v > 0, and then use Markov’s inequality in conjunction
with a bound for the moment generating function of v X;.]

n

> X

i=1
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Ex. 9.1. Let K be a bounded function on R such that (1/A) fOA K(z)dz — 0 as A — +o0.

a) For f = clja5 with ¢ € Rand 0 < o < 8 < oo show that [° f(z)K(Az)dz — 0 as
A — Fo0.

b) For f € L'([0,0)) prove that fooo f(@)K(Ax)dz — 0 as A — £oo. [Hint: You may use
that for every e > 0 there exists a finite linear combination g. of functions as in a) such

that [°|f(z) — ge(z)|dz < €]
¢) For f € L'(R) conclude that [*_ f(z)K(Az)dz — 0 as A — £oo.
d) Show the Riemann-Lebesgue lemma: If f € L'(IR), then [, f(x)e** dz — 0 as A — =+oo.

Ex. 9.2. Let @Y (u) := (1/U,)w(u/U,), where 1 is a continuous function, supported on [0, 1]
with @w(u) > 0 for u € (0,1). Consider the optimisation problem

(02, \,) = argmin 2 ) /0 Y (u)(Re oy (u) + o?u?/2 + N)? du.

a) Show that it is solved by 02 = [ wl" (u)Re ¥ (u) du and A, = [;° wi" (u)Re ¥y (u) du
and derive the form of w¥» and w{™ in terms of wV». Verify that w¥» (u) = U,; 3wk (u/U,)

and wi™ (u) = U, wi (u/Uy).

b) Derive the identities fOU"(—u2/2)wg" (u)du =1, j;)U" wYn (u) du = 0, fOU"(—l)wf\]" (u)du =
1 and fOU" (—u?/2)wy" (u) du = 0.
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Ex. 10.1. Denote by Ff the Fourier transform of f. For an integer s > 0 suppose that v
satisfies maxieqo,1,... s} [v®) | L2r) < C and [0 || < C for some C' > 0, where v(¥) is the
k-th derivative of v. Let w, and wy be functions supported on [0,1] such that w.(e)/(e)?,
wx(e)/(9)* € L*(R) and Flwy(e)/(e)*], Flwx(e)/(#)°] € L'(R). Define wi» (u) = Uy *wy (u/Un)
and wkU” (u) = U, 'wx(u/U,). Show that

< U*(5+2)7

~ n

/000 wf{" (w)Im(Fr(u))du

5 Un_(S—H).

/000 wi™ (W)Re(Fr(u)) du

Ex. 10.2. Denote by Ff the Fourier transform of f. For an integer s > 1 suppose that v
satisfies maxpeo,1,...,s} Hv(k)”Lz(]R) < C and ||v®)| o < C for some C > 0, where v(*) is the k-th
derivative of v. Let w be a function supported on [—1,1] such that (1 —w(e))/(e)* € L?(R) and
Fl(1 —w(e))/(e)°] € L'(R). Show that

[F7H — w(e/Un)Fu(o)]|, S UL

~
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Ex. 11.1. Let X3, Xs,...,X, iid. random variables. Let ¢, be the empirical characteristic

function of Xy, Xs,...,X, and <p£,k ) the k-th derivative of ¢n. For complex-valued random
variables Z we define Varc(Z) = E[|Z — E[Z][?]. Show that for k = 0,1,2 and for all u € R

1
Vare (¢(w)) < = E [X3*]
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Ex. 12.1. Let X be a one-dimensional Lévy process with Lévy measure v satisfying [ 2% dv(z) <
00. Let Pa be the probability measure of Xa. Show that for every bounded continuous function
fR—=R

/ F@)22 32 @) ey / f(z)a2dv(z) as A — 0.
R R

A
[You may use the following fact: For a sequence of probability measures P,P1,P5... on R with
characteristic functions ¢, @1, @9,... a consequence of Lévy’s continuity theorem is that the

pointwise convergence ,, — ¢ as n — oo implies that P, converge weakly to P as n — 00.]

Ex. 12.2. Let X and € be independent real-valued random variables whose distributions are
absolutely continuous with respect to the Lebesgue measure with Lebesgue densities px and p,
respectively. Let . and ¢y be the characteristic functions of € and ¥ = X + ¢, respectively.
Let ¢y, be the empirical characteristic function of n i.i.d. copies of Y. Suppose . # 0 for all
u € R and let My := supj, <y [1/¢@e|- Assume for an integer s > 1 that pg];) € L*(R) for all
ke€{0,1,...,s}. Define

~ — Y.n
pX = f 1 |:SDS’%]]-[—UH,U71]:| .

Show that
||ﬁX - pX”LQ(]R) = O]P (U;S _|_ MUnUé/2n71/2> )
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Ex. 13.1. Let N = (N;)¢>0 be a Poisson process with intensity A > 0. For A > 0 we define
Zi = iA_N(i—l)A Withi:1,2,...,n.

a) Compute the maximum likelihood estimator of A given the observations 1z,4,¢=1,...,n.
Compare to the nonlinear estimator A, from the lecture.

b) Let
0 ifZzZ, =0,
Yii=¢ 1 ifZ; =1,
2 if Z; > 2,
fori=1,...,n.

Find the log-likelihood for estimating A > 0 from the observations Y7,Y5,...,Y,. Set its
derivative equal to zero and approximate the solution of the resulting equation for high-
frequency observations A — 0 as n — oo. Compare the resulting estimator to the linear
estimator j\n from the lecture.
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Ex. 14.1. Suppose that (X;)_; are zero-mean and independent random variables such that,
for some fixed ¢ > 1, they satisfy the moment bound (E[|Xi|2q})’71fl < K4. Show that

2q
> <
( ZX 5) B, <f5> for all § > 0,

1=1
where B, is a universal constant depending only on K, and ¢. [Hint: You may use Rosenthal’s
inequality.|

Ex. 14.2. Let X be a real-valued Lévy processes. Let D := [a,b] C R\{0} and

S:={Bf1p1+ -+ Bapa|P1,-..,Ba € R},

where p; with j = 1,...,d are v-a.e. continuous, bounded functions Which have support in D
and are orthonormal Wlth respect to the inner product (p, g f D p(x
Let 0 =ty <ty <--- <t, and define

1 n

P Py (th - thq) .

d
Z (pj)pi(z with B((pj) =

k=1

Show that p is the unique solution of the minimisation problem

I};gg%(f)
where vp : L?(D, dz) — R is given by
2 & )
(f) =~ 23 F(X, X )+ [ f)ar
n D

k=1



STATISTICS FOR STOCHASTIC PROCESSES - EXERCISE SHEET 15

Mastermath, Spring Semester 2024, Jakob So6hl (j.soehl@tudelft.nl)

Ex. 15.1. Let X be a one-dimensional Lévy process with Lévy measure v. Let ¢ have support
in [c,d] € Rso and let ¢|(cq be continuous with continuous derivative.

a) Show that
Blo(Xa)] = ¢(0) P(Xa 2 0~ @) P(Xa > )+ [ /() P(Xa > u)d

| stwyavta) = eleplle.o)) — e@v((d o) + [ & w0 du

— 00 (&)

b) Derive further

‘E[‘P(XA)] B /°°

— 00

() dv(z)

d
< <|%0(C)|+|<P(d)|+/ lw’(U)ldU> Ma([e, d)),

where Ma([e, d]) = lime_y0 Supyc o ae) | 4 B(Xa > y) — v([y,00)|.



