Mastermath, Spring Semester 2020, Jakob Söhl (j.soehl@tudelft.nl)

Ex. 1.1. The process $X_t = \sigma W_t + bt$ with $\sigma, b \in \mathbb{R}$ and W Brownian motion is observed at the time points $0 = t_{0,n} < t_{1,n} < \cdots < t_{n,n} = T_n$. Denote $\Delta X_{i,n} = X_{t_{i,n}} - X_{t_{i-1,n}}$ and $\Delta t_{i,n} = t_{i,n} - t_{i-1,n}$.

- a) Compute the MLE $\hat{\theta}_{MLE}$ for the parameter $\theta = (b, \sigma^2)$ and find conditions such that the MLE is consistent, i.e., $\hat{\theta}_{MLE} \xrightarrow{d} \theta$.
- b) Assume that b is known. Compute the Fisher information for the parameter σ^2 .

Mastermath, Spring Semester 2020, Jakob Söhl (j.soehl@tudelft.nl)

Ex. 2.1. Consider the SDE $dX_t = aX_t dt + \sigma dW_t$, $t \ge 0$, $X_0 = X^{(0)} \in L^2$. Make the Ansatz $X_t(\omega) = C_t(\omega)e^{at}$. Apply the Itô formula to $C_t(\omega)$ and derive the solution of the SDE in this way. For a < 0 show that $X_t \xrightarrow{d} N(0, -\sigma^2/(2a))$ as $t \to \infty$. For a < 0 find $X^{(0)}$ so that the solution of the SDE is stationary.

- **Ex. 2.2.** a) Use the Itô formula to show $\int_0^t W_s \, dW_s = \frac{1}{2}(W_t^2 t)$ for Brownian motion W.
 - b) Let \hat{a}_T be the MLE in the Ornstein–Uhlenbeck model with time-continuous observations $(X_t)_{t \in [0,T]}$ and initial condition $X^{(0)} = 0$. Consider \hat{a}_T as $T \to \infty$ under \mathbb{P}^0 , i.e., with true parameter a = 0. Show that \hat{a}_T is consistent and that $T\hat{a}_T$ converges in distribution. Show that the limit is not a centred normal distribution.

Mastermath, Spring Semester 2020, Jakob Söhl (j.soehl@tudelft.nl)

Ex. 3.1. Consider the regression model $Y_i = f(i/n) + \epsilon_i$, i = 1, ..., n, where ϵ_i are i.i.d. errors with $\mathbb{E}[\epsilon_i] = 0$ and $\operatorname{Var}(\epsilon_i) < \infty$. Let $f : [0,1] \to \mathbb{R}$ be differentiable and $||f'||_{\infty} \leq M$. For $x \in [0,1]$ define the estimator $\hat{f}_n(x,h)$ by

$$\hat{f}_n(x,h) = \frac{\sum_{i=1}^n Y_i \mathbb{1}_{[x-h,x+h]}(i/n)}{\sum_{i=1}^n \mathbb{1}_{[x-h,x+h]}(i/n)} \quad \text{for } \sum_{i=1}^n \mathbb{1}_{[x-h,x+h]}(i/n) \neq 0$$

and $\hat{f}_n(x,h) = 0$ otherwise. Show that $|\hat{f}_n(x,n^{-1/3}) - f(x)| = O_{\mathbb{P}}(n^{-1/3}).$

Ex. 3.2. Let $dX_t = b(t) dt + \frac{\sigma}{\sqrt{n}} dW_t$, $t \in [0, 1]$, $X_0 = 0$, where $\sigma > 0$, $b : [0, 1] \to \mathbb{R}$ and W is Brownian motion. For time-continuous observations $(X_t)_{t \in [0,1]}$ we define the estimator

$$\hat{b}_n(x,h) = \frac{\int_0^1 \mathbb{1}_{[x-h,x+h]}(t) \, \mathrm{d}X_t}{\int_0^1 \mathbb{1}_{[x-h,x+h]}(t) \, \mathrm{d}t}.$$

Show that for α -Hölder continuous functions b with $\alpha \in (0,1]$, for $h = n^{-1/(2\alpha+1)}$ and $x \in [0,1]$

$$|\hat{b}_n(x,h) - b(x)| = O_{\mathbb{P}}(n^{-\alpha/(2\alpha+1)}).$$

Mastermath, Spring Semester 2020, Jakob Söhl (j.soehl@tudelft.nl)

Ex. 4.1. Let b, σ and $1/\sigma$ be continuous and bounded. Let $s(x) = \int_0^x \exp(-\int_0^y 2b(z)/\sigma(z)^2 dz) dy$ and assume $s(x) \to \pm \infty$ as $x \to \pm \infty$. Let $(X_t)_{t \ge 0}$ satisfy the SDE $dX_t = b(X_t) dt + \sigma(X_t) dW_t$ with $X_0 = X^{(0)}$.

The adjoint of the infinitesimal generator A is given by $A^*g = -(bg)' + \frac{1}{2}(\sigma^2 g)''$ for $g \in C_0^2(\mathbb{R})$. From the theory of semigroups it follows that if we can find any non-negative $m \in C_0^2(\mathbb{R}), m \neq 0$, which has finite integral and satisfies $A^*m = 0$, then m is up to normalising the density of a stationary distribution.

- a) Show that $Y_t = s(X_t)$ satisfies $dY_t = \tilde{\sigma}(Y_t) dW_t$ with $\tilde{\sigma}(y) = s'(s^{-1}(y))\sigma(s^{-1}(y))$.
- b) Let \tilde{A}^* be adjoint of the infinitesimal generator of the SDE in part a). Find a non-negative function $m \neq 0$ satisfying $\tilde{A}^*m = 0$.
- c) Assume $\tilde{G} = \int_{-\infty}^{\infty} 1/\tilde{\sigma}(y)^2 \, dy < \infty$ with $\tilde{\sigma}$ is as in part a). Let Y be a random variable having density $1/(\tilde{G}\tilde{\sigma}(y)^2)$. Determine the density of $X = s^{-1}(Y)$ in terms of σ and b.

Ex. 4.2. Consider the linear factor model $dX_t = \vartheta b(X_t) dt + \sigma(X_t) dW_t$ with ϑ unknown. Let b and σ be known, measurable and bounded and let $\inf_{x \in \mathbb{R}} \sigma^2(x) \ge \underline{\sigma}^2 > 0$. Let there be $M, \gamma > 0$ such that $\operatorname{sign}(x) \frac{2b}{\sigma^2}(x) \le -\gamma$ for all x with $|x| \ge M$. Let $(X_t)_{t \in [0,T]}$ be time-continuous observations of a stationary solution X of the SDE with $\vartheta > 0$. Let $\mathbb{E}[b(X_0)^2/\sigma(X_0)^2] > 0$. Show that

$$\left(\int_0^T \frac{b(X_t)}{\sigma(X_t)} \,\mathrm{d}W_t\right) \middle/ \left(\int_0^T \frac{b(X_t)^2}{\sigma(X_t)^2} \,\mathrm{d}t\right)$$

has positive denominator with probability tending to one and is of order $O_{\mathbb{P}}(1/\sqrt{T})$.

Mastermath, Spring Semester 2020, Jakob Söhl (j.soehl@tudelft.nl)

Ex. 5.1. Let b and σ be measurable and locally bounded and let $\inf_{x \in \mathbb{R}} \sigma^2(x) \ge \underline{\sigma}^2 > 0$. Let there be $M, \gamma > 0$ such that $\operatorname{sign}(x)2b(x)/\sigma(x)^2 \le -\gamma$ for all x with $|x| \ge M$. Let X be a stationary solution and μ be an invariant measure of the SDE $dX_t = b(X_t) dt + \sigma(X_t) dW_t$. Define $Af(x) := \frac{1}{2}\sigma^2(x)f''(x) + b(x)f'(x)$. For $f, g \in C^2(\mathbb{R})$ with compact support show that A is symmetric with respect to μ , i.e.,

$$\int_{-\infty}^{\infty} Af(x)g(x) \,\mathrm{d}\mu(x) = \int_{-\infty}^{\infty} f(x)Ag(x) \,\mathrm{d}\mu(x).$$

Ex. 5.2. Consider the process $X_t = x_0 + \int_0^t \sigma(s) \, dW_s$ for $t \in [0, T]$, where T > 0 fixed, $x_0 \in \mathbb{R}$, W is Brownian motion and $\sigma : [0, T] \to \mathbb{R}$ is a bounded deterministic function. For $n \ge 1$ the process $(X_t)_{t \in [0,T]}$ is observed at the times $0 = t_{0,n} < t_{1,n} < \cdots < t_{n,n} = T$. Denote $\Delta X_{i,n} = X_{t_{i,n}} - X_{t_{i-1,n}}, \Delta t_{i,n} = t_{i,n} - t_{i-1,n}$ and $\Delta_n = \max_{1 \le i \le n} \Delta t_{i,n}$. Let $g : [0,T] \to \mathbb{R}$, $\alpha \in (0,1]$ and R > 0 be such that $|g(t) - g(s)| \le R|t - s|^{\alpha}$ and $|g(t)| \le R$ for all $s, t \in [0,T]$. Consider the estimator $\hat{\Lambda}_n(g) = \sum_{i=1}^n g(t_{i-1,n})(\Delta X_{i,n})^2$ for $\Lambda(g) = \int_0^T g(s)\sigma(s)^2 \, ds$.

- a) Define $M_n := \sum_{i=1}^n g(t_{i-1,n}) \left((\Delta X_{i,n})^2 \int_{t_{i-1,n}}^{t_{i,n}} \sigma(s)^2 \, \mathrm{d}s \right)$. Show that there exists a constant C > 0 depending only on R and T such that $\mathbb{E}[M_n^2] \leq C \|\sigma^4\|_{\infty} \Delta_n$.
- b) Show that there exists a constant D > 0 depending only on R and T such that

$$\mathbb{E}[(\Lambda_n(g) - \Lambda(g))^2] \le D \|\sigma^4\|_{\infty} \max(\Delta_n, \Delta_n^{2\alpha}).$$

Mastermath, Spring Semester 2020, Jakob Söhl (j.soehl@tudelft.nl)

Ex. 6.1. Consider the setting of Ex. 1.1 with $n \to \infty$, $T_n \to \infty$ and both $b \in \mathbb{R}$ and $\sigma^2 > 0$ unknown. Construct confidence intervals B_n and S_n for b and σ^2 , respectively, which are asymptotic of level $\alpha \in (0, 1)$, i.e.,

$$\mathbb{P}(b \in B_n) \to 1 - \alpha \quad \text{as } n \to \infty,$$
$$\mathbb{P}(\sigma^2 \in S_n) \to 1 - \alpha \quad \text{as } n \to \infty.$$

Ex. 6.2. In the setting of Ex. 3.1 let $x \in (0,1)$, $nh_n \to \infty$ and $nh_n^3 \to 0$ as $n \to \infty$. Define $\sigma^2 := \operatorname{Var}(\epsilon_1)$.

- a) Show that $\sqrt{nh_n}(\hat{f}_n(x,h_n) f(x)) \to N(0,\sigma^2/2)$ as $n \to \infty$.
- b) With σ^2 known construct confidence intervals I_n for f(x) which are of asymptotic level $\alpha \in (0, 1)$, i.e.,

$$\mathbb{P}(f(x) \in I_n) \to 1 - \alpha \quad \text{as } n \to \infty.$$

Mastermath, Spring Semester 2020, Jakob Söhl (j.soehl@tudelft.nl)

Ex. 7.1. Let X be a d-dimensional Lévy process with Lévy measure ν .

- a) Let $\int_{\mathbb{R}^d} |x| \mathbb{1}_{\{|x|>1\}} d\nu(x) < \infty$. Show that $\mathbb{E}[X_t] = \gamma_1 t$ with $\gamma_1 = \gamma + \int_{\mathbb{R}^d} x \mathbb{1}_{\{|x|>1\}} d\nu(x)$.
- b) Let d = 1 and $\int_{\mathbb{R}} x^2 d\nu(x) < \infty$. Show that $\mathbb{E}[X_t] = \gamma_1 t$ for γ_1 as in a) and $\operatorname{Var}(X_t) = (\sigma^2 + \tilde{\nu}(\mathbb{R}))t$ for $d\tilde{\nu}(x) = x^2 d\nu(x)$.

Ex. 7.2. Let φ be the characteristic function of a random variable X on \mathbb{R} and φ_n the empirical characteristic function of n i.i.d. samples of X. For complex-valued random variables Z_i we define $\operatorname{Cov}_{\mathbb{C}}(Z_1, Z_2) = \mathbb{E}[Z_1\overline{Z_2}] - \mathbb{E}[Z_1]\overline{\mathbb{E}[Z_2]}$ and $\operatorname{Var}_{\mathbb{C}}(Z_1) = \mathbb{E}[|Z_1 - \mathbb{E}[Z_1]|^2]$.

- a) Show that $\mathbb{E}[\varphi_n(u)] = \varphi(u)$, $\operatorname{Cov}_{\mathbb{C}}(\varphi_n(u), \varphi_n(v)) = \frac{1}{n}(\varphi(u-v)-\varphi(u)\varphi(-v))$, $\operatorname{Var}_{\mathbb{C}}(\varphi_n(u)) = \frac{1}{n}(1-|\varphi(u)|^2) \leq \frac{1}{n}$.
- b) Define $C_n(u) := \sqrt{n}(\varphi_n(u) \varphi(u))$ and conclude from a) that $\mathbb{E}[C_n(u)\overline{C_n(v)}] = \varphi(u-v) \varphi(u)\varphi(-v)$. Show that in combination with $\overline{C_n(u)} = C_n(-u)$ this completely determines the covariance structure of all finite-dimensional distributions, i.e., for all u_1, \ldots, u_k the covariance of $\operatorname{Re}(C_n(u_1)), \operatorname{Im}(C_n(u_1)), \ldots, \operatorname{Re}(C_n(u_k)), \operatorname{Im}(C_n(u_k)).$
- c) Define Γ to be the centred complex-valued Gaussian process with $\Gamma(-u) = \overline{\Gamma(u)}$ and $\operatorname{Cov}_{\mathbb{C}}(\Gamma(u), \Gamma(v)) = \varphi(u-v) \varphi(u)\varphi(-v)$. Use the multivariate central limit theorem to show that $\mathcal{C}_n \xrightarrow{fidi} \Gamma$, i.e., all finite-dimensional distributions converge weakly.

Mastermath, Spring Semester 2020, Jakob Söhl (j.soehl@tudelft.nl)

Ex. 8.1. Let $R > 8\sqrt{d}$ for $d \in \mathbb{N}$. Suppose that the empirical characteristic process C_n satisfies uniformly for $n \in \mathbb{N}$ and $K \ge 2$

$$\mathbb{P}\left(\max_{u \in [-K,K]^d} |\mathcal{C}_n(u)| \ge R\sqrt{\log(nK^2)}\right) \le C(\sqrt{nK})^{(64d-R^2)/(64d+64)}.$$

Show that the empirical characteristic function converges uniformly on compact sets in L^p , $p \ge 1$, to the true characteristic function with rate $(\log(n)/n)^{1/2}$.

Ex. 8.2. The following result is known as Hoeffding's inequality: If X_1, \ldots, X_n are mean zero independent random variables taking values in $[b_i, c_i]$ for constants $b_i < c_i$, i = 1, ..., n, respectively, then for u > 0

$$\mathbb{P}\left(\sum_{i=1}^{n} X_i > u\right) \le \exp\left(-\frac{2u^2}{\sum_{i=1}^{n} (c_i - b_i)^2}\right)$$

of which an obvious consequence is (why?)

$$\mathbb{P}\left(\left|\sum_{i=1}^{n} X_{i}\right| > u\right) \le 2\exp\left(-\frac{2u^{2}}{\sum_{i=1}^{n} (c_{i} - b_{i})^{2}}\right).$$

Provide a proof of this inequality. [Hint: You may find it useful to first prove the auxiliary result $\mathbb{E}[\exp(vX_i)] \leq \exp(v^2(c_i - b_i)^2/8)$ for v > 0, and then use Markov's inequality in conjunction with a bound for the moment generating function of $v \sum X_i$.]

Mastermath, Spring Semester 2020, Jakob Söhl (j.soehl@tudelft.nl)

- **Ex. 9.1.** Let K be a bounded function on \mathbb{R} such that $(1/A) \int_0^A K(x) dx \to 0$ as $A \to \pm \infty$.
 - a) For $f = c \mathbb{1}_{[\alpha,\beta]}$ with $c \in \mathbb{R}$ and $0 \le \alpha < \beta < \infty$ show that $\int_0^\infty f(x) K(\lambda x) \, dx \to 0$ as $\lambda \to \pm \infty$.
 - b) For $f \in L^1([0,\infty))$ prove that $\int_0^\infty f(x)K(\lambda x) dx \to 0$ as $\lambda \to \pm \infty$. [Hint: You may use that for every $\epsilon > 0$ there exists a finite linear combination g_ϵ of functions as in a) such that $\int_0^\infty |f(x) g_\epsilon(x)| dx < \epsilon$.]
 - c) For $f \in L^1(\mathbb{R})$ conclude that $\int_{-\infty}^{\infty} f(x) K(\lambda x) \, \mathrm{d}x \to 0$ as $\lambda \to \pm \infty$.
 - d) Show the Riemann–Lebesgue lemma: If $f \in L^1(\mathbb{R})$, then $\int_{\mathbb{R}} f(x)e^{i\lambda x} dx \to 0$ as $\lambda \to \pm \infty$.

Ex. 9.2. Let $\tilde{w}^{U_n}(u) := (1/U_n)\tilde{w}(u/U_n)$, where \tilde{w} is a continuous function, supported on [0, 1] with $\tilde{w}(u) > 0$ for $u \in (0, 1)$. Consider the optimisation problem

$$(\sigma_n^2, \lambda_n) := \operatorname{argmin}_{(\sigma^2, \lambda)} \int_0^\infty \tilde{w}^{U_n}(u) (\operatorname{Re} \psi_n(u) + \sigma^2 u^2 / 2 + \lambda)^2 \, \mathrm{d}u.$$

- a) Show that it is solved by $\sigma_n^2 = \int_0^\infty w_{\sigma}^{U_n}(u) \operatorname{Re} \psi_n(u) \, du$ and $\lambda_n = \int_0^\infty w_{\lambda}^{U_n}(u) \operatorname{Re} \psi_n(u) \, du$ and derive the form of $w_{\sigma}^{U_n}$ and $w_{\lambda}^{U_n}$ in terms of \tilde{w}^{U_n} . Verify that $w_{\sigma}^{U_n}(u) = U_n^{-3} w_{\sigma}^1(u/U_n)$ and $w_{\lambda}^{U_n}(u) = U_n^{-1} w_{\lambda}^1(u/U_n)$.
- b) Derive the identities $\int_0^{U_n} (-u^2/2) w_{\sigma}^{U_n}(u) \, \mathrm{d}u = 1$, $\int_0^{U_n} w_{\sigma}^{U_n}(u) \, \mathrm{d}u = 0$, $\int_0^{U_n} (-1) w_{\lambda}^{U_n}(u) \, \mathrm{d}u = 1$ and $\int_0^{U_n} (-u^2/2) w_{\lambda}^{U_n}(u) \, \mathrm{d}u = 0$.

Mastermath, Spring Semester 2020, Jakob Söhl (j.soehl@tudelft.nl)

Ex. 10.1. Denote by $\mathcal{F}f$ the Fourier transform of f. For an integer $s \geq 0$ suppose that v satisfies $\max_{k \in \{0,1,\ldots,s\}} \|v^{(k)}\|_{L^2(\mathbb{R})} \leq C$ and $\|v^{(s)}\|_{\infty} \leq C$ for some C > 0, where $v^{(k)}$ is the k-th derivative of v. Let w_{γ} and w_{γ} be functions supported on [0,1] such that $w_{\gamma}(\bullet)/(\bullet)^s$, $w_{\lambda}(\bullet)/(\bullet)^s \in L^2(\mathbb{R})$ and $\mathcal{F}[w_{\gamma}(\bullet)/(\bullet)^s]$, $\mathcal{F}[w_{\lambda}(\bullet)/(\bullet)^s] \in L^1(\mathbb{R})$. Define $w_{\gamma}^{U_n}(u) = U_n^{-2}w_{\gamma}(u/U_n)$ and $w_{\lambda}^{U_n}(u) = U_n^{-1}w_{\lambda}(u/U_n)$. Show that

$$\left| \int_0^\infty w_{\gamma}^{U_n}(u) \operatorname{Im}(\mathcal{F}\nu(u)) \,\mathrm{d}u \right| \lesssim U_n^{-(s+2)},$$
$$\left| \int_0^\infty w_{\lambda}^{U_n}(u) \operatorname{Re}(\mathcal{F}\nu(u)) \,\mathrm{d}u \right| \lesssim U_n^{-(s+1)}.$$

Ex. 10.2. Denote by $\mathcal{F}f$ the Fourier transform of f. For an integer $s \geq 1$ suppose that v satisfies $\max_{k \in \{0,1,\ldots,s\}} \|v^{(k)}\|_{L^2(\mathbb{R})} \leq C$ and $\|v^{(s)}\|_{\infty} \leq C$ for some C > 0, where $v^{(k)}$ is the k-th derivative of v. Let w be a function supported on [-1, 1] such that $(1 - w(\bullet))/(\bullet)^s \in L^2(\mathbb{R})$ and $\mathcal{F}[(1 - w(\bullet))/(\bullet)^s] \in L^1(\mathbb{R})$. Show that

$$\left\| \mathcal{F}^{-1}[(1 - w(\bullet/U_n))\mathcal{F}v(\bullet)] \right\|_{\infty} \lesssim U_n^{-s}.$$

Mastermath, Spring Semester 2020, Jakob Söhl (j.soehl@tudelft.nl)

Ex. 11.1. Let X_1, X_2, \ldots, X_n i.i.d. random variables. Let φ_n be the empirical characteristic function of X_1, X_2, \ldots, X_n and $\varphi_n^{(k)}$ the k-th derivative of φ_n . For complex-valued random variables Z we define $\operatorname{Var}_{\mathbb{C}}(Z) = \mathbb{E}[|Z - \mathbb{E}[Z]|^2]$. Show that for k = 0, 1, 2 and for all $u \in \mathbb{R}$

$$\operatorname{Var}_{\mathbb{C}}\left(\varphi_{n}^{(k)}(u)\right) \leq \frac{1}{n} \mathbb{E}\left[X_{1}^{2k}\right]$$

Ex. 11.2. Let X be a one-dimensional Lévy process with Lévy measure ν satisfying $\int_{\mathbb{R}} x^2 d\nu(x) < \infty$. Let \mathbb{P}_{Δ} be the probability measure of X_{Δ} . Show that for every bounded continuous function $f : \mathbb{R} \to \mathbb{R}$

$$\int_{\mathbb{R}} f(x) x^2 \frac{\mathrm{d} \, \mathbb{P}_\Delta(x)}{\Delta} \to \sigma^2 f(0) + \int_{\mathbb{R}} f(x) x^2 \, \mathrm{d} \nu(x) \quad \text{ as } \Delta \to 0.$$

[You may use the following fact: For a sequence of probability measures $\mathbb{P}, \mathbb{P}_1, \mathbb{P}_2...$ on \mathbb{R} with characteristic functions $\varphi, \varphi_1, \varphi_2, ...$ a consequence of Lévy's continuity theorem is that the pointwise convergence $\varphi_n \to \varphi$ as $n \to \infty$ implies that \mathbb{P}_n converge weakly to \mathbb{P} as $n \to \infty$.]

Mastermath, Spring Semester 2020, Jakob Söhl (j.soehl@tudelft.nl)

Ex. 12.1. Let X and ϵ be independent real-valued random variables whose distributions are absolutely continuous with respect to the Lebesgue measure with Lebesgue densities p_X and p_{ϵ} , respectively. Let φ_{ϵ} and φ_Y be the characteristic functions of ϵ and $Y = X + \epsilon$, respectively. Let $\varphi_{Y,n}$ be the empirical characteristic function of n i.i.d. copies of Y. Suppose $\varphi_{\epsilon} \neq 0$ for all $u \in \mathbb{R}$ and let $M_U := \sup_{|u| \leq U} |1/\varphi_{\epsilon}|$. Assume for an integer $s \geq 1$ that $p_X^{(k)} \in L^2(\mathbb{R})$ for all $k \in \{0, 1, \ldots, s\}$. Define

$$\hat{p}_X = \mathcal{F}^{-1} \left[\frac{\varphi_{Y,n}}{\varphi_{\epsilon}} \mathbb{1}_{[-U_n,U_n]} \right].$$

Show that

$$\|\hat{p}_X - p_X\|_{L^2(\mathbb{R})} = O_{\mathbb{P}}\left(U_n^{-s} + M_{U_n}U_n^{1/2}n^{-1/2}\right).$$

Mastermath, Spring Semester 2020, Jakob Söhl (j.soehl@tudelft.nl)

Ex. 13.1. Let $N = (N_t)_{t \ge 0}$ be a Poisson process with intensity $\lambda \ge 0$. For $\Delta > 0$ we define $Z_i := N_{i\Delta} - N_{(i-1)\Delta}$ with i = 1, 2, ..., n.

- a) Compute the maximum likelihood estimator of λ given the observations $\mathbb{1}_{Z_i \neq 0}$, $i = 1, \ldots, n$. Compare to the nonlinear estimator $\tilde{\lambda}_n$ from the lecture.
- b) Let

$$Y_i := \begin{cases} 0 & \text{if } Z_i = 0, \\ 1 & \text{if } Z_i = 1, \\ 2 & \text{if } Z_i \ge 2, \end{cases}$$

for i = 1, ..., n.

Find the log-likelihood for estimating λ from the observations Y_1, Y_2, \ldots, Y_n . Set its derivative equal to zero and approximate the solution of the resulting equation for high-frequency observations $\Delta \to 0$ as $n \to \infty$. Compare the resulting estimator to the linear estimator $\hat{\lambda}_n$ from the lecture.

Mastermath, Spring Semester 2020, Jakob Söhl (j.soehl@tudelft.nl)

Ex. 14.1. Suppose that $(X_i)_{i=1}^n$ are zero-mean and independent random variables such that, for some fixed $q \ge 1$, they satisfy the moment bound $(\mathbb{E}[|X_i|^{2q}])^{\frac{1}{2q}} \le K_q$. Show that

$$\mathbb{P}\left(\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}\right| \geq \delta\right) \leq B_{q}\left(\frac{1}{\sqrt{n\delta}}\right)^{2q} \quad \text{for all } \delta > 0,$$

where B_q is a universal constant depending only on K_q and q. [Hint: You may use Rosenthal's inequality.]

Ex. 14.2. Let X be a real-valued Lévy processes. Let $D := [a, b] \subseteq \mathbb{R} \setminus \{0\}$ and

$$\mathcal{S} := \{\beta_1 \varphi_1 + \dots + \beta_d \varphi_d \,|\, \beta_1, \dots, \beta_d \in \mathbb{R}\},\$$

where φ_j with $j = 1, \ldots, d$ are ν -a.e. continuous, bounded functions which have support in D and are orthonormal with respect to the inner product $\langle p, q \rangle := \int_D p(x)q(x) \, dx$. Let $0 = t_0 < t_1 < \cdots < t_n$ and define

$$\hat{\rho}(x) := \sum_{j=1}^{d} \hat{\beta}(\varphi_j) \varphi_j(x) \qquad \text{with} \quad \hat{\beta}(\varphi_j) := \frac{1}{t_n} \sum_{k=1}^{n} \varphi_j \left(X_{t_k} - X_{t_{k-1}} \right).$$

Show that $\hat{\rho}$ is the unique solution of the minimisation problem

$$\min_{f\in\mathcal{S}}\gamma_D(f),$$

where $\gamma_D : L^2(D, dx) \to \mathbb{R}$ is given by

$$\gamma_D(f) := -\frac{2}{t_n} \sum_{k=1}^n f(X_{t_k} - X_{t_{k-1}}) + \int_D f^2(x) \, \mathrm{d}x.$$

Mastermath, Spring Semester 2020, Jakob Söhl (j.soehl@tudelft.nl)

Ex. 15.1. Let X be a one-dimensional Lévy process with Lévy measure ν . Let φ have support in $[c,d] \subseteq \mathbb{R}_{>0}$ and let $\varphi|_{[c,d]}$ be continuous with continuous derivative.

a) Show that

$$\mathbb{E}[\varphi(X_{\Delta})] = \varphi(c) \mathbb{P}(X_{\Delta} \ge c) + \int_{c}^{\infty} \varphi'(u) \mathbb{P}(X_{\Delta} \ge u) \, \mathrm{d}u,$$
$$\int_{-\infty}^{\infty} \varphi(x) \, \mathrm{d}\nu(x) = \varphi(c)\nu([c,\infty)) + \int_{c}^{\infty} \varphi'(u)\nu([u,\infty)) \, \mathrm{d}u.$$

b) Derive further

$$\left|\frac{\mathbb{E}[\varphi(X_{\Delta})]}{\Delta} - \int_{-\infty}^{\infty} \varphi(x) \,\mathrm{d}\nu(x)\right| \le \left(|\varphi(c)| + \int_{c}^{d} |\varphi'(u)| \,\mathrm{d}u\right) M_{\Delta}([c,d]),$$

where $M_{\Delta}([c,d]) := \sup_{y \in [c,d]} |\frac{1}{\Delta} \mathbb{P}(X_{\Delta} \ge y) - \nu([y,\infty))|.$