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Ex. 1.1. The process Xt = σWt + bt with σ, b ∈ R and W Brownian motion is observed
at the time points 0 = t0,n < t1,n < · · · < tn,n = Tn. Denote ∆Xi,n = Xti,n − Xti−1,n and
∆ti,n = ti,n − ti−1,n.

a) Compute the MLE θ̂MLE for the parameter θ = (b, σ2) and find conditions such that the

MLE is consistent, i.e., θ̂MLE
d−→ θ.

b) Assume that b is known. Compute the Fisher information for the parameter σ2.
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Ex. 2.1. Consider the SDE dXt = aXt dt + σ dWt, t ≥ 0, X0 = X(0) ∈ L2. Make the Ansatz
Xt(ω) = Ct(ω)eat. Apply the Itô formula to Ct(ω) and derive the solution of the SDE in this

way. For a < 0 show that Xt
d−→ N(0,−σ2/(2a)) as t → ∞. For a < 0 find X(0) so that the

solution of the SDE is stationary.

Ex. 2.2. a) Use the Itô formula to show
∫ t

0
Ws dWs = 1

2 (W 2
t − t) for Brownian motion W .

b) Let âT be the MLE in the Ornstein–Uhlenbeck model with time-continuous observations
(Xt)t∈[0,T ] and initial condition X(0) = 0. Consider âT as T →∞ under P0, i.e., with true
parameter a = 0. Show that âT is consistent and that T âT converges in distribution. Show
that the limit is not a centred normal distribution.
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Ex. 3.1. Consider the regression model Yi = f(i/n) + εi, i = 1, . . . , n, where εi are i.i.d. errors
with E[εi] = 0 and Var(εi) < ∞. Let f : [0, 1] → R be differentiable and ‖f ′‖∞ ≤ M . For

x ∈ [0, 1] define the estimator f̂n(x, h) by

f̂n(x, h) =

∑n
i=1 Yi1[x−h,x+h](i/n)∑n
i=1 1[x−h,x+h](i/n)

for

n∑
i=1

1[x−h,x+h](i/n) 6= 0

and f̂n(x, h) = 0 otherwise. Show that |f̂n(x, n−1/3)− f(x)| = OP(n−1/3).

Ex. 3.2. Let dXt = b(t) dt + σ√
n

dWt, t ∈ [0, 1], X0 = 0, where σ > 0, b : [0, 1] → R and W is

Brownian motion. For time-continuous observations (Xt)t∈[0,1] we define the estimator

b̂n(x, h) =

∫ 1

0
1[x−h,x+h](t) dXt∫ 1

0
1[x−h,x+h](t) dt

.

Show that for α-Hölder continuous functions b with α ∈ (0, 1], for h = n−1/(2α+1) and x ∈ [0, 1]

|b̂n(x, h)− b(x)| = OP(n−α/(2α+1)).
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Ex. 4.1. Let b, σ and 1/σ be continuous and bounded. Let s(x) =
∫ x

0
exp(−

∫ y
0

2b(z)/σ(z)2 dz) dy
and assume s(x)→ ±∞ as x→ ±∞. Let (Xt)t≥0 satisfy the SDE dXt = b(Xt) dt+ σ(Xt) dWt

with X0 = X(0).
The adjoint of the infinitesimal generator A is given by A∗g = −(bg)′+ 1

2 (σ2g)′′ for g ∈ C2
0 (R).

From the theory of semigroups it follows that if we can find any non-negative m ∈ C2
0 (R), m 6≡ 0,

which has finite integral and satisfies A∗m = 0, then m is up to normalising the density of a
stationary distribution.

a) Show that Yt = s(Xt) satisfies dYt = σ̃(Yt) dWt with σ̃(y) = s′(s−1(y))σ(s−1(y)).

b) Let Ã∗ be adjoint of the infinitesimal generator of the SDE in part a). Find a non-negative
function m 6≡ 0 satisfying Ã∗m = 0.

c) Assume G̃ =
∫∞
−∞ 1/σ̃(y)2 dy < ∞ with σ̃ is as in part a). Let Y be a random variable

having density 1/(G̃σ̃(y)2). Determine the density of X = s−1(Y ) in terms of σ and b.

Ex. 4.2. Consider the linear factor model dXt = ϑb(Xt) dt + σ(Xt) dWt with ϑ unknown.
Let b and σ be known, measurable and bounded and let infx∈R σ

2(x) ≥ σ2 > 0. Let there be
M,γ > 0 such that sign(x) 2b

σ2 (x) ≤ −γ for all x with |x| ≥M . Let (Xt)t∈[0,T ] be time-continuous
observations of a stationary solution X of the SDE with ϑ > 0. Let E[b(X0)2/σ(X0)2] > 0. Show
that (∫ T

0

b(Xt)

σ(Xt)
dWt

)/(∫ T

0

b(Xt)
2

σ(Xt)2
dt

)
has positive denominator with probability tending to one and is of order OP(1/

√
T ).
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Ex. 5.1. Let b and σ be measurable and locally bounded and let infx∈R σ
2(x) ≥ σ2 > 0. Let

there be M,γ > 0 such that sign(x)2b(x)/σ(x)2 ≤ −γ for all x with |x| ≥ M . Let X be a
stationary solution and µ be an invariant measure of the SDE dXt = b(Xt) dt + σ(Xt) dWt.
Define Af(x) := 1

2σ
2(x)f ′′(x) + b(x)f ′(x). For f, g ∈ C2(R) with compact support show that A

is symmetric with respect to µ, i.e.,∫ ∞
−∞

Af(x)g(x) dµ(x) =

∫ ∞
−∞

f(x)Ag(x) dµ(x).

Ex. 5.2. Consider the process Xt = x0 +
∫ t

0
σ(s) dWs for t ∈ [0, T ], where T > 0 fixed, x0 ∈ R,

W is Brownian motion and σ : [0, T ] → R is a bounded deterministic function. For n ≥ 1
the process (Xt)t∈[0,T ] is observed at the times 0 = t0,n < t1,n < · · · < tn,n = T . Denote
∆Xi,n = Xti,n − Xti−1,n

, ∆ti,n = ti,n − ti−1,n and ∆n = max1≤i≤n ∆ti,n. Let g : [0, T ] → R,
α ∈ (0, 1] and R > 0 be such that |g(t) − g(s)| ≤ R|t − s|α and |g(t)| ≤ R for all s, t ∈ [0, T ].

Consider the estimator Λ̂n(g) =
∑n
i=1 g(ti−1,n)(∆Xi,n)2 for Λ(g) =

∫ T
0
g(s)σ(s)2 ds.

a) Define Mn :=
∑n
i=1 g(ti−1,n)

(
(∆Xi,n)2 −

∫ ti,n
ti−1,n

σ(s)2 ds
)

. Show that there exists a con-

stant C > 0 depending only on R and T such that E[M2
n] ≤ C‖σ4‖∞∆n.

b) Show that there exists a constant D > 0 depending only on R and T such that

E[(Λ̂n(g)− Λ(g))2] ≤ D‖σ4‖∞max(∆n,∆
2α
n ).



STATISTICS FOR STOCHASTIC PROCESSES - EXERCISE SHEET 6

Mastermath, Spring Semester 2020, Jakob Söhl (j.soehl@tudelft.nl)

Ex. 6.1. Consider the setting of Ex. 1.1 with n → ∞, Tn → ∞ and both b ∈ R and
σ2 > 0 unknown. Construct confidence intervals Bn and Sn for b and σ2, respectively, which are
asymptotic of level α ∈ (0, 1), i.e.,

P(b ∈ Bn)→ 1− α as n→∞,
P(σ2 ∈ Sn)→ 1− α as n→∞.

Ex. 6.2. In the setting of Ex. 3.1 let x ∈ (0, 1), nhn → ∞ and nh3
n → 0 as n → ∞. Define

σ2 := Var(ε1).

a) Show that
√
nhn(f̂n(x, hn)− f(x))→ N(0, σ2/2) as n→∞.

b) With σ2 known construct confidence intervals In for f(x) which are of asymptotic level
α ∈ (0, 1), i.e.,

P(f(x) ∈ In)→ 1− α as n→∞.
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Ex. 7.1. Let X be a d-dimensional Lévy process with Lévy measure ν.

a) Let
∫
Rd |x|1{|x|>1} dν(x) <∞. Show that E[Xt] = γ1t with γ1 = γ +

∫
Rd x1{|x|>1} dν(x).

b) Let d = 1 and
∫
R
x2 dν(x) < ∞. Show that E[Xt] = γ1t for γ1 as in a) and Var(Xt) =

(σ2 + ν̃(R))t for dν̃(x) = x2 dν(x).

Ex. 7.2. Let ϕ be the characteristic function of a random variable X on R and ϕn the empirical
characteristic function of n i.i.d. samples of X. For complex-valued random variables Zi we define
CovC(Z1, Z2) = E[Z1Z̄2]− E[Z1]E[Z2] and VarC(Z1) = E[|Z1 − E[Z1]|2].

a) Show that E[ϕn(u)] = ϕ(u), CovC(ϕn(u), ϕn(v)) = 1
n (ϕ(u−v)−ϕ(u)ϕ(−v)), VarC(ϕn(u)) =

1
n (1− |ϕ(u)|2) ≤ 1

n .

b) Define Cn(u) :=
√
n(ϕn(u)− ϕ(u)) and conclude from a) that E[Cn(u)Cn(v)] = ϕ(u− v)−

ϕ(u)ϕ(−v). Show that in combination with Cn(u) = Cn(−u) this completely determines
the covariance structure of all finite-dimensional distributions, i.e., for all u1, . . . , uk the
covariance of Re(Cn(u1)), Im(Cn(u1)), . . . , Re(Cn(uk)), Im(Cn(uk)).

c) Define Γ to be the centred complex-valued Gaussian process with Γ(−u) = Γ(u) and
CovC(Γ(u),Γ(v)) = ϕ(u − v) − ϕ(u)ϕ(−v). Use the multivariate central limit theorem to

show that Cn
fidi−→ Γ, i.e., all finite-dimensional distributions converge weakly.
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Ex. 8.1. Let R > 8
√
d for d ∈ N. Suppose that the empirical characteristic process Cn satisfies

uniformly for n ∈ N and K ≥ 2

P
(

max
u∈[−K,K]d

|Cn(u)| ≥ R
√

log(nK2)
)
≤ C(

√
nK)(64d−R2)/(64d+64).

Show that the empirical characteristic function converges uniformly on compact sets in Lp, p ≥ 1,
to the true characteristic function with rate (log(n)/n)1/2.

Ex. 8.2. The following result is known as Hoeffding’s inequality: If X1, . . . , Xn are mean
zero independent random variables taking values in [bi, ci] for constants bi < ci, i = 1, ..., n,
respectively, then for u > 0

P

(
n∑
i=1

Xi > u

)
≤ exp

(
− 2u2∑n

i=1(ci − bi)2

)
of which an obvious consequence is (why?)

P

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ > u

)
≤ 2 exp

(
− 2u2∑n

i=1(ci − bi)2

)
.

Provide a proof of this inequality. [Hint: You may find it useful to first prove the auxiliary result
E[exp(vXi)] ≤ exp(v2(ci − bi)2/8) for v > 0, and then use Markov’s inequality in conjunction
with a bound for the moment generating function of v

∑
Xi.]
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Ex. 9.1. Let K be a bounded function on R such that (1/A)
∫ A

0
K(x) dx→ 0 as A→ ±∞.

a) For f = c1[α,β] with c ∈ R and 0 ≤ α < β < ∞ show that
∫∞

0
f(x)K(λx) dx → 0 as

λ→ ±∞.

b) For f ∈ L1([0,∞)) prove that
∫∞

0
f(x)K(λx) dx → 0 as λ → ±∞. [Hint: You may use

that for every ε > 0 there exists a finite linear combination gε of functions as in a) such
that

∫∞
0
|f(x)− gε(x)|dx < ε.]

c) For f ∈ L1(R) conclude that
∫∞
−∞ f(x)K(λx) dx→ 0 as λ→ ±∞.

d) Show the Riemann–Lebesgue lemma: If f ∈ L1(R), then
∫
R
f(x)eiλx dx→ 0 as λ→ ±∞.

Ex. 9.2. Let w̃Un(u) := (1/Un)w̃(u/Un), where w̃ is a continuous function, supported on [0, 1]
with w̃(u) > 0 for u ∈ (0, 1). Consider the optimisation problem

(σ2
n, λn) := argmin(σ2,λ)

∫ ∞
0

w̃Un(u)(Reψn(u) + σ2u2/2 + λ)2 du.

a) Show that it is solved by σ2
n =

∫∞
0
wUn
σ (u)Re ψn(u) du and λn =

∫∞
0
wUn

λ (u)Re ψn(u) du

and derive the form of wUn
σ and wUn

λ in terms of w̃Un . Verify that wUn
σ (u) = U−3

n w1
σ(u/Un)

and wUn

λ (u) = U−1
n w1

λ(u/Un).

b) Derive the identities
∫ Un

0
(−u2/2)wUn

σ (u) du = 1,
∫ Un

0
wUn
σ (u) du = 0,

∫ Un

0
(−1)wUn

λ (u) du =

1 and
∫ Un

0
(−u2/2)wUn

λ (u) du = 0.
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Ex. 10.1. Denote by Ff the Fourier transform of f . For an integer s ≥ 0 suppose that v
satisfies maxk∈{0,1,...,s} ‖v(k)‖L2(R) ≤ C and ‖v(s)‖∞ ≤ C for some C > 0, where v(k) is the
k-th derivative of v. Let wγ and wγ be functions supported on [0, 1] such that wγ(•)/(•)s,
wλ(•)/(•)s ∈ L2(R) and F [wγ(•)/(•)s], F [wλ(•)/(•)s] ∈ L1(R). Define wUn

γ (u) = U−2
n wγ(u/Un)

and wUn

λ (u) = U−1
n wλ(u/Un). Show that∣∣∣∣∫ ∞

0

wUn
γ (u)Im(Fν(u)) du

∣∣∣∣ . U−(s+2)
n ,∣∣∣∣∫ ∞

0

wUn

λ (u)Re(Fν(u)) du

∣∣∣∣ . U−(s+1)
n .

Ex. 10.2. Denote by Ff the Fourier transform of f . For an integer s ≥ 1 suppose that v
satisfies maxk∈{0,1,...,s} ‖v(k)‖L2(R) ≤ C and ‖v(s)‖∞ ≤ C for some C > 0, where v(k) is the k-th
derivative of v. Let w be a function supported on [−1, 1] such that (1−w(•))/(•)s ∈ L2(R) and
F [(1− w(•))/(•)s] ∈ L1(R). Show that∥∥F−1[(1− w(•/Un))Fv(•)]

∥∥
∞ . U−sn .
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Ex. 11.1. Let X1, X2, . . . , Xn i.i.d. random variables. Let ϕn be the empirical characteristic

function of X1, X2, . . . , Xn and ϕ
(k)
n the k-th derivative of ϕn. For complex-valued random

variables Z we define VarC(Z) = E[|Z − E[Z]|2]. Show that for k = 0, 1, 2 and for all u ∈ R

VarC

(
ϕ(k)
n (u)

)
≤ 1

n
E
[
X2k

1

]
Ex. 11.2. LetX be a one-dimensional Lévy process with Lévy measure ν satisfying

∫
R
x2 dν(x) <

∞. Let P∆ be the probability measure of X∆. Show that for every bounded continuous function
f : R→ R ∫

R

f(x)x2 dP∆(x)

∆
→ σ2f(0) +

∫
R

f(x)x2 dν(x) as ∆→ 0.

[You may use the following fact: For a sequence of probability measures P,P1,P2 . . . on R with
characteristic functions ϕ,ϕ1, ϕ2, . . . a consequence of Lévy’s continuity theorem is that the
pointwise convergence ϕn → ϕ as n→∞ implies that Pn converge weakly to P as n→∞.]
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Ex. 12.1. Let X and ε be independent real-valued random variables whose distributions are
absolutely continuous with respect to the Lebesgue measure with Lebesgue densities pX and pε,
respectively. Let ϕε and ϕY be the characteristic functions of ε and Y = X + ε, respectively.
Let ϕY,n be the empirical characteristic function of n i.i.d. copies of Y . Suppose ϕε 6= 0 for all

u ∈ R and let MU := sup|u|≤U |1/ϕε|. Assume for an integer s ≥ 1 that p
(k)
X ∈ L2(R) for all

k ∈ {0, 1, . . . , s}. Define

p̂X = F−1

[
ϕY,n
ϕε

1[−Un,Un]

]
.

Show that
‖p̂X − pX‖L2(R) = OP

(
U−sn +MUn

U1/2
n n−1/2

)
.
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Ex. 13.1. Let N = (Nt)t≥0 be a Poisson process with intensity λ ≥ 0. For ∆ > 0 we define
Zi := Ni∆ −N(i−1)∆ with i = 1, 2, . . . , n.

a) Compute the maximum likelihood estimator of λ given the observations 1Zi 6=0, i = 1, . . . , n.

Compare to the nonlinear estimator λ̃n from the lecture.

b) Let

Yi :=

 0 if Zi = 0,
1 if Zi = 1,
2 if Zi ≥ 2,

for i = 1, . . . , n.
Find the log-likelihood for estimating λ from the observations Y1, Y2, . . . , Yn. Set its deriva-
tive equal to zero and approximate the solution of the resulting equation for high-frequency
observations ∆→ 0 as n→∞. Compare the resulting estimator to the linear estimator λ̂n
from the lecture.
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Ex. 14.1. Suppose that (Xi)
n
i=1 are zero-mean and independent random variables such that,

for some fixed q ≥ 1, they satisfy the moment bound (E[|Xi|2q])
1
2q ≤ Kq. Show that

P

(∣∣∣∣∣ 1n
n∑
i=1

Xi

∣∣∣∣∣ ≥ δ
)
≤ Bq

(
1√
nδ

)2q

for all δ > 0,

where Bq is a universal constant depending only on Kq and q. [Hint: You may use Rosenthal’s
inequality.]

Ex. 14.2. Let X be a real-valued Lévy processes. Let D := [a, b] ⊆ R \{0} and

S := {β1ϕ1 + · · ·+ βdϕd |β1, . . . , βd ∈ R},

where ϕj with j = 1, . . . , d are ν-a.e. continuous, bounded functions which have support in D
and are orthonormal with respect to the inner product 〈p, q〉 :=

∫
D
p(x)q(x) dx.

Let 0 = t0 < t1 < · · · < tn and define

ρ̂(x) :=

d∑
j=1

β̂(ϕj)ϕj(x) with β̂(ϕj) :=
1

tn

n∑
k=1

ϕj
(
Xtk −Xtk−1

)
.

Show that ρ̂ is the unique solution of the minimisation problem

min
f∈S

γD(f),

where γD : L2(D, dx)→ R is given by

γD(f) := − 2

tn

n∑
k=1

f(Xtk −Xtk−1
) +

∫
D

f2(x) dx.



STATISTICS FOR STOCHASTIC PROCESSES - EXERCISE SHEET 15

Mastermath, Spring Semester 2020, Jakob Söhl (j.soehl@tudelft.nl)

Ex. 15.1. Let X be a one-dimensional Lévy process with Lévy measure ν. Let ϕ have support
in [c, d] ⊆ R>0 and let ϕ|[c,d] be continuous with continuous derivative.

a) Show that

E[ϕ(X∆)] = ϕ(c)P(X∆ ≥ c) +

∫ ∞
c

ϕ′(u)P(X∆ ≥ u) du,∫ ∞
−∞

ϕ(x) dν(x) = ϕ(c)ν([c,∞)) +

∫ ∞
c

ϕ′(u)ν([u,∞)) du.

b) Derive further∣∣∣∣E[ϕ(X∆)]

∆
−
∫ ∞
−∞

ϕ(x) dν(x)

∣∣∣∣ ≤
(
|ϕ(c)|+

∫ d

c

|ϕ′(u)|du

)
M∆([c, d]),

where M∆([c, d]) := supy∈[c,d] | 1∆ P(X∆ ≥ y)− ν([y,∞))|.


