STATISTICS FOR STOCHASTIC PROCESSES - EXERCISE SHEET 1

Mastermath, Spring Semester 2022, Jakob Söhl (j.soehl@tudelft.nl)

Ex. 1.1. The process $X_{t}=\sigma W_{t}+b t$ with $\sigma, b \in \mathbb{R}$ and W Brownian motion is observed at the time points $0=t_{0, n}<t_{1, n}<\cdots<t_{n, n}=T_{n}$. Denote $\Delta X_{i, n}=X_{t_{i, n}}-X_{t_{i-1, n}}$ and $\Delta t_{i, n}=t_{i, n}-t_{i-1, n}$.
a) Compute the MLE $\hat{\theta}_{\text {MLE }}$ for the parameter $\theta=\left(b, \sigma^{2}\right)$ and find conditions such that the MLE is consistent, i.e., $\hat{\theta}_{\text {MLE }} \xrightarrow{d} \theta$.
b) Assume that b is known. Compute the Fisher information for the parameter σ^{2}.

STATISTICS FOR STOCHASTIC PROCESSES - EXERCISE SHEET 2

Mastermath, Spring Semester 2022, Jakob Söhl (j.soehl@tudelft.nl)

Ex. 2.1. Consider the SDE $\mathrm{d} X_{t}=a X_{t} \mathrm{~d} t+\sigma \mathrm{d} W_{t}, t \geq 0, X_{0}=X^{(0)} \in L^{2}$. Make the ansatz $X_{t}(\omega)=C_{t}(\omega) e^{a t}$. Apply the Itô formula to $C_{t}(\omega)$ and derive the solution of the SDE in this way. For $a<0$ show that $X_{t} \xrightarrow{d} N\left(0,-\sigma^{2} /(2 a)\right)$ as $t \rightarrow \infty$. For $a<0$ find $X^{(0)}$ so that the solution of the SDE is stationary.

Ex. 2.2. a) Use the Itô formula to show $\int_{0}^{t} W_{s} \mathrm{~d} W_{s}=\frac{1}{2}\left(W_{t}^{2}-t\right)$ for Brownian motion W.
b) Let \hat{a}_{T} be the MLE in the Ornstein-Uhlenbeck model with time-continuous observations $\left(X_{t}\right)_{t \in[0, T]}$ and initial condition $X^{(0)}=0$. Consider \hat{a}_{T} as $T \rightarrow \infty$ under \mathbb{P}^{0}, i.e., with true parameter $a=0$. Show that \hat{a}_{T} is consistent and that $T \hat{a}_{T}$ converges in distribution. Show that the limit is not a centred normal distribution.

STATISTICS FOR STOCHASTIC PROCESSES - EXERCISE SHEET 3

Mastermath, Spring Semester 2022, Jakob Söhl (j.soehl@tudelft.nl)

Ex. 3.1. Consider the regression model $Y_{i}=f(i / n)+\epsilon_{i}, i=1, \ldots, n$, where ϵ_{i} are i.i.d. errors with $\mathbb{E}\left[\epsilon_{i}\right]=0$ and $\operatorname{Var}\left(\epsilon_{i}\right)<\infty$. Let $f:[0,1] \rightarrow \mathbb{R}$ be differentiable and $\left\|f^{\prime}\right\|_{\infty} \leq M$. For $x \in[0,1]$ define the estimator $\hat{f}_{n}(x, h)$ by

$$
\hat{f}_{n}(x, h)=\frac{\sum_{i=1}^{n} Y_{i} \mathbb{1}_{[x-h, x+h]}(i / n)}{\sum_{i=1}^{n} \mathbb{1}_{[x-h, x+h]}(i / n)} \quad \text { for } \sum_{i=1}^{n} \mathbb{1}_{[x-h, x+h]}(i / n) \neq 0
$$

and $\hat{f}_{n}(x, h)=0$ otherwise. Show that $\left|\hat{f}_{n}\left(x, n^{-1 / 3}\right)-f(x)\right|=O_{\mathbb{P}}\left(n^{-1 / 3}\right)$.
Ex. 3.2. Let $\mathrm{d} X_{t}=b(t) \mathrm{d} t+\frac{\sigma}{\sqrt{n}} \mathrm{~d} W_{t}, t \in[0,1], X_{0}=0$, where $\sigma>0, b:[0,1] \rightarrow \mathbb{R}$ and W is Brownian motion. For time-continuous observations $\left(X_{t}\right)_{t \in[0,1]}$ we define the estimator

$$
\hat{b}_{n}(x, h)=\frac{\int_{0}^{1} \mathbb{1}_{[x-h, x+h]}(t) \mathrm{d} X_{t}}{\int_{0}^{1} \mathbb{1}_{[x-h, x+h]}(t) \mathrm{d} t} .
$$

Show that for α-Hölder continuous functions b with $\alpha \in(0,1]$, for $h=n^{-1 /(2 \alpha+1)}$ and $x \in[0,1]$

$$
\left|\hat{b}_{n}(x, h)-b(x)\right|=O_{\mathbb{P}}\left(n^{-\alpha /(2 \alpha+1)}\right) .
$$

STATISTICS FOR STOCHASTIC PROCESSES - EXERCISE SHEET 4

Mastermath, Spring Semester 2022, Jakob Söhl (j.soehl@tudelft.nl)

Ex. 4.1. Let b, σ and $1 / \sigma$ be bounded. Moreover, let b be differentiable and let σ be twice differentiable. Let $s(x)=\int_{0}^{x} \exp \left(-\int_{0}^{y} 2 b(z) / \sigma(z)^{2} \mathrm{~d} z\right) \mathrm{d} y$ and assume $s(x) \rightarrow \pm \infty$ as $x \rightarrow \pm \infty$. Let $\left(X_{t}\right)_{t \geq 0}$ satisfy the SDE $\mathrm{d} X_{t}=b\left(X_{t}\right) \mathrm{d} t+\sigma\left(X_{t}\right) \mathrm{d} W_{t}$ with $X_{0}=X^{(0)}$.

The adjoint of the infinitesimal generator A is given by $A^{*} g=-(b g)^{\prime}+\frac{1}{2}\left(\sigma^{2} g\right)^{\prime \prime}$ for $g \in C_{0}^{2}(\mathbb{R})$. From the theory of semigroups it follows that if we can find any non-negative $m \in C_{0}^{2}(\mathbb{R}), m \not \equiv 0$, which has finite integral and satisfies $A^{*} m=0$, then m is up to normalising the density of a stationary distribution.
a) Show that $Y_{t}=s\left(X_{t}\right)$ satisfies $\mathrm{d} Y_{t}=\tilde{\sigma}\left(Y_{t}\right) \mathrm{d} W_{t}$ with $\tilde{\sigma}(y)=s^{\prime}\left(s^{-1}(y)\right) \sigma\left(s^{-1}(y)\right)$.
b) Let \tilde{A}^{*} be adjoint of the infinitesimal generator of the SDE in part a). Find a non-negative function $m \not \equiv 0$ satisfying $\tilde{A}^{*} m=0$.
c) Assume $\tilde{G}=\int_{-\infty}^{\infty} 1 / \tilde{\sigma}(y)^{2} \mathrm{~d} y<\infty$ with $\tilde{\sigma}$ is as in part a). Let Y be a random variable having density $1 /\left(\tilde{G} \tilde{\sigma}(y)^{2}\right)$. Determine the density of $X=s^{-1}(Y)$ in terms of σ and b.

Ex. 4.2. Consider the SDE of the linear factor model $\mathrm{d} X_{t}=\vartheta b\left(X_{t}\right) \mathrm{d} t+\sigma\left(X_{t}\right) \mathrm{d} W_{t}$ for a given $\vartheta>0$. Let b and σ be known, measurable and bounded and let $\inf _{x \in \mathbb{R}} \sigma^{2}(x) \geq \underline{\sigma}^{2}>0$. Let there be $M, \gamma>0$ such that $\operatorname{sign}(x) \frac{2 b}{\sigma^{2}}(x) \leq-\gamma$ for all x with $|x| \geq M$. Let $\left(X_{t}\right)_{t \in[0, T]}$ be time-continuous observations of a stationary solution X of the SDE. Let $\mathbb{E}\left[b\left(X_{0}\right)^{2} / \sigma\left(X_{0}\right)^{2}\right]>0$. Show that

$$
\left(\int_{0}^{T} \frac{b\left(X_{t}\right)}{\sigma\left(X_{t}\right)} \mathrm{d} W_{t}\right) /\left(\int_{0}^{T} \frac{b\left(X_{t}\right)^{2}}{\sigma\left(X_{t}\right)^{2}} \mathrm{~d} t\right)
$$

has positive denominator with probability tending to one and is of order $O_{\mathbb{P}}(1 / \sqrt{T})$.

STATISTICS FOR STOCHASTIC PROCESSES - EXERCISE SHEET 5

Mastermath, Spring Semester 2022, Jakob Söhl (j.soehl@tudelft.nl)

Ex. 5.1. Let b and σ be measurable and locally bounded and let $\inf _{x \in \mathbb{R}} \sigma^{2}(x) \geq \underline{\sigma}^{2}>0$. Let there be $M, \gamma>0$ such that $\operatorname{sign}(x) 2 b(x) / \sigma(x)^{2} \leq-\gamma$ for all x with $|x| \geq M$. Let X be a stationary solution and μ be an invariant measure of the SDE $\mathrm{d} X_{t}=b\left(X_{t}\right) \mathrm{d} t+\sigma\left(X_{t}\right) \mathrm{d} W_{t}$. Define $A f(x):=\frac{1}{2} \sigma^{2}(x) f^{\prime \prime}(x)+b(x) f^{\prime}(x)$. For $f, g \in C^{2}(\mathbb{R})$ with compact support show that A is symmetric with respect to μ, i.e.,

$$
\int_{-\infty}^{\infty} A f(x) g(x) \mathrm{d} \mu(x)=\int_{-\infty}^{\infty} f(x) A g(x) \mathrm{d} \mu(x)
$$

Ex. 5.2. Consider the process $X_{t}=x_{0}+\int_{0}^{t} \sigma(s) \mathrm{d} W_{s}$ for $t \in[0, T]$, where $T>0$ fixed, $x_{0} \in \mathbb{R}$, W is Brownian motion and $\sigma:[0, T] \rightarrow \mathbb{R}$ is a bounded deterministic function. For $n \geq 1$ the process $\left(X_{t}\right)_{t \in[0, T]}$ is observed at the times $0=t_{0, n}<t_{1, n}<\cdots<t_{n, n}=T$. Denote $\Delta X_{i, n}=X_{t_{i, n}}-X_{t_{i-1, n}}, \Delta t_{i, n}=t_{i, n}-t_{i-1, n}$ and $\Delta_{n}=\max _{1 \leq i \leq n} \Delta t_{i, n}$. Let $g:[0, T] \rightarrow \mathbb{R}$, $\alpha \in(0,1]$ and $R>0$ be such that $|g(t)-g(s)| \leq R|t-s|^{\alpha}$ and $|g(t)| \leq R$ for all $s, t \in[0, T]$. Consider the estimator $\hat{\Lambda}_{n}(g)=\sum_{i=1}^{n} g\left(t_{i-1, n}\right)\left(\Delta X_{i, n}\right)^{2}$ for $\Lambda(g)=\int_{0}^{T} g(s) \sigma(s)^{2} \mathrm{~d} s$.
a) Define $M_{n}:=\sum_{i=1}^{n} g\left(t_{i-1, n}\right)\left(\left(\Delta X_{i, n}\right)^{2}-\int_{t_{i-1, n}}^{t_{i, n}} \sigma(s)^{2} \mathrm{~d} s\right)$. Show that there exists a constant $C>0$ depending only on R and T such that $\mathbb{E}\left[M_{n}^{2}\right] \leq C\left\|\sigma^{4}\right\|_{\infty} \Delta_{n}$.
b) Show that there exists a constant $D>0$ depending only on R and T such that

$$
\mathbb{E}\left[\left(\hat{\Lambda}_{n}(g)-\Lambda(g)\right)^{2}\right] \leq D\left\|\sigma^{4}\right\|_{\infty} \max \left(\Delta_{n}, \Delta_{n}^{2 \alpha}\right)
$$

STATISTICS FOR STOCHASTIC PROCESSES - EXERCISE SHEET 6

Mastermath, Spring Semester 2022, Jakob Söhl (j.soehl@tudelft.nl)

Ex. 6.1. Consider the setting of Ex. 1.1 with $n \rightarrow \infty, T_{n} \rightarrow \infty$ and both $b \in \mathbb{R}$ and $\sigma^{2}>0$ unknown. Construct confidence intervals B_{n} and S_{n} for b and σ^{2}, respectively, which are asymptotic of level $\alpha \in(0,1)$, i.e.,

$$
\begin{aligned}
\mathbb{P}\left(b \in B_{n}\right) \rightarrow 1-\alpha & \text { as } n \rightarrow \infty \\
\mathbb{P}\left(\sigma^{2} \in S_{n}\right) \rightarrow 1-\alpha & \text { as } n \rightarrow \infty
\end{aligned}
$$

Ex. 6.2. In the setting of Ex. 3.1 let $x \in(0,1), n h_{n} \rightarrow \infty$ and $n h_{n}^{3} \rightarrow 0$ as $n \rightarrow \infty$. Define $\sigma^{2}:=\operatorname{Var}\left(\epsilon_{1}\right)$.
a) Show that $\sqrt{n h_{n}}\left(\hat{f}_{n}\left(x, h_{n}\right)-f(x)\right) \rightarrow N\left(0, \sigma^{2} / 2\right)$ as $n \rightarrow \infty$.
b) With σ^{2} known construct confidence intervals I_{n} for $f(x)$ which are of asymptotic level $\alpha \in(0,1)$, i.e.,

$$
\mathbb{P}\left(f(x) \in I_{n}\right) \rightarrow 1-\alpha \quad \text { as } n \rightarrow \infty .
$$

STATISTICS FOR STOCHASTIC PROCESSES - EXERCISE SHEET 7

Mastermath, Spring Semester 2022, Jakob Söhl (j.soehl@tudelft.nl)

Ex. 7.1. Let X be a d-dimensional Lévy process with Lévy measure ν.
a) Let $\int_{\mathbb{R}^{d}}|x| \mathbb{1}_{\{|x|>1\}} \mathrm{d} \nu(x)<\infty$. Show that $\mathbb{E}\left[X_{t}\right]=\gamma_{1} t$ with $\gamma_{1}=\gamma+\int_{\mathbb{R}^{d}} x \mathbb{1}_{\{|x|>1\}} \mathrm{d} \nu(x)$.
b) Let $d=1$ and $\int_{\mathbb{R}} x^{2} \mathrm{~d} \nu(x)<\infty$. Show that $\mathbb{E}\left[X_{t}\right]=\gamma_{1} t$ for γ_{1} as in a) and $\operatorname{Var}\left(X_{t}\right)=$ $\left(\sigma^{2}+\tilde{\nu}(\mathbb{R})\right) t$ for $\mathrm{d} \tilde{\nu}(x)=x^{2} \mathrm{~d} \nu(x)$.

Ex. 7.2. Let φ be the characteristic function of a random variable X on \mathbb{R} and φ_{n} the empirical characteristic function of n i.i.d. samples of X. For complex-valued random variables Z_{i} we define $\operatorname{Cov}_{\mathbb{C}}\left(Z_{1}, Z_{2}\right)=\mathbb{E}\left[Z_{1} \bar{Z}_{2}\right]-\mathbb{E}\left[Z_{1}\right] \overline{\mathbb{E}}\left[Z_{2}\right]$ and $\operatorname{Var}_{\mathbb{C}}\left(Z_{1}\right)=\mathbb{E}\left[\left|Z_{1}-\mathbb{E}\left[Z_{1}\right]\right|^{2}\right]$.
a) Show that $\mathbb{E}\left[\varphi_{n}(u)\right]=\varphi(u), \operatorname{Cov}_{\mathbb{C}}\left(\varphi_{n}(u), \varphi_{n}(v)\right)=\frac{1}{n}(\varphi(u-v)-\varphi(u) \varphi(-v)), \operatorname{Var}_{\mathbb{C}}\left(\varphi_{n}(u)\right)=$ $\frac{1}{n}\left(1-|\varphi(u)|^{2}\right) \leq \frac{1}{n}$.
b) Define $\mathcal{C}_{n}(u):=\sqrt{n}\left(\varphi_{n}(u)-\varphi(u)\right)$ and conclude from a) that $\mathbb{E}\left[\mathcal{C}_{n}(u) \overline{\mathcal{C}_{n}(v)}\right]=\varphi(u-v)-$ $\varphi(u) \varphi(-v)$. Show that in combination with $\overline{\mathcal{C}_{n}(u)}=\mathcal{C}_{n}(-u)$ this completely determines the covariance structure of all finite-dimensional distributions, i.e., for all u_{1}, \ldots, u_{k} the covariance of $\operatorname{Re}\left(\mathcal{C}_{n}\left(u_{1}\right)\right), \operatorname{Im}\left(\mathcal{C}_{n}\left(u_{1}\right)\right), \ldots, \operatorname{Re}\left(\mathcal{C}_{n}\left(u_{k}\right)\right), \operatorname{Im}\left(\mathcal{C}_{n}\left(u_{k}\right)\right)$.
c) Define Γ to be the centred complex-valued Gaussian process with $\Gamma(-u)=\overline{\Gamma(u)}$ and $\operatorname{Cov}_{\mathbb{C}}(\Gamma(u), \Gamma(v))=\varphi(u-v)-\varphi(u) \varphi(-v)$. Use the multivariate central limit theorem to show that $\mathcal{C}_{n} \xrightarrow{\text { fidi }} \Gamma$, i.e., all finite-dimensional distributions converge weakly.

STATISTICS FOR STOCHASTIC PROCESSES - EXERCISE SHEET 8

Mastermath, Spring Semester 2022, Jakob Söhl (j.soehl@tudelft.nl)

Ex. 8.1. Let $R>8 \sqrt{d}$ for $d \in \mathbb{N}$. Suppose that the empirical characteristic process \mathcal{C}_{n} satisfies uniformly for $n \in \mathbb{N}$ and $K \geq 2$

$$
\mathbb{P}\left(\max _{u \in[-K, K]^{d}}\left|\mathcal{C}_{n}(u)\right| \geq R \sqrt{\log \left(n K^{2}\right)}\right) \leq C(\sqrt{n} K)^{\left(64 d-R^{2}\right) /(64 d+64)}
$$

Show that the empirical characteristic function converges uniformly on compact sets in $L^{p}, p \geq 1$, to the true characteristic function with rate $(\log (n) / n)^{1 / 2}$.

Ex. 8.2. The following result is known as Hoeffding's inequality: If X_{1}, \ldots, X_{n} are mean zero independent random variables taking values in $\left[b_{i}, c_{i}\right]$ for constants $b_{i}<c_{i}, i=1, \ldots, n$, respectively, then for $u>0$

$$
\mathbb{P}\left(\sum_{i=1}^{n} X_{i}>u\right) \leq \exp \left(-\frac{2 u^{2}}{\sum_{i=1}^{n}\left(c_{i}-b_{i}\right)^{2}}\right)
$$

of which an obvious consequence is (why?)

$$
\mathbb{P}\left(\left|\sum_{i=1}^{n} X_{i}\right|>u\right) \leq 2 \exp \left(-\frac{2 u^{2}}{\sum_{i=1}^{n}\left(c_{i}-b_{i}\right)^{2}}\right) .
$$

Provide a proof of this inequality. [Hint: You may find it useful to first prove the auxiliary result $\mathbb{E}\left[\exp \left(v X_{i}\right)\right] \leq \exp \left(v^{2}\left(c_{i}-b_{i}\right)^{2} / 8\right)$ for $v>0$, and then use Markov's inequality in conjunction with a bound for the moment generating function of $v \sum X_{i}$.]

STATISTICS FOR STOCHASTIC PROCESSES - EXERCISE SHEET 9

Mastermath, Spring Semester 2022, Jakob Söhl (j.soehl@tudelft.nl)

Ex. 9.1. Let K be a bounded function on \mathbb{R} such that $(1 / A) \int_{0}^{A} K(x) \mathrm{d} x \rightarrow 0$ as $A \rightarrow \pm \infty$.
a) For $f=c \mathbb{1}_{[\alpha, \beta]}$ with $c \in \mathbb{R}$ and $0 \leq \alpha<\beta<\infty$ show that $\int_{0}^{\infty} f(x) K(\lambda x) \mathrm{d} x \rightarrow 0$ as $\lambda \rightarrow \pm \infty$.
b) For $f \in L^{1}([0, \infty))$ prove that $\int_{0}^{\infty} f(x) K(\lambda x) \mathrm{d} x \rightarrow 0$ as $\lambda \rightarrow \pm \infty$. [Hint: You may use that for every $\epsilon>0$ there exists a finite linear combination g_{ϵ} of functions as in a) such that $\int_{0}^{\infty}\left|f(x)-g_{\epsilon}(x)\right| \mathrm{d} x<\epsilon$.]
c) For $f \in L^{1}(\mathbb{R})$ conclude that $\int_{-\infty}^{\infty} f(x) K(\lambda x) \mathrm{d} x \rightarrow 0$ as $\lambda \rightarrow \pm \infty$.
d) Show the Riemann-Lebesgue lemma: If $f \in L^{1}(\mathbb{R})$, then $\int_{\mathbb{R}} f(x) e^{i \lambda x} \mathrm{~d} x \rightarrow 0$ as $\lambda \rightarrow \pm \infty$.

Ex. 9.2. Let $\tilde{w}^{U_{n}}(u):=\left(1 / U_{n}\right) \tilde{w}\left(u / U_{n}\right)$, where \tilde{w} is a continuous function, supported on $[0,1]$ with $\tilde{w}(u)>0$ for $u \in(0,1)$. Consider the optimisation problem

$$
\left(\sigma_{n}^{2}, \lambda_{n}\right):=\operatorname{argmin}_{\left(\sigma^{2}, \lambda\right)} \int_{0}^{\infty} \tilde{w}^{U_{n}}(u)\left(\operatorname{Re} \psi_{n}(u)+\sigma^{2} u^{2} / 2+\lambda\right)^{2} \mathrm{~d} u .
$$

a) Show that it is solved by $\sigma_{n}^{2}=\int_{0}^{\infty} w_{\sigma}^{U_{n}}(u) \operatorname{Re} \psi_{n}(u) \mathrm{d} u$ and $\lambda_{n}=\int_{0}^{\infty} w_{\lambda}^{U_{n}}(u) \operatorname{Re} \psi_{n}(u) \mathrm{d} u$ and derive the form of $w_{\sigma}^{U_{n}}$ and $w_{\lambda}^{U_{n}}$ in terms of $\tilde{w}^{U_{n}}$. Verify that $w_{\sigma}^{U_{n}}(u)=U_{n}^{-3} w_{\sigma}^{1}\left(u / U_{n}\right)$ and $w_{\lambda}^{U_{n}}(u)=U_{n}^{-1} w_{\lambda}^{1}\left(u / U_{n}\right)$.
b) Derive the identities $\int_{0}^{U_{n}}\left(-u^{2} / 2\right) w_{\sigma}^{U_{n}}(u) \mathrm{d} u=1, \int_{0}^{U_{n}} w_{\sigma}^{U_{n}}(u) \mathrm{d} u=0, \int_{0}^{U_{n}}(-1) w_{\lambda}^{U_{n}}(u) \mathrm{d} u=$ 1 and $\int_{0}^{U_{n}}\left(-u^{2} / 2\right) w_{\lambda}^{U_{n}}(u) \mathrm{d} u=0$.

STATISTICS FOR STOCHASTIC PROCESSES - EXERCISE SHEET 10

Mastermath, Spring Semester 2022, Jakob Söhl (j.soehl@tudelft.nl)

Ex. 10.1. Denote by $\mathcal{F} f$ the Fourier transform of f. For an integer $s \geq 0$ suppose that v satisfies $\max _{k \in\{0,1, \ldots, s\}}\left\|v^{(k)}\right\|_{L^{2}(\mathbb{R})} \leq C$ and $\left\|v^{(s)}\right\|_{\infty} \leq C$ for some $C>0$, where $v^{(k)}$ is the k-th derivative of v. Let w_{γ} and w_{λ} be functions supported on $[0,1]$ such that $w_{\gamma}(\bullet) /(\bullet)^{s}$, $w_{\lambda}(\bullet) /(\bullet)^{s} \in L^{2}(\mathbb{R})$ and $\mathcal{F}\left[w_{\gamma}(\bullet) /(\bullet)^{s}\right], \mathcal{F}\left[w_{\lambda}(\bullet) /(\bullet)^{s}\right] \in L^{1}(\mathbb{R})$. Define $w_{\gamma}^{U_{n}}(u)=U_{n}^{-2} w_{\gamma}\left(u / U_{n}\right)$ and $w_{\lambda}^{U_{n}}(u)=U_{n}^{-1} w_{\lambda}\left(u / U_{n}\right)$. Show that

$$
\begin{aligned}
& \left|\int_{0}^{\infty} w_{\gamma}^{U_{n}}(u) \operatorname{Im}(\mathcal{F} \nu(u)) \mathrm{d} u\right| \lesssim U_{n}^{-(s+2)}, \\
& \left|\int_{0}^{\infty} w_{\lambda}^{U_{n}}(u) \operatorname{Re}(\mathcal{F} \nu(u)) \mathrm{d} u\right| \lesssim U_{n}^{-(s+1)} .
\end{aligned}
$$

Ex. 10.2. Denote by $\mathcal{F} f$ the Fourier transform of f. For an integer $s \geq 1$ suppose that v satisfies $\max _{k \in\{0,1, \ldots, s\}}\left\|v^{(k)}\right\|_{L^{2}(\mathbb{R})} \leq C$ and $\left\|v^{(s)}\right\|_{\infty} \leq C$ for some $C>0$, where $v^{(k)}$ is the k-th derivative of v. Let w be a function supported on $[-1,1]$ such that $(1-w(\bullet)) /(\bullet)^{s} \in L^{2}(\mathbb{R})$ and $\mathcal{F}\left[(1-w(\bullet)) /(\bullet)^{s}\right] \in L^{1}(\mathbb{R})$. Show that

$$
\left\|\mathcal{F}^{-1}\left[\left(1-w\left(\bullet / U_{n}\right)\right) \mathcal{F} v(\bullet)\right]\right\|_{\infty} \lesssim U_{n}^{-s} .
$$

Ex. 11.1. Let $X_{1}, X_{2}, \ldots, X_{n}$ i.i.d. random variables. Let φ_{n} be the empirical characteristic function of $X_{1}, X_{2}, \ldots, X_{n}$ and $\varphi_{n}^{(k)}$ the k-th derivative of φ_{n}. For complex-valued random variables Z we define $\operatorname{Var}_{\mathbb{C}}(Z)=\mathbb{E}\left[|Z-\mathbb{E}[Z]|^{2}\right]$. Show that for $k=0,1,2$ and for all $u \in \mathbb{R}$

$$
\operatorname{Var}_{\mathbb{C}}\left(\varphi_{n}^{(k)}(u)\right) \leq \frac{1}{n} \mathbb{E}\left[X_{1}^{2 k}\right]
$$

Ex. 11.2. Let X be a one-dimensional Lévy process with Lévy measure ν satisfying $\int_{\mathbb{R}} x^{2} \mathrm{~d} \nu(x)<$ ∞. Let \mathbb{P}_{Δ} be the probability measure of X_{Δ}. Show that for every bounded continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$

$$
\int_{\mathbb{R}} f(x) x^{2} \frac{\mathrm{~d} \mathbb{P}_{\Delta}(x)}{\Delta} \rightarrow \sigma^{2} f(0)+\int_{\mathbb{R}} f(x) x^{2} \mathrm{~d} \nu(x) \quad \text { as } \Delta \rightarrow 0
$$

[You may use the following fact: For a sequence of probability measures $\mathbb{P}, \mathbb{P}_{1}, \mathbb{P}_{2} \ldots$ on \mathbb{R} with characteristic functions $\varphi, \varphi_{1}, \varphi_{2}, \ldots$ a consequence of Lévy's continuity theorem is that the pointwise convergence $\varphi_{n} \rightarrow \varphi$ as $n \rightarrow \infty$ implies that \mathbb{P}_{n} converge weakly to \mathbb{P} as $n \rightarrow \infty$.]

STATISTICS FOR STOCHASTIC PROCESSES - EXERCISE SHEET 12

Mastermath, Spring Semester 2022, Jakob Söhl (j.soehl@tudelft.nl)

Ex. 12.1. Let X and ϵ be independent real-valued random variables whose distributions are absolutely continuous with respect to the Lebesgue measure with Lebesgue densities p_{X} and p_{ϵ}, respectively. Let φ_{ϵ} and φ_{Y} be the characteristic functions of ϵ and $Y=X+\epsilon$, respectively. Let $\varphi_{Y, n}$ be the empirical characteristic function of n i.i.d. copies of Y. Suppose $\varphi_{\epsilon} \neq 0$ for all $u \in \mathbb{R}$ and let $M_{U}:=\sup _{|u| \leq U}\left|1 / \varphi_{\epsilon}\right|$. Assume for an integer $s \geq 1$ that $p_{X}^{(k)} \in L^{2}(\mathbb{R})$ for all $k \in\{0,1, \ldots, s\}$. Define

$$
\hat{p}_{X}=\mathcal{F}^{-1}\left[\frac{\varphi_{Y, n}}{\varphi_{\epsilon}} \mathbb{1}_{\left[-U_{n}, U_{n}\right]}\right] .
$$

Show that

$$
\left\|\hat{p}_{X}-p_{X}\right\|_{L^{2}(\mathbb{R})}=O_{\mathbb{P}}\left(U_{n}^{-s}+M_{U_{n}} U_{n}^{1 / 2} n^{-1 / 2}\right) .
$$

STATISTICS FOR STOCHASTIC PROCESSES - EXERCISE SHEET 13

Mastermath, Spring Semester 2022, Jakob Söhl (j.soehl@tudelft.nl)

Ex. 13.1. Let $N=\left(N_{t}\right)_{t \geq 0}$ be a Poisson process with intensity $\lambda \geq 0$. For $\Delta>0$ we define $Z_{i}:=N_{i \Delta}-N_{(i-1) \Delta}$ with $i=1,2, \ldots, n$.
a) Compute the maximum likelihood estimator of λ given the observations $\mathbb{1}_{Z_{i} \neq 0}, i=1, \ldots, n$. Compare to the nonlinear estimator $\tilde{\lambda}_{n}$ from the lecture.
b) Let

$$
Y_{i}:= \begin{cases}0 & \text { if } Z_{i}=0 \\ 1 & \text { if } Z_{i}=1 \\ 2 & \text { if } Z_{i} \geq 2\end{cases}
$$

for $i=1, \ldots, n$.
Find the log-likelihood for estimating $\lambda>0$ from the observations $Y_{1}, Y_{2}, \ldots, Y_{n}$. Set its derivative equal to zero and approximate the solution of the resulting equation for highfrequency observations $\Delta \rightarrow 0$ as $n \rightarrow \infty$. Compare the resulting estimator to the linear estimator $\hat{\lambda}_{n}$ from the lecture.

Mastermath, Spring Semester 2022, Jakob Söhl (j.soehl@tudelft.nl)

Ex. 14.1. Suppose that $\left(X_{i}\right)_{i=1}^{n}$ are zero-mean and independent random variables such that, for some fixed $q \geq 1$, they satisfy the moment bound $\left(\mathbb{E}\left[\left|X_{i}\right|^{2 q}\right]\right)^{\frac{1}{2 q}} \leq K_{q}$. Show that

$$
\mathbb{P}\left(\left|\frac{1}{n} \sum_{i=1}^{n} X_{i}\right| \geq \delta\right) \leq B_{q}\left(\frac{1}{\sqrt{n} \delta}\right)^{2 q} \quad \text { for all } \delta>0
$$

where B_{q} is a universal constant depending only on K_{q} and q. [Hint: You may use Rosenthal's inequality.]

Ex. 14.2. Let X be a real-valued Lévy processes. Let $D:=[a, b] \subseteq \mathbb{R} \backslash\{0\}$ and

$$
\mathcal{S}:=\left\{\beta_{1} \varphi_{1}+\cdots+\beta_{d} \varphi_{d} \mid \beta_{1}, \ldots, \beta_{d} \in \mathbb{R}\right\}
$$

where φ_{j} with $j=1, \ldots, d$ are ν-a.e. continuous, bounded functions which have support in D and are orthonormal with respect to the inner product $\langle p, q\rangle:=\int_{D} p(x) q(x) \mathrm{d} x$.
Let $0=t_{0}<t_{1}<\cdots<t_{n}$ and define

$$
\hat{\rho}(x):=\sum_{j=1}^{d} \hat{\beta}\left(\varphi_{j}\right) \varphi_{j}(x) \quad \text { with } \quad \hat{\beta}\left(\varphi_{j}\right):=\frac{1}{t_{n}} \sum_{k=1}^{n} \varphi_{j}\left(X_{t_{k}}-X_{t_{k-1}}\right) .
$$

Show that $\hat{\rho}$ is the unique solution of the minimisation problem

$$
\min _{f \in \mathcal{S}} \gamma_{D}(f)
$$

where $\gamma_{D}: L^{2}(D, \mathrm{~d} x) \rightarrow \mathbb{R}$ is given by

$$
\gamma_{D}(f):=-\frac{2}{t_{n}} \sum_{k=1}^{n} f\left(X_{t_{k}}-X_{t_{k-1}}\right)+\int_{D} f^{2}(x) \mathrm{d} x .
$$

Mastermath, Spring Semester 2022, Jakob Söhl (j.soehl@tudelft.nl)

Ex. 15.1. Let X be a one-dimensional Lévy process with Lévy measure ν. Let φ have support in $[c, d] \subseteq \mathbb{R}_{>0}$ and let $\left.\varphi\right|_{[c, d]}$ be continuous with continuous derivative.
a) Show that

$$
\begin{aligned}
\mathbb{E}\left[\varphi\left(X_{\Delta}\right)\right] & =\varphi(c) \mathbb{P}\left(X_{\Delta} \geq c\right)+\int_{c}^{\infty} \varphi^{\prime}(u) \mathbb{P}\left(X_{\Delta} \geq u\right) \mathrm{d} u \\
\int_{-\infty}^{\infty} \varphi(x) \mathrm{d} \nu(x) & =\varphi(c) \nu([c, \infty))+\int_{c}^{\infty} \varphi^{\prime}(u) \nu([u, \infty)) \mathrm{d} u
\end{aligned}
$$

b) Derive further

$$
\left|\frac{\mathbb{E}\left[\varphi\left(X_{\Delta}\right)\right]}{\Delta}-\int_{-\infty}^{\infty} \varphi(x) \mathrm{d} \nu(x)\right| \leq\left(|\varphi(c)|+\int_{c}^{d}\left|\varphi^{\prime}(u)\right| \mathrm{d} u\right) M_{\Delta}([c, d])
$$

where $M_{\Delta}([c, d]):=\sup _{y \in[c, d]}\left|\frac{1}{\Delta} \mathbb{P}\left(X_{\Delta} \geq y\right)-\nu([y, \infty))\right|$.

