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1 Diffusion processes

Definition 1.1. A (time-inhomogeneous) diffusion process on R is a stochastic process
(Xt)t∈R+ solving the stochastic differential equation (SDE)

dXt = b(Xt, t) dt+ σ(Xt, t) dWt, t > 0, (1.1)

with initial condition X0 = X(0), where b : R×R+ → R, σ : R×R+ → R+ and (Wt)t∈R+ is
an one-dimensional Brownian motion.

We call b the drift coefficient and σ the diffusion coefficient (or the volatility). The intuition
is that

Ẋt =
dXt

dt
= b(Xt, t) + σ(Xt, t)Ẇt,

where Ẇt is Gaussian white noise.
The rigorous interpretation of (1.1) is given by integration:
X is a strong solution of the SDE (1.1), where W is defined on (Ω,F ,P) and X(0) is

independent of W on (Ω,F ,P) if

(a) (Xt)t∈R+ is adapted to the completion by null sets of F0
t = σ((Ws)06s6t, X

(0))

(b) X is a continuous process

(c) P(X0 = X(0)) = 1

(d) P(
∫ t

0 (|b(Xs, s)|+ |σ(Xs, s)|2) ds <∞) = 1 for all t > 0

(e) With probability one

∀t > 0 Xt = X0 +

∫ t

0
b(Xs, s) ds+

∫ t

0
σ(Xs, s) dWs

The stochastic integral is to be understood in the Itô sense as the limit in probability of sums

m∑
j=1

σ(Xtj−1 , tj−1)(Wtj −Wtj−1),

where 0 = t0 < t1 < · · · < tm = t and ∆ := maxj |tj − tj−1| → 0.

Theorem 1.2. Grant the following global Lipschitz and linear growth conditions

(a) |b(x, t)− b(y, t)|+ |σ(x, t)− σ(y, t)| 6 K|x− y|

(b) |b(x, t)|+ |σ(x, t)| 6 K(1 + |x|)

for all x, y ∈ R, t > 0 and some constant K. Let X(0) ∈ L2. Then the SDE (1.1) has a strong
solution, which is unique.
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If we observe the path (Xt)t∈[0,T ] (continuous-time observations), then by taking refined
partitions we can determine the quadratic variation∫ t

0
σ(Xs, s)

2 ds

for all t ∈ [0, T ],
m∑
j=1

(Xtj −Xtj−1)2 →
∫ t

0
σ(Xs, s)

2 ds

almost surely as ∆→ 0 (see Theorem I.2.4 and the remarks thereafter in [20]). Thus σ(Xt, t)
2

can be identified by taking the derivative at time t ∈ [0, T ]. If X does not visit x at time t,
then there is no direct information on σ(x, t)2 contained in the sample path. Continuous-time
observations identify the diffusion coefficient as far as possible and the main interest is in the
drift estimation. The main tool for identifying the drift is the Girsanov theorem.

Theorem 1.3. (Girsanov theorem, Theorem 7.19 in [19]) Let (Xt)t∈[0,T ] and (Yt)t∈[0,T ] be two
diffusion processes with

dXt = bX(Xt, t) dt+ σ(Xt, t) dWt

dYt = bY (Yt, t) dt+ σ(Yt, t) dWt

and X0 = Y0 a.s. Let the coefficients of Y satisfy the global Lipschitz and linear growth conditions
from Theorem 1.2 and let bX(x, t) = bY (x, t) for x and t such that σ(x, t) = 0. If

P
(∫ T

0

bX(Xt, t)
2 + bY (Xt, t)

2

σ(Xt, t)2
1{σ(Xt,t)>0} dt <∞

)
= 1,

P
(∫ T

0

bX(Yt, t)
2 + bY (Yt, t)

2

σ(Yt, t)2
1{σ(Yt,t)>0} dt <∞

)
= 1,

then PXT and PYT are equivalent and the Radon–Nikodym derivative is given by

dPYT
dPXT

((Xt)t∈[0,T ])

= exp

(∫ T

0

(bY − bX)(Xt, t)

σ(Xt, t)2
1{σ(Xt,t)>0} dXt −

1

2

∫ T

0

(b2Y − b2X)(Xt, t)

σ(Xt, t)2
1{σ(Xt,t)>0} dt

)
.

Examples. (a) Brownian motion with drift:
Let bX(x, t) = bX(t), bY (x, t) = bY (t), σ(x, t) = σ > 0 and X(0) = 0. Then

Xt =

∫ t

0
bX(s) ds+ σWt, Yt =

∫ t

0
bY (s) ds+ σWt

and the formula for the Radon–Nikodym derivative gives

dPYT
dPXT

((Xt)t∈[0,T ]) = exp

(∫ T

0

(bY − bX)(t)

σ2
dXt −

1

2

∫ T

0

(b2Y − b2X)(t)

σ2
dt

)
.
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If we further specialise to Yt = ϑt+ σWt and Xt = σWt, then

dPYT
dPXT

((Xt)t∈[0,T ]) = exp

(
ϑ

σ2
XT −

ϑ2T

2σ2

)
= exp

(
− T

2σ2

(
XT

T
− ϑ

)2

+
X2
T

2σ2T

)
.

We see that XT is a sufficient statistic, i.e., for all statistical purposes it suffices to use XT

instead of the whole sample path (Xt)t∈[0,T ]. The maximum likelihood estimator (MLE)

of Xt = ϑt + σWt with ϑ unknown is given by ϑ̂MLE = XT /T ∼ N(ϑ, σ2/T ). We have

ϑ̂MLE
d−→ ϑ if and only if T →∞.

(b) Ornstein–Uhlenbeck process:
The Ornstein–Uhlenbeck process is the solution of the SDE

dXt = aXt dt+ σ dWt,

X0 = X(0).

The SDE can be solved by variation of constants

Xt = eatX(0) +

∫ t

0
ea(t−s)σ dWs. (1.2)

Remark. Integrals of the form
∫ b
a f(s) dWs, f ∈ L2([a, b]), are called Wiener integrals. We

have ∫ b

a
f(s) dWs ∼ N(0, ‖f‖2L2([a,b])),

E
[∫ b

a
f(s) dWs

∫ b

a
g(s) dWs

]
=

∫ b

a
f(s)g(s) ds, f, g ∈ L2([a, b]).

If a < 0, then it follows from (1.2) that Xt
d−→ N(0,−σ2/2a) as t→∞. If X(0) is Gaussian

or deterministic, then (Xt) is a Gaussian process. Take bY (x, t) = ax, bX(x, t) = 0. For
X(0) ∈ L2 and σ > 0 the conditions of the Girsanov theorem are satisfied and it yields

dPaT
dP0

T

((Xt)t∈[0,T ]) :=
dPYT
dPXT

((Xt)t∈[0,T ]) = exp

(∫ T

0

aXs

σ2
dXs −

1

2

∫ T

0

a2X2
s

σ2
ds

)
.

By taking the derivative of the log-likelihood

d

da
log

(
dPaT
dP0

T

((Xt)t∈[0,T ])

)
=

∫ T

0

Xs

σ2
dXs − a

∫ T

0

X2
s

σ2
ds

we determine the MLE to be

âT =

∫ T
0 Xs dXs∫ T
0 X2

s ds
.

Under PaT

âT =

∫ T
0 Xs(aXs ds+ σ dWs)∫ T

0 X2
s ds

= a+

∫ T
0 Xsσ dWs∫ T

0 X2
s ds

.

For a < 0 it can be shown
√
T (âT − a)

d−→ N(0,−2a), see Example 5.2.5 in [17].
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(c) Linear factor model:
We consider the SDE

dXt = ϑb(Xt, t) dt+ σ(Xt, t) dWt,

X0 = X(0),

with σ(x, t) > 0 for all x and t. The unknown parameter is ϑ ∈ Θ and we assume 0 ∈ Θ.
Let X(0) ∈ L2 and b, σ be such that the conditions of the Girsanov theorem are satisfied.
Then we have

dPϑT
dP0

T

((Xt)t∈[0,T ]) = exp

(∫ T

0

ϑb(Xt, t)

σ(Xt, t)2
dXt −

1

2

∫ T

0

ϑ2b(Xt, t)
2

σ(Xt, t)2
dt

)
.

We take the derivative of the log-likelihood

d

dϑ
log

(
dPϑT
dP0

T

((Xt)t∈[0,T ])

)
=

∫ T

0

b(Xt, t)

σ(Xt, t)2
dXt − ϑ

∫ T

0

b(Xt, t)
2

σ(Xt, t)2
dt.

The MLE is given by

ϑ̂T =

(∫ T

0

b(Xt, t)

σ(Xt, t)2
dXt

)/(∫ T

0

b(Xt, t)
2

σ(Xt, t)2
dt

)
.

Under PϑT

ϑ̂T =

(∫ T

0
ϑ
b(Xt, t)

2

σ(Xt, t)2
dt+

∫ T

0

b(Xt, t)

σ(Xt, t)
dWt

)/(∫ T

0

b(Xt, t)
2

σ(Xt, t)2
dt

)
= ϑ+

(∫ T

0

b(Xt, t)

σ(Xt, t)
dWt

)/(∫ T

0

b(Xt, t)
2

σ(Xt, t)2
dt

)
.

On appropriate assumptions the estimation error decays with a
√
T -rate or even a CLT

holds for the estimator.

Remark. Let X be a solution of dXt = b(Xt, t) dt + σ(Xt, t) dWt and f : R×R+ → R such
that ∂f/∂x, ∂2f/∂x2, ∂f/∂t exist and are continuous. Then the Itô formula holds

f(Xt, t) = f(X0, 0) +

∫ t

0

∂

∂t
f(Xs, s) ds+

∫ t

0

∂

∂x
f(Xs, s) dXs +

1

2

∫ t

0

∂2

∂x2
f(Xs, s)σ(Xs, s)

2 ds.

2 Nonparametric drift estimation with continuous-time obser-
vations

We consider the SDE
dXt = b(Xt) dt+ σ(Xt) dWt, t > 0, (2.1)

and our aim is the nonparametric estimation of b. We suppose that we observe the whole sample
path Xt, t ∈ [0, T ], up to time T (continuous-time observations). To get an intuition we analyse
rescaled increments

X∆ −X0

∆
=

1

∆

∫ ∆

0
b(Xs) ds︸ ︷︷ ︸

∼b(X0) if b cts.

+
1

∆

∫ ∆

0
σ(Xs) dWs︸ ︷︷ ︸

E[... ]=0 if σ bounded

.

4



We see
E
[

1
∆(Xt+∆ −Xt)

∣∣Xt = x
]
∼ b(x)

for ∆ > 0 small. The same holds if we condition on a small neighbourhood

E
[

1
∆(Xt+∆ −Xt)

∣∣x− h 6 Xt 6 x+ h
]
∼ b(x).

Letting ∆→ 0 we obtain heuristically∫ T
0

dXt
dt 1[x−h,x+h](Xt) dt∫ T

0 1[x−h,x+h](Xt) dt
∼ b(x).

This motivates the estimator

b̂T (x, h) =

∫ T
0 1[x−h,x+h](Xt) dXt∫ T
0 1[x−h,x+h](Xt) dt

∼ b(x).

We decompose the error

|̂bT (x, h)− b(x)| 6

∣∣∣∣∣
∫ T

0 1[x−h,x+h](Xt)(b(Xt)− b(x)) dt∫ T
0 1[x−h,x+h](Xt) dt

∣∣∣∣∣︸ ︷︷ ︸
bias part Bx,h

+

∣∣∣∣∣
∫ T

0 1[x−h,x+h](Xt)σ(Xt) dWt∫ T
0 1[x−h,x+h](Xt) dt

∣∣∣∣∣︸ ︷︷ ︸
variance part Vx,h

.

In order to control the bias part Bx,h we assume Hölder continuity of b. Let there be α ∈ (0, 1]
and R > 0 such that for all x, y ∈ R

|b(x)− b(y)| 6 R|x− y|α.

For all x ∈ R this yields the bound
Bx,h 6 Rhα.

We simplify the analysis of the variance part Vx,h by assuming that X is stationary.

Definition 2.1. Let T ⊆ R be such that s, t ∈ T implies s + t ∈ T . A stochastic process
(Xt)t∈T is called stationary if

∀n ∈ N, t1, . . . , tn, t ∈ T : (Xt1 , . . . , Xtn)
d
= (Xt1+t, . . . , Xtn+t).

If X is a stationary solution∗ of an SDE, then the distribution of any Xt, t ∈ T , (and thus of
all Xt) is called an invariant measure of the SDE.

Remark. Let f(Xt, t) be adapted. Then we have the Itô isometry

E

[(∫ b

a
f(Xt, t) dWt

)2
]

= E
[∫ b

a
f(Xt, t)

2 dt

]
provided the right hand side is finite.

∗Solution can be read throughout as either strong or weak solution.
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For analysing the variance part we suppose that X is a stationary solution. Furthermore,
we assume that a Lebesgue density µ of the corresponding invariant measure exists. For the
numerator of the variance part we have by the Itô isometry

E

[(∫ T

0
1[x−h,x+h](Xt)σ(Xt) dWt

)2
]

=

∫ T

0
E
[
1[x−h,x+h](Xt)σ(Xt)

2
]

dt

= T E
[
1[x−h,x+h](X0)σ(X0)2

]
= T

∫ x+h

x−h
σ(y)2µ(y) dy

6 2Th‖σ2µ‖∞ ∼ Th,

where finiteness of ‖σ2µ‖∞ was assumed. Turning to the denominator we see

E
[∫ T

0
1[x−h,x+h](Xt) dt

]
= T E

[
1[x−h,x+h](X0)

]
= 2Th

1

2h

∫ x+h

x−h
µ(y) dy ∼ Th

if µ and 1/µ are locally bounded. We hope that the denominator concentrates around its ex-

pectation such that the variance part is of order OP

(√
Th
Th

)
= OP

(
1√
Th

)
.

Remark. For random variables (Xα)α∈A we write Xα = OP(1) if for all ε > 0 there exists M > 0
such that supα∈A P(|Xα| > M) < ε. Given random variables (Rα)α∈A we further introduce the
notation Xα = OP(Rα) if Xα = RαYα and Yα = OP(1).

Proposition 2.2. (See Lemma 9 and Theorem 18 in [23, Chapter I]) Let b, σ and 1/σ be
measurable and locally bounded functions. Let∫ x

0
exp

(
−
∫ y

0

2b(z)

σ2(z)
dz

)
dy → ±∞

as x→ ±∞ and

G :=

∫ ∞
−∞

1

σ2(y)
exp

(∫ y

0

2b(z)

σ2(z)
dz

)
dy <∞.

(a) If the SDE (2.1) has a solution for every initial distribution,† then there exists a stationary
solution of the SDE.

(b) Let X be a stationary solution of the SDE (2.1). Then the invariant measure of the SDE
is unique and absolutely continuous with respect to the Lebesgue measure. Its density is
given by

µ(x) =
1

Gσ2(x)
exp

(∫ x

0

2b(y)

σ2(y)
dy

)
.

Proposition 2.3. Let b and σ be measurable and locally bounded and let infx∈R σ
2(x) > σ2 > 0.

Let there be M,γ > 0 such that sign(x) 2b
σ2 (x) 6 −γ for all x with |x| >M . Let X be a stationary

†The assumptions of the proposition ensure that for every initial distribution there exists a weak solution that
is unique in the sense of probability in law, see [16, Section 5.5.B].
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solution of the SDE (2.1). Then the invariant measure µ is unique and there exists a constant C
such that for all functions f ∈ L1(µ) with E[f(X0)] = 0 we have

E

[(∫ T

0
f(Xt) dt

)2
]
6 C(1 + T )

(
‖f‖2L1(µ) + sup

|x|>M
|f(x)|2

)
.

The constant C depends only on M , γ, G, σ2 and sup|x|6M |b(x)|.

Proof. (a) (invariant density) We are in the setting of Proposition 2.2(b).

(b) (initial bound) We start by considering the Itô formula (Itô–Tanaka formula)

dF (Xt) = F ′(Xt) dXt +
1

2
F ′′(Xt)σ

2(Xt) dt

=

(
F ′(Xt)b(Xt) +

1

2
F ′′(Xt)σ

2(Xt)

)
︸ ︷︷ ︸

:=AF (Xt)

dt+ F ′(Xt)σ(Xt) dWt.

Let S(x) = 1
2σ

2(x)µ(x) = 1
2G exp

(∫ x
0

2b(y)
σ2(y)

dy
)

. This yields

AF (x) = b(x)F ′(x) +
1

2
σ2(x)F ′′(x) =

1

µ(x)

(
S(x)F ′(x)

)′
. (2.2)

We call A infinitesimal generator. We obtain
∫ T

0 AF (Xt) dt = F (XT ) − F (X0) −∫ T
0 F ′(Xt)σ(Xt) dWt. Suppose we can find F such that AF = f . Then

E

[(∫ T

0
f(Xt) dt

)2
]
6 3E[F (XT )2] + 3E[F (X0)2] + 3E

[(∫ T

0
F ′(Xt)σ(Xt) dWt

)2
]

= 6E[F (X0)2] + 3T E[F ′(X0)2σ(X0)2]. (2.3)

(c) (finding F ) Motivated by (2.2) we define

F (x) :=

∫ x

0

2

σ2(y)µ(y)

(∫ y

−∞
f(z)µ(z) dz

)
dy,

where µ denotes the Lebesgue density of the invariant measure. To check that AF = f
we calculate the first two derivatives

F ′(x) =
2

σ2(x)µ(x)

∫ x

−∞
f(z)µ(z) dz

= 2

∫ x

−∞

f(z)

σ2(z)
exp

(
−
∫ x

z

2b

σ2
(y) dy

)
dz,

F ′′(x) =
2f(x)

σ2(x)
+ 2

∫ x

−∞

f(z)

σ2(z)

(
− 2b

σ2
(x)

)
exp

(
−
∫ x

z

2b

σ2
(y) dy

)
dz.

We verify

AF (x) =

(
σ2

2
F ′′ + bF ′

)
(x) = f(x)− b(x)F ′(x) + b(x)F ′(x) = f(x).
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(d) (bounding E[F ′(X0)2σ(X0)2]) For x 6 −M we obtain

|F ′(x)| = 2

∣∣∣∣∫ x

−∞

f(z)

σ2(z)
exp

(
−
∫ x

z

2b

σ2
(y) dy

)
dz

∣∣∣∣
6 2

∫ x

−∞

|f(z)|
σ2(z)

exp (−(x− z)γ) dz

6 C sup
x6−M

|f(x)|.

Using
∫ x
−∞ f(z)µ(z) dz = −

∫∞
x f(z)µ(z) dz we likewise obtain for x >M

|F ′(x)| = 2

∣∣∣∣∫ ∞
x

f(z)

σ2(z)
exp

(∫ z

x

2b

σ2
(y) dy

)
dz

∣∣∣∣
6 2

∫ ∞
x

|f(z)|
σ2(z)

exp (−(z − x)γ) dz

6 C sup
x>M
|f(x)|.

We conclude that
sup
|x|>M

|F ′(x)| 6 C sup
|x|>M

|f(x)|.

With this preparation we bound

E[F ′(X0)2σ(X0)2] =

∫
R

F ′(x)2σ(x)2µ(x) dx

6
∫ M

−M

4

σ(x)2µ(x)

(∫ x

−∞
f(z)µ(z) dz

)2

dx

+ C2 sup
|x|>M

|f(x)|2
∫
|x|>M

σ(x)2µ(x) dx

6 ‖f‖2L1(µ)

∫ M

−M
4G exp

(
−
∫ x

0

2b

σ2
(y) dy

)
dx

+ C2 sup
|x|>M

|f(x)|2
∫
|x|>M

1

G
exp

(∫ x

0

2b

σ2
(y) dy

)
dx

6 C ′

(
‖f‖2L1(µ) + sup

|x|>M
|f(x)|2

)
. (2.4)

(e) (bounding E[F (X0)2]) We can bound |F (x)| by

|F (x)| 6 sup
x∈[−M,M ]

|F (x)|+ max(|x| −M, 0) sup
|x|>M

|F ′(x)|

6M sup
x∈[−M,M ]

2

σ2(x)µ(x)

∣∣∣∣∫ x

−∞
f(z)µ(z) dz

∣∣∣∣+ |x| sup
|x|>M

|F ′(x)|

6 2M‖f‖L1(µ) sup
x∈[−M,M ]

G exp

(
−
∫ x

0

2b

σ2
(y) dy

)
+ C|x| sup

|x|>M
|f(x)|

6 C ′′‖f‖L1(µ) + C|x| sup
|x|>M

|f(x)|.
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By the exponential decay of µ we see that E[X2
0 ] is bounded and obtain

E[F (X0)2] 6 2C ′′2‖f‖2L1(µ) + 2C2 E[X2
0 ] sup
|x|>M

|f(x)|2

6 C ′′′

(
‖f‖2L1(µ) + sup

|x|>M
|f(x)|2

)
. (2.5)

The proposition follows by combining (2.3), (2.4) and (2.5).

Let σ, b and X be as in the previous proposition. Then µ is bounded and the proposition
applies to

f := 1[x−h,x+h] − E[1[x−h,x+h](X0)]

since

E[|f(X0)|] = E
[∣∣1[x−h,x+h](X0)− E[1[x−h,x+h](X0)]

∣∣]
6 2E[1[x−h,x+h](X0)] 6 4h‖µ‖∞

and E[f(X0)] = 0. Let I be a closed interval in (−M,M). For x ∈ I and h > 0 small enough

sup
|y|>M

|f(y)| = E[1[x−h,x+h](X0)] 6 2h‖µ‖∞.

For h > 0 small enough we obtain

Var

(∫ T

0
1[x−h,x+h](Xt) dt

)
= E

[(∫ T

0
f(Xt) dt

)2
]
6 C(1 + T ) · 20h2‖µ‖2∞

It follows for T > 1 and for some constant C ′ > 0

Var

(
1

Th

∫ T

0
1[x−h,x+h](Xt) dt

)
6
C ′

T
→ 0 (2.6)

as T →∞. Furthermore, 1/µ is locally bounded such that for some C ′′ > 0

E
[∫ T

0
1[x−h,x+h](Xt) dt

]
> C ′′Th =⇒ E

[
1

Th

∫ T

0
1[x−h,x+h](Xt) dt

]
> C ′′ > 0.

Consequently

P
(

1

Th

∫ T

0
1[x−h,x+h](Xt) dt >

C ′′

2

)
→ 1.

We conclude Vx,h = OP

(√
Th
Th

)
= OP

(
1√
Th

)
and obtain the following theorem.

Theorem 2.4. Let b be Hölder continuous of exponent α ∈ (0, 1] and σ be measurable and
locally bounded with infx∈R σ

2(x) > σ2 > 0. Let there be M,γ > 0 such that sign(x) 2b
σ2 (x) 6 −γ

for all x with |x| >M . Let X be a stationary solution and I a compact interval. Then uniformly
for x ∈ I we have

|̂bT (x, h)− b(x)| 6 Rhα +OP

(
1√
Th

)
.

In particular, b̂T (x, h) is a consistent estimator of b(x) if h→ 0 and Th→∞.

Corollary 2.5. The choice h ∼ T−
1

2α+1 yields

|̂bT (x, h)− b(x)| = OP

(
T−

α
2α+1

)
.

9



3 Nonparametric estimation of the invariant density with con-
tinuous-time observations

We consider

dXt = b(Xt) dt+ σ(Xt) dWt, t > 0,

where b and σ are as in Proposition 2.3.

Definition 3.1. For a Borel set A define µT (A) =
∫ T

0 1A(Xt) dt. The Lebesgue density LT of
µT is called local time of X at time T (see [3, 20]). For all positive Borel measurable f we have∫ T

0 f(Xt) dt =
∫
R
f(x)LT (x) dx.

This definition differs from the usual definition in the above and in other literature, where
it is common to call σ(x)2LT (x) the local time.

There exists a version of the local time LT (x) such that almost surely

LT (x) = lim
h→0

1

h

∫ T

0
1[x,x+h)(Xt) dt

for every x and T (Corollary VI.1.9 in [20]).
Let σ be a càdlàg function (right-continuous with left limits). Then the invariant density µ

is càdlàg, too. We estimate the invariant density by the normalised local time

µ̂T (x) :=
1

T
LT (x).

Let X be a stationary solution. We rewrite

|µ̂T (x)− µ(x)| =
∣∣∣∣µ̂T (x)− lim

h→0

1

h

∫ x+h

x
µ(y) dy

∣∣∣∣
=

∣∣∣∣ lim
h→0

1

Th

∫ T

0
(1[x,x+h)(Xt)− E[1[x,x+h)(Xt)]) dt︸ ︷︷ ︸

:=Ex,h,T

∣∣∣∣.
As in (2.6) in the last section we deduce as T →∞ and for h > 0 small enough

Var(Ex,h,T ) 6
C

T

for some constant C > 0. We obtain the following theorem.

Theorem 3.2. Let b be a measurable, locally bounded function and σ a càdlàg function with
infx∈R σ

2(x) > σ2 > 0. Let there be M,γ > 0 such that sign(x) 2b
σ2 (x) 6 −γ for all x with

|x| > M . Let X be a stationary solution and I a compact interval. Then uniformly for x ∈ I
we have

|µ̂T (x)− µ(x)| = OP

(
1√
T

)
.

The invariant density can be estimated nonparametrically with a
√
T -rate.
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4 Nonparametric volatility estimation with high-frequency data

4.1 Introduction

We consider the diffusion process

dXt = b(Xt) dt+ σ(Xt) dWt.

The observations are given by
X0, X∆, X2∆, . . . , XN∆.

We will base our estimator on the increments. To get an intuition we will analyse the approx-
imate size of the different terms in the rescaled increments

X∆ −X0

∆
=

1

∆

∫ ∆

0
b(Xs) ds︸ ︷︷ ︸

∼b(X0) if b cts.

+
1

∆

∫ ∆

0
σ(Xs) dWs︸ ︷︷ ︸

E[... ]=0 if E[
∫ ∆
0 σ(Xs)2 ds] <∞,

in particular if σ is bounded

. (4.1)

For the estimation of σ2 we consider squared increments

(X∆ −X0)2

∆
=

1

∆

(∫ ∆

0
b(Xs) ds

)2

︸ ︷︷ ︸
∼∆

+2
1

∆

∫ ∆

0
b(Xs) ds︸ ︷︷ ︸
∼1

∫ ∆

0
σ(Xs) dWs︸ ︷︷ ︸
∼
√

∆

+
1

∆

(∫ ∆

0
σ(Xs) dWs

)2

︸ ︷︷ ︸
E[. . . ] = 1

∆
E[
∫ ∆
0 σ(Xs)2 ds]

∼ σ(X0)2, by Itô isometry

.

As an example we consider dBt = σ dWt. We observe B0, B∆, B2∆, . . . , BN∆ with N → ∞,
N∆ = T fixed. The analysis of the increments motivates the estimator

σ̂2 =
1

N

N−1∑
n=0

(B(n+1)∆ −Bn∆)2

∆
=

1

N

N−1∑
n=0

σ2Y 2
n ,

where (Yn) are iid with distribution N(0, 1). Then the estimator is unbiased, E[σ̂2] = σ2, and
the quadratic risk is given by

E[(σ̂2 − σ2)2] = E

[( 1

N

N−1∑
n=0

σ2(Y 2
n − 1)

)2
]

=
σ4

N
E[(Y 2

0 − 1)2] =
2σ4

N
.

We see E[(σ̂2 − σ2)2]1/2 ∼ N−1/2. By the CLT we even obtain
√
N(σ̂2 − σ2)

d−→ N(0, 2σ4).
What makes this calculation easy?

• independent increments

• σ is constant
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Remark. (a) By the Burkholder–Davis–Gundy inequality (BDG inequality) there is for all
p ∈ (0,∞) a constant Cp > 0 such that for all f(Xt, t) adapted

E

[∣∣∣∣∫ b

a
f(Xt, t) dWt

∣∣∣∣p
]
6 Cp E

[(∫ b

a
f(Xt, t)

2 dt

)p/2]
.

(b) Let X be a solution of dXt = b(Xt) dt+ σ(Xt) dWt. The Tanaka formula states

|Xt − x| = |X0 − x|+
∫ t

0
sign(Xs − x) dXs + σ2(x)Lt(x),

where Lt is the local time at t, sign(x) = 1 for x > 0 and sign(x) = −1 for x 6 0. (The
Tanaka formula can be viewed as a generalisation of the Itô formula for f(y) = |y − x|.)

4.2 Error bounds for the Florens-Zmirou estimator

Definition 4.1. Let 0 < m < M and define

Θ(m,M) =

{
σ ∈ C1(R)

∣∣∣∣m 6 inf
x∈R

σ(x) 6 sup
x∈R

σ(x) 6M, sup
x∈R
|σ′(x)| 6M

}
Each σ ∈ Θ(m,M) satisfies the Lipschitz and the linear growth conditions and thus

dXt = σ(Xt) dWt,

X0 = X(0) ∈ L2(Ω),

has a unique strong solution. We observe

X0, X∆, X2∆, . . . , XN∆

as N →∞ and with N∆ = 1 fixed. We define the Florens-Zmirou estimator [11] by

σ2
FZ(x, h∆) =

∑N−1
n=0 1{|Xn∆−x|<h∆}

1
∆(X(n+1)∆ −Xn∆)2∑N−1

n=0 1{|Xn∆−x|<h∆}

if
∑N−1

n=0 1{|Xn∆−x|<h∆} > 0. This estimator is of Nadaraya–Watson type.

Lemma 4.2. For every p > 0 holds supσ∈Θ,x∈R E[L(x)p] 6 Kp for L(x) = L1(x).

Proof. By the Tanaka formula

L(x) =
1

σ(x)2

(
|X1 − x| − |X0 − x| −

∫ 1

0
sign(Xt − x) dXt

)
6

1

m2

(
|X1 −X0|+

∣∣∣∣∫ 1

0
sign(Xt − x) dXt

∣∣∣∣) ,
where sign(x) = 1 for x > 0 and sign(x) = −1 for x 6 0. By the BDG inequality we have

E [|X1 −X0|p] = E
[∣∣∣∣∫ 1

0
σ(Xt) dWt

∣∣∣∣p] 6 Cp E

[(∫ 1

0
σ(Xs)

2 ds

)p/2]
6 CpM

p,

E
[∣∣∣∣∫ 1

0
sign(Xt − x) dXt

∣∣∣∣p] 6 Cp E

[(∫ 1

0
sign(Xt − x)2σ(Xt)

2 dt

)p/2]
6 CpM

p.
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Theorem 4.3. Let I be an open interval, ν > 0 and L = {ω ∈ Ω |infx∈I L(x) > ν }. Let
h∆ ∼ ∆1/3. Then there exists C > 0 such that for all x ∈ I

sup
σ∈Θ

(
E
[∣∣σ2

FZ(x, h∆) ∧M2 − σ2(x)
∣∣2 1L])1/2

6 C∆1/3.

Notation:
fσ . gσ (or gσ & fσ) means that there exists C > 0 such that fσ 6 Cgσ for all σ ∈ Θ, x ∈ I.
We write fσ ∼ gσ if fσ . gσ and fσ & gσ.

Proof. (a) (error decomposition) For n = 0, . . . , N − 1 we define

ηn =
1

∆

(∫ (n+1)∆

n∆
σ(Xs) dWs

)2

− 1

∆

∫ (n+1)∆

n∆
σ(Xs)

2 ds.

• E[ηn| Fn∆] = 0 and for m < n we have E[ηmηn] = E[ηm E[ηn| Fn∆]] = 0.

• E[η2
n| Fn∆] . 1 since by the BDG inequality

∆2 E[η2
n| Fn∆] . E

(∫ (n+1)∆

n∆
σ(Xs) dWs

)4
∣∣∣∣∣∣Fn∆

+ E

(∫ (n+1)∆

n∆
σ(Xs)

2 ds

)2
∣∣∣∣∣∣Fn∆


. E

(∫ (n+1)∆

n∆
σ(Xs)

2 ds

)2
∣∣∣∣∣∣Fn∆

 . ∆2.

We decompose

|σ2
FZ(x, h∆)− σ2(x)|

=

∣∣∣∣∣∣∣∣
∑N−1

n=0 1{|Xn∆−x|<h∆}

(
1
∆

(∫ (n+1)∆
n∆ σ(Xt) dWt

)2
− σ2(x)

)
∑N−1

n=0 1{|Xn∆−x|<h∆}

∣∣∣∣∣∣∣∣
6

∣∣∣∣∣
∑N−1

n=0 1{|Xn∆−x|<h∆}ηn∑N−1
n=0 1{|Xn∆−x|<h∆}

∣∣∣∣∣︸ ︷︷ ︸
martingale part Mx,∆

+

∣∣∣∣∣∣
∑N−1

n=0 1{|Xn∆−x|<h∆}

(
1
∆

∫ (n+1)∆
n∆ σ2(Xt) dt− σ2(x)

)
∑N−1

n=0 1{|Xn∆−x|<h∆}

∣∣∣∣∣∣︸ ︷︷ ︸
bias part Bx,∆

.

(b) (good event of high probability) Define the modulus of continuity as the random variable

WX(∆)T := sup
06s,t6T
|t−s|<∆

|Xt −Xs|, W (∆) := WX(∆)1.

Let 0 < ε < 1/6 and α = 3/2−3ε > 1. We define R = {ω ∈ Ω |W (∆) < hα∆ }. By Markov’s
inequality we have for all p > 0

P(Rc) 6 h−pα∆ E[W (∆)p]. (4.2)
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Claim:

E[WX(∆)pT ] 6 Cp

(
∆ log

(
2T

∆

))p/2
(4.3)

Reason:

• (4.3) is true for Brownian motion, see [10].

• Let dXt = σ(Xt) dWt. By the Dambis–Dubins–Schwarz theorem Xt = B∫ t
0 σ

2(Xu) du

for some Brownian motion B. Consequently for 0 ≤ s, t ≤ T

|Xt −Xs| =
∣∣∣B∫ t

0 σ
2(Xu) du −B

∫ s
0 σ

2(Xu) du

∣∣∣ 6WB
(
|t− s|M2

)
TM2 .

We bound (4.2) by

P(Rc) . ∆−pα/3
(

∆ log

(
2

∆

))p/2
= ∆pε

(
log

(
2

∆

))p/2
and conclude that P(Rc) . ∆2/3 for p large enough.

(c) (martingale part) We define N(x, h∆) :=
∑N−1

n=0 1{|Xn∆−x|<h∆}.
Claim: On R we have∣∣∣∣N(x, h∆)

Nh∆
− 1

h∆

∫ x+h∆

x−h∆

L(z) dz

∣∣∣∣ 6 1

h∆

∫
{h∆−hα∆6|z−x|<h∆+hα∆}

L(z) dz

Proof of claim:∣∣∣∣∣ 1

N

N−1∑
n=0

1{|Xn∆−x|<h∆} −
∫ 1

0
1{|Xs−x|<h∆} ds

∣∣∣∣∣
6

N−1∑
n=0

∫ (n+1)∆

n∆

∣∣1{|Xn∆−x|<h∆} − 1{|Xs−x|<h∆}
∣∣ ds

6
N−1∑
n=0

∫ (n+1)∆

n∆
1{h∆6|Xs−x|<h∆+W (∆)} ds+

N−1∑
n=0

∫ (n+1)∆

n∆
1{h∆−W (∆)6|Xs−x|<h∆} ds

6
∫ 1

0
1{h∆−hα∆6|Xs−x|<h∆+hα∆} ds

=

∫
{h∆−hα∆6|z−x|<h∆+hα∆}

L(z) dz

For simplicity we define A := {z|h∆ − hα∆ 6 |z − x| < h∆ + hα∆} and observe that A has
Lebesgue measure 4hα∆. Using Markov’s and Jensen’s inequalities we obtain for p > 1

P
(

1

h∆

∫
A
L(z) dz > ν

)
. E

[
1

hp∆

(∫
A
L(z) dz

)p]
.
h
α(p−1)
∆

hp∆

∫
A
E [L(z)p] dz . h

(α−1)p
∆ . ∆2/3
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for p large enough. So there is an event Q ⊆ R with P(Qc) . ∆2/3 such that
N(x, h∆)/(Nh∆) is bounded from below on Q ∩ L. Using the martingale properties of
ηn we obtain

E
[
M2
x,∆1Q∩L

]
= E

( 1

N(x, h∆)

N−1∑
n=0

1{|Xn∆−x|<h∆}ηn

)2

1Q∩L


.

1

N2h2
∆

E

(N−1∑
n=0

1{|Xn∆−x|<h∆}ηn

)2

1Q∩L


.

1

N2h2
∆

E

 N−1∑
n,m=0

1{|Xn∆−x|<h∆}1{|Xm∆−x|<h∆}ηnηm


=

1

N2h2
∆

E

[
N−1∑
n=0

1{|Xn∆−x|<h∆} E[η2
n| Fn∆]

]

.
1

N2h2
∆

E[N(x, h∆)].

Finally

1

Nh∆
E [N(x, h∆)] .

1

Nh∆
E [N(x, h∆)1R] +

1

Nh∆
E[N(x, h∆)1Rc ]

. E
[

1

h∆

∫ x+h∆

x−h∆

L(z) dz +
1

h∆

∫
A
L(z) dz

]
+ h−1

∆ P (Rc)

.
1

h∆

∫
(x−h∆,x+h∆)∪A

E[L(z)] dz + h−1
∆ ∆2/3

. 1.

(d) (bias part) If |Xn∆ − x| < h∆, then∣∣∣∣∣ 1

∆

∫ (n+1)∆

n∆
σ2(Xt) dt− σ2(x)

∣∣∣∣∣ . 1

∆

∫ (n+1)∆

n∆
|Xt − x|dt

.
1

∆

∫ (n+1)∆

n∆
|Xt −Xn∆|dt+ |Xn∆ − x|

.W (∆) + h∆.

So we have Bx,∆1R . h∆.

(e) (conclusion) We have shown

E
[∣∣σ2

FZ(x, h∆)− σ2(x)
∣∣2 1L∩Q] . E

[
M2
x,∆1L∩Q +B2

x,∆1R
]

.
1

Nh∆
+ h2

∆ ∼ ∆2/3.

Furthermore,

E
[∣∣σ2

FZ(x, h∆) ∧M2 − σ2(x)
∣∣2 1L∩Qc] . P(Qc) . ∆2/3.
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Corollary 4.4. Let Θ∗ = Θ(m,M) × {b ∈ C(R) |b is Lipschitz and supx∈R |b(x)| 6M }. Let
(σ, b) ∈ Θ∗ and define dYt = b(Yt) dt + σ(Yt) dWt, Y0 = X0. For h∆ ∼ ∆1/3 and L as before
there exists C > 0 such that for all x ∈ I

sup
(σ,b)∈Θ∗

E
[∣∣σ2

FZ(x, h∆) ∧M2 − σ2(x)
∣∣1L] 6 C∆1/3.

Proof. The assumptions of the Girsanov theorem are satisfied. The laws of X and Y on C([0, 1])
are equivalent and

dPY
dPX

(X) = exp

(∫ 1

0

b

σ2
(Xs) dXs −

1

2

∫ 1

0

b2

σ2
(Xs) ds

)
= exp

(∫ 1

0

b

σ
(Xs) dWs −

1

2

∫ 1

0

b2

σ2
(Xs) ds

)
.

We define Ex,∆ :=
∣∣σ2

FZ(x, h∆) ∧M2 − σ2(x)
∣∣1L. By the Cauchy–Schwarz inequality

EY [Ex,∆] = EX
[
Ex,∆

dPY
dPX

(X)

]
= EX

[
Ex,∆ exp

(∫ 1

0

b

σ
(Xs) dWs −

1

2

∫ 1

0

b2

σ2
(Xs) ds

)]
6 EX

[
Ex,∆ exp

(∫ 1

0

b

σ
(Xs) dWs

)]
6 EX

[
E2
x,∆

]1/2 EX [exp

(
2

∫ 1

0

b

σ
(Xs) dWs

)]1/2

.

It remains to show that

EX
[
exp

(∫ 1

0

2b

σ
(Xs) dWs

)]
is uniformly bounded. Since EX

[
exp

(∫ 1
0

2b2

σ2 (Xs) ds
)]

<∞, by Novikov’s condition the process

Mt := exp

(∫ t

0

2b

σ
(Xs) dWs −

∫ t

0

2b2

σ2
(Xs) ds

)
, t ∈ [0, 1],

is a martingale so that EX [M1] = EX [M0] = 1. We conclude

EX
[
exp

(∫ 1

0

2b

σ
(Xs) dWs

)]
6 exp

(
2M2

m2

)
.

Theorem 4.5. (Florens-Zmirou, 1993) Let X satisfy

dXt = b(Xt) dt+ σ(Xt) dWt, t ∈ [0, 1],

where b is bounded with two continuous and bounded derivatives, σ has three continuous and
bounded derivatives and m 6 σ 6M for some 0 < m < M . If Nh3

∆ tends to zero, then√
Nh∆

(
σ2
FZ(x, h∆)

σ2(x)
− 1

)
d−→ L(x)−1/2Z,

where Z is a standard normal random variable independent of L(x).
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5 Nonparametric estimation with low-frequency data

We consider the SDE

dXt = b(Xt) dt+ σ(Xt) dWt, t > 0.

For ∆ > 0 fixed we observe X0, X∆, . . . , XN∆ as N →∞. We define the transition operator

P∆f(x) := E [f(X∆)|X0 = x] .

We recall the infinitesimal generator

Af(x) =
1

2
σ2(x)f ′′(x) + b(x)f ′(x).

We have P∆ = exp(∆A) in the operator sense. The estimation method can be summarised by

X0, X∆, . . . , XN∆
estimation−→ P∆

identification−→ A −→ (σ2, b).

We simplify the statistical problem by considering a diffusion with boundary reflections

dXt = b(Xt) dt+ σ(Xt) dWt + v(Xt) dL(X),

X0 = x0 and Xt ∈ [0, 1], t > 0,

where v(0) = 1, v(1) = −1 and L(X) is a continuous nondecreasing process that increases only
when Xt ∈ {0, 1}.

For s > 0 we define the Sobolev space

Hs(R) :=
{
f ∈ L2(R)

∣∣∣ ‖f‖2Hs(R) :=

∫
R

(u2 + 1)s|Ff(u)|2 du <∞
}
,

where Ff(u) =
∫∞
−∞ e

iuxf(x) dx denotes the Fourier transform of f . We define

Hs([0, 1]) :=
{
f ∈ L2([0, 1])| ∃g ∈ Hs(R) with g|[0,1] = f

}
,

and
‖f‖Hs([0,1]) := inf

{
‖g‖Hs(R)| g ∈ Hs(R), g|[0,1] = f

}
.

Definition 5.1. For s > 1 and given constants C > c > 0 we consider the class Θs = Θ(s, C, c)
defined by{

(σ, b) ∈ Hs([0, 1])×Hs−1([0, 1])
∣∣∣ ‖σ‖Hs([0,1]) 6 C, ‖b‖Hs−1([0,1]) 6 C, inf

x∈[0,1]
σ(x) > c

}
.

The invariant density has the form

µ(x) =
1

Gσ2(x)
exp

(∫ x

0

2b

σ2
(y) dy

)
.

We further define

S(x) =
1

2G
exp

(∫ x

0

2b

σ2
(y) dy

)
.
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The infinitesimal generator can be expressed by

Af(x) =
1

2
σ2(x)f ′′(x) + b(x)f ′(x) =

S(x)

µ(x)
f ′′(x) +

S′(x)

µ(x)
f ′(x) =

1

µ(x)
(S(x)f ′(x))′.

The domain of this unbounded operator in L2(µ) is given by

dom(A) =
{
f ∈ H2([0, 1])|f ′(0) = f ′(1) = 0

}
.

The operator A has a discrete point spectrum {νk|k = 0, 1, . . . }. The largest eigenvalue is 0
with constant eigenfunction. Let ν1 be the second largest eigenvalue with corresponding eigen-
function u1. By the reflecting boundary u′1(0) = u′1(1) = 0 and thus we obtain from

Au1(x) =
1

µ(x)
(S(x)u′1(x))′ = ν1u1(x)

by integration

S(x)u′1(x) = ν1

∫ x

0
u1(y)µ(y) dy.

We can choose u1 such that u′1(x) > 0 for all x ∈ (0, 1). Furthermore, u1 is eigenfunction of P∆

with eigenvalue κ1 = e∆ν1 . We derive

S(x) =
∆−1 log(κ1)

∫ x
0 u1(y)µ(y) dy

u′1(x)
, x ∈ (0, 1),

so that

σ2(x) =
2S(x)

µ(x)
=

2∆−1 log(κ1)
∫ x

0 u1(y)µ(y) dy

u′1(x)µ(x)

and

b(x) =
S′(x)

µ(x)
= ∆−1 log(κ1)

u1(x)u′1(x)µ(x)− u′′1(x)
∫ x

0 u1(y)µ(y) dy

u′1(x)2µ(x)
.

The estimation method can be summarised in more detail by

X0, X∆, . . . , XN∆
estimation−→ (µ, P∆) −→ (µ, u1, κ1) −→ (µ, S) −→ (σ2, b).

With this method estimators σ̂2 and b̂ can be defined such that we have the following theorem.

Theorem 5.2. (Gobet, Hoffmann, Reiß, 2004, [13]) For all s > 1, C > c > 0 and 0 < a < b < 1
we have

sup
(σ,b)∈Θs

Eσ,b
[
‖σ̂2 − σ2‖2L2([a,b])

]1/2
. N−s/(2s+3)

sup
(σ,b)∈Θs

Eσ,b
[
‖b̂− b‖2L2([a,b])

]1/2
. N−(s−1)/(2s+3).
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They also show that these rates are minimax optimal. Let s1 = s− 1 be the smoothness of
the drift b and let s2 = s the smoothness of the volatility σ. Then b can be estimated with rate
N−s1/(2s1+5) and σ2 with rate N−s2/(2s2+3).

The following table shows minimax convergence rates for the diffusion model with continu-
ous, high-frequency and low-frequency observations.

Parametric Nonparametric

Volatility Drift Volatility Drift

Continuous known T−1/2 known T−s/(2s+1)

High-frequency N−1/2 (N∆)−1/2 N−s/(2s+1) (N∆)−s/(2s+1)

Low-frequency N−1/2 N−1/2 N−s/(2s+3) N−s/(2s+5)

6 Lévy processes

Definition 6.1. An Rd-valued process X = (Xt)t>0 defined on a filtered probability space
(Ω,F , (F)t>0,P) is called a Lévy process if it is (F t)-adapted and has the following properties

(a) P(X0 = 0) = 1.

(b) (Independent increments) For 0 6 s 6 t, Xt −Xs is independent of Fs.

(c) (Stationary increments) For 0 6 s 6 t, Xt −Xs is equal in distribution to Xt−s.

(d) (Continuity in probability) For fixed u > 0, P(|Xt −Xu| > ε) → 0 holds as t → u for all
ε > 0.

Remark. Every Lévy process has a càdlàg modification. Without loss of generality we will
assume that all sample paths of Lévy processes are càdlàg.

Definition 6.2. A Lévy measure on Rd is a σ-finite measure ν on Rd such that ν({0}) = 0 and∫
R
d
(1 ∧ |x|2) dν(x) <∞.

Proposition 6.3. (Lévy–Khintchine Representation) Let X be a Lévy process taking values in
R
d. Then for each t > 0 the characteristic function ϕt of Xt satisfies

ϕt(u) := E
[
ei〈u,Xt〉

]
= etψ(u), u ∈ Rd,

with characteristic exponent ψ(u) given by

ψ(u) = i〈u, γ〉 − 1

2
〈u,Σu〉+

∫
R
d

(
ei〈u,x〉 − 1− i〈u, x〉1{|x|61}

)
dν(x), (6.1)

where γ ∈ Rd, Σ ∈ Rd×d is a positive semi-definite matrix and ν is a Lévy measure on Rd.

The quantity (γ,Σ, ν) is called the characteristic triplet of X. If d = 1, we also write σ2

instead of Σ. Under additional assumptions on ν (6.1) has simpler forms:
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(a) If
∫
R
d |x|1{|x|61} dν(x) <∞ holds, then (6.1) reduces to

ψ(u) = i〈u, γ0〉 −
1

2
〈u,Σu〉+

∫
Rd

(
ei〈u,x〉 − 1

)
dν(x)

with γ0 = γ −
∫
R
d x1{|x|61} dν(x).

(b) If
∫
R
d |x|1{|x|>1} dν(x) <∞ holds, then we can write (6.1) as

ψ(u) = i〈u, γ1〉 −
1

2
〈u,Σu〉+

∫
Rd

(
ei〈u,x〉 − 1− i〈u, x〉

)
dν(x)

with γ1 = γ +
∫
R
d x1{|x|>1} dν(x) and we have E[Xt] = γ1t.

(c) If d = 1 and
∫∞
−∞ x

2 dν(x) <∞ holds, then we have the Kolmogorov representation

ψ(u) = iuγ1 −
σ2u2

2
+

∫ ∞
−∞

eiux − 1− iux
x2

dν̃(x)

= iuγ1 +

∫ ∞
−∞

eiux − 1− iux
x2

dνσ(x)

with dν̃(x) = x2 dν(x) and dνσ(x) = dν̃(x) + σ2 dδ0(x), using at x = 0 the continuous
extension of the integrand to −u2/2 in the second representation. We have E[Xt] = γ1t
and Var(Xt) = (σ2 + ν̃(R))t = νσ(R)t.

Proposition 6.4. (Corollary 25.8, [22]) Let X be a Lévy process and p > 0. Then E[|Xt|p] <∞
for one t > 0 implies E[|Xt|p] < ∞ for all t > 0. We have E[|Xt|p] < ∞ if and only if∫
R
d |x|p1{|x|>1} dν(x) <∞.

7 Empirical characteristic functions and processes

Definition 7.1. The empirical characteristic function (ecf) of i.i.d.Rd-valued random variables
X1, . . . , Xn is given by

ϕn(u) =
1

n

n∑
k=1

ei〈u,Xk〉, u ∈ Rd,

and the empirical characteristic process (ecp) is given by

u 7→ Cn(u) =
√
n(ϕn(u)− ϕ(u))

with ϕ(u) = E[ei〈u,X1〉].

It holds Cn
fidi−→ Γ as n→∞ for a centred complex-valued Gaussian process Γ(u) satisfying

Γ(−u) = Γ(u) and E[Γ(u)Γ(v)] = ϕ(u+v)−ϕ(u)ϕ(v), i.e., for all k ∈ N and u1, . . . , uk we have

(Cn(u1), . . . , Cn(uk))
d−→ (Γ(u1), . . . ,Γ(uk)).

Proposition 7.2. (Hoeffding’s Inequality) Suppose the real-valued and centred random variables
Y1, . . . , Yn are i.i.d. and set Sn =

∑n
k=1 Yk. If there exists a deterministic number R with

|Y1| 6 R almost surely, then for all τ > 0

P(|Sn| > τ) 6 2 exp

(
− τ2

2nR2

)
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Proposition 7.3. For i.i.d. random vectors (Xk)k>1 in Rd with Xk ∈ L1 and any constant
R > 8

√
d the empirical characteristic process satisfies uniformly in n ∈ N and K > 2

P
(

max
u∈[−K,K]d

|Cn(u)| > R
√

log(nK2)

)
6 C(

√
nK)(64d−R2)/(64d+64)

for some constant C depending on d and E[|X1|] only.

Proof. First we treat the real part and define

Sn(u) :=

n∑
k=1

(cos(〈u,Xk〉)− E[cos(〈u,Xk〉)]) .

For each u ∈ Rd, Sn(u) is the sum of centred i.i.d. random variables bounded by 2 so that
Hoeffding’s inequality yields

P
(
|Sn(u)| > τ

2

)
6 2 exp

(
−(τ/2)2

8n

)
.

For an integer J = J(n) > 1 we consider the grid on the cube [−K,K]d given by the (2J)d

points uj = jK/J , j ∈ GdJ := {−J + 1,−J + 2, . . . , 0, 1, . . . , J}d and obtain

P

(
max
j∈GdJ

|Sn(uj)| >
τ

2

)
6
∑
j∈GdJ

2 exp

(
−(τ/2)2

8n

)
= 2(2J)d exp

(
− τ2

32n

)
.

For all u, v ∈ Rd we have | cos(〈u,Xk〉)−cos(〈v,Xk〉)| 6 |u−v||Xk|. Since E[|Xk|] <∞, we have
|Sn(u) − Sn(v)| 6 |u − v|

∑n
k=1(|Xk| + E[|Xk|]). Further maxu∈[−K,K]d minj |u − uj | 6

√
dK/J

so that

P
(

max
u∈[−K,K]d

|Sn(u)| > τ

)
6 P

(
max
j∈GdJ

|Sn(uj)|+
√
dKJ−1

n∑
k=1

(|Xk|+ E[|Xk|]) > τ

)
.

By Markov’s inequality we obtain for τ > 0

P
(

max
u∈[−K,K]d

|Sn(u)| > τ

)
6 P

(
max
j∈GdJ

|Sn(uj)| >
τ

2

)
+ P

(
√
dKJ−1

n∑
k=1

(|Xk|+ E[|Xk|]) >
τ

2

)

6 2(2J)d exp

(
− τ2

32n

)
+
√
dKJ−1(τ/2)−1

n∑
k=1

E[|Xk|+ E[|Xk|]]

= 2d+1Jd exp

(
− τ2

32n

)
+ 4
√
dnKJ−1τ−1 E[|X1|].

Case 1: (nK/τ)1/(d+1) exp
(
τ2/(32(d+ 1)n)

)
> 1

The choice J = b(nK/τ)1/(d+1) exp
(
τ2/(32(d+ 1)n)

)
c > 1

2(nK/τ)1/(d+1) exp
(
τ2/(32(d+ 1)n)

)
yields

P
(

max
u∈[−K,K]d

|Sn(u)| > τ

)
6 C

(
nK

τ

)d/(d+1)

exp

(
− τ2

32(d+ 1)n

)
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with C = 2d+1 + 8
√
dE[|X1|].

Case 2: (nK/τ)1/(d+1) exp
(
τ2/(32(d+ 1)n)

)
< 1

Taking the grid Gd0 = {0} ⊆ Rd and observing that Sn(0) = 0 we obtain

P
(

max
u∈[−K,K]d

|Sn(u)| > τ

)
6 4
√
dnKτ−1 E[|X1|]

6 C

(
nK

τ

)d/(d+1)

exp

(
− τ2

32(d+ 1)n

)
by the condition of Case 2. This establishes the same bound as in Case 1.

Since R > 8
√
d and nK2 > 4, we obtain

P
(

max
u∈[−K,K]d

|Sn(u)| > R

2

√
n log(nK2)

)
6 C(

√
nK)d/(d+1) exp

(
−R

2 log(nK2)

128(d+ 1)

)
6 C(

√
nK)d/(d+1)−R2/(64(d+1)).

An analogous result holds for the imaginary part. The statement follows by

P
(

max
u∈[−K,K]d

|ϕn(u)− ϕ(u)| > ρ

)
6 P

(
max

u∈[−K,K]d
|Re(ϕn(u)− ϕ(u))| > ρ

2

)
+ P

(
max

u∈[−K,K]d
| Im(ϕn(u)− ϕ(u))| > ρ

2

)
.

Proposition 7.3 implies that the empirical characteristic function converges uniformly on
compact sets in Lp, p > 1, to the true characteristic function with rate (log(n)/n)1/2. Using
empirical processes, in particular bracketing entropy arguments, it is possible to improve to a
1/n1/2-rate and to bound any derivative on the whole real axis.

Theorem 7.4. (Kappus and Reiß, 2012, [15]) Let X be a one-dimensional Lévy process with
finite (2k + γ)-th moment and choose w(u) = (log(e + |u|))−1/2−δ for some constants γ, δ > 0

and an integer k > 0. Then for the k-th derivative C(k)
n,∆ of the empirical characteristic process

Cn,∆(u) =
√
n

(
1

n

n∑
k=1

eiu(Xk∆−X(k−1)∆) − E
[
eiuX∆

])
, u ∈ R, ∆ > 0,

we have

sup
n>1,∆61

∆−(k∧1)/2 E
[

sup
u∈R

∣∣∣C(k)
n,∆(u)

∣∣∣w(u)

]
<∞.

8 Spectral estimation of the Lévy triplet in the finite intensity
case

8.1 Estimation method

Consider a Lévy process X on R, where the Lévy measure ν is absolutely continuous with
respect to the Lebesgue measure and with λ = ν(R) < ∞. We observe X0, X∆, . . . , Xn∆ for
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n→∞, and with ∆ > 0 fixed. Our aim is to estimate σ2, γ, λ and ν. By the Lévy–Khintchine
representation we have ϕt(u) = etψ(u) with

ψ(u) = −1

2
σ2u2 + iγu− λ+ F ν(u), (8.1)

where F ν(u) =
∫∞
−∞ e

iux dν(x) denotes the Fourier transform of ν. By the Riemann–Lebesgue
lemma F ν(u)→ 0 as |u| → ∞. We view ψ as quadratic polynomial in u plus F ν. We consider
the optimisation problem

inf
(σ2,γ,λ)

∫ ∞
0

w(u)
∣∣∣ψ(u) +

1

2
σ2u2 − iγu+ λ

∣∣∣2 du

for some nonnegative function w. Let ϕn(u) = 1
n

∑n
j=1 e

iu(Xj∆−X(j−1)∆) and define ψn(u) =

∆−1 log(ϕn(u)), where the complex logarithm is taken such that ψn is continuous on (−u0,n, u0,n)
with ψn(0) = 0 and u0,n being the smallest positive zero of ϕn. Using that ϕ does not vanish
on R one can show that u0,n →∞ almost surely [24, Thm 3.2.1, p.165].

We have

ψn(u)− ψ(u) = ∆−1 (log(ϕn(u))− log(ϕ(u))) ≈ ∆−1ϕn(u)− ϕ(u)

ϕ(u)
. (8.2)

For σ2 > 0, |ϕ(u)| decreases exponentially in u so that ψn is only a good approximation of ψ
for u not too large. So we restrict to u ∈ [0, Un] with Un →∞ as n→∞. Let

w̃Un(u) :=
1

Un
w̃

(
u

Un

)
,

where w̃(u) is continuous, supp w̃ ⊆ [0, 1] and w̃(u) > 0 on (0, 1). We consider the optimisation
problem

(σ2
n, λn) := argmin

(σ2,λ)

∫ ∞
0

w̃Un(u)
(
Reψn(u) + 1

2σ
2u2 + λ

)2
du.

The solution is given by

σ2
n =

∫ ∞
0

wUnσ (u) Reψn(u) du and

λn =

∫ ∞
0

wUnλ (u) Reψn(u) du

for some wUnσ and wUnλ . We have∫ Un

0
(−u2/2)wUnσ (u) du = 1,

∫ Un

0
wUnσ (u) du = 0,∫ Un

0
(−1)wUnλ (u) du = 1 and

∫ Un

0
(−u2/2)wUnλ (u) du = 0.

(8.3)

Further wUnσ (u) = U−3
n w1

σ(u/Un) and wUnλ (u) = U−1
n w1

λ(u/Un). The optimisation problem

γn := argmin
γ

∫ ∞
0

w̃Un(u) (Imψn(u)− γu)2 du
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is solved by γn =
∫∞

0 wUnγ (u) Imψn(u) du for some wUnγ . We have
∫ Un

0 uwUnγ (u) du = 1 and

wUnγ (u) = U−2
n w1

γ(u/Un). All functions w1
σ, w1

γ , w1
λ are bounded and supported on [0, 1]. We

denote by ν both the Lévy measure and its density. We define the inverse Fourier transform by
F−1 f(u) = 1

2π

∫∞
−∞ e

−iuxf(x) dx and estimate the Lévy density by

νn(x) = F−1

[(
ψn(·) +

σ2
n

2
(·)2 − iγn(·) + λn

)
wν

( ·
Un

)]
(x), x ∈ R,

where wν is a symmetric weight function supported on [−1, 1]. The estimated Lévy density νn
might take negative values. One could modify the estimator to ensure nonnegative values.

8.2 Error decomposition

We will exemplify the error analysis by considering σ2
n − σ2. By (8.1) and (8.3) we have

σ2
n − σ2 =

∫ Un

0
wUnσ (u) Re(ψn(u)− ψ(u)) du+

∫ Un

0
wUnσ (u) Re(ψ(u)) du− σ2

=

∫ Un

0
wUnσ (u) Re(ψn(u)− ψ(u)) du︸ ︷︷ ︸

Stochastic error

+

∫ Un

0
wUnσ (u) Re(F ν(u)) du︸ ︷︷ ︸
Deterministic error

.

The approximation (8.2) motivates the decomposition∫ Un

0
wUnσ (u) Re(ψn(u)− ψ(u)) du =

1

∆

∫ Un

0
wUnσ (u) Re

(
ϕn(u)− ϕ(u)

ϕ(u)

)
du︸ ︷︷ ︸

=:Ln Linear term

+ Rn︸︷︷︸
Remainder

.

Linear term

By the exercise we know E[Ln] = 0 and

CovC(ϕn(u), ϕn(v)) = E
[
ϕn(u)ϕn(v)

]
− E

[
ϕn(u)

]
E
[
ϕn(v)

]
=

1

n
(ϕ(u− v)− ϕ(u)ϕ(−v)) .

Using |ϕ(u)| 6 1 for all u ∈ R we obtain

Var(Ln) 6
1

∆2

∫ Un

0

∫ Un

0
wUnσ (u)wUnσ (v) CovC

(
ϕn(u)

ϕ(u)
,
ϕn(v)

ϕ(v)

)
du dv

=
1

n∆2

∫ Un

0

∫ Un

0
wUnσ (u)wUnσ (v)ϕ−1(u)ϕ−1(−v)(ϕ(u− v)− ϕ(u)ϕ(−v)) dudv

6
2

n∆2

(∫ Un

0

∣∣wUnσ (u)/ϕ(u)
∣∣ du

)2

=
2

nU4
n∆2

(∫ 1

0

∣∣w1
σ(u)/ϕ(uUn)

∣∣ du

)2

=: ε2
1,n/∆

2.

By Markov’s inequality

P
(
|Ln| >

A

∆
ε1,n

)
6 A−2. (8.4)
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Remainder term

We define the good event

Gn :=

{∥∥∥∥ϕn − ϕϕ

∥∥∥∥
Un

6
1

2

}
with ‖f‖Un := sup

|u|6Un
|f(u)|.

It holds | log(1 + z)− z| 6 2|z|2 for |z| < 1/2. This yields on Gn

ψn(u)− ψ(u) =
1

∆
(logϕn(u)− logϕ(u))

=
1

∆
log

(
1 +

ϕn(u)− ϕ(u)

ϕ(u)

)
=

1

∆

(
ϕn(u)− ϕ(u)

ϕ(u)
+O

(∣∣∣∣ϕn(u)− ϕ(u)

ϕ(u)

∣∣∣∣2
))

.

By Proposition 7.3 for R > 8, n ∈ N and Un > 2

P
(√

n‖ϕn − ϕ‖Un > R
√

log(nU2
n)
)
6 C(

√
nUn)(64−R2)/128.

We have

P(Gcn) 6 P
(√

n/ log(nU2
n)‖ϕn − ϕ‖Un >

1

2

√
n/ log(nU2

n) inf
|u|6Un

|ϕ(u)|
)

= P
(√

n/ log(nU2
n)‖ϕn − ϕ‖Un > κn

)
= O

(
(
√
nUn)(64−κ2

n)/128
)

provided that Un is chosen such that

κn :=
1

2

√
n/ log(nU2

n) inf
|u|6Un

|ϕ(u)| > 8.

This means that Un should not increase too fast. We define ε2,n := 1/κn and using again
Proposition 7.3 we obtain

P
(
‖(ϕn − ϕ)/ϕ‖2Un > Aε2

2,n

)
6 P

(
n‖ϕn − ϕ‖2Un > 4A log(nU2

n)
)

= O
(

(
√
nUn)(64−4A)/128

)
(8.5)

for A > 16. On Gn we have

|Rn| . ∆−1

∥∥∥∥ϕn − ϕϕ

∥∥∥∥2

Un

∫ Un

0
|wUnσ (u)|du . ∆−1

∥∥∥∥ϕn − ϕϕ

∥∥∥∥2

Un

U−2
n . (8.6)

Remark. (a) The definition of the Fourier transform can be extended from L1(R) to L1(R)∪
L2(R) and the Plancherel identity states for all f, g ∈ L2(R)∫ ∞

−∞
f(x)g(x) dx =

1

2π

∫ ∞
−∞
F f(u)F g(u) du.

(b) Let f ∈ L2(R) be such that for all k ∈ {0, 1, . . . , s} the (weak) derivative f (k) satisfies
f (k) ∈ L2(R). Then for all k ∈ {0, 1, . . . , s}

F
[
f (k)

]
(u) = (−iu)k F f(u).
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(c) For U > 0 we have

F f(u) = U F [f(U•)](Uu),

F−1 f(u) = U F−1[f(U•)](Uu).

Deterministic error

Let ν satisfy for an integer s > 0 that maxk=0,...,s ‖ν(k)‖L2(R) 6 C and ‖ν(s)‖∞ 6 C for some

C > 0. Let w1
σ(u)/us ∈ L2(R) and F

[
w1
σ(u)/us

]
∈ L1(R). By the Plancherel identity we have∣∣∣∣∫ ∞

0
wUnσ (u) Re(F ν(u)) du

∣∣∣∣ 6 ∣∣∣∣∫ ∞
−∞

wUnσ (u)F ν(u) du

∣∣∣∣
= 2π

∣∣∣∣∫ ∞
−∞

ν(s)(x)F−1[wUnσ (u)/(iu)s](x) dx

∣∣∣∣
= 2πU−(s+3)

n

∣∣∣∣∫ ∞
−∞

ν(s)(x)F−1[w1
σ(u/Un)/(u/Un)s](x) dx

∣∣∣∣
6 U−(s+3)

n ‖ν(s)‖∞‖F [w1
σ(u)/us]‖L1(R).

So we obtain ∣∣∣∣∫ ∞
0

wUnσ (u) Re(F ν(u)) du

∣∣∣∣ . U−(s+3)
n . (8.7)

8.3 Convergence rates

Definition 8.1. For an integer s > 0 and R, σmax > 0 let Gs(R, σmax) denote the set of all Lévy
triplets τ = (γ, σ2, ν) such that ν is s-times (weakly) differentiable and

σ ∈ [0, σmax], |γ|, λ ∈ [0, R],

∫ ∞
−∞
|x|dν(x) 6 R, max

k=0,1,...,s
‖ν(k)‖L2(R) 6 R, ‖ν(s)‖∞ 6 R.

Definition 8.2. Let {Pϑ, ϑ ∈ Θ} be a family of probability measures on (Ω,F). Assume that
ξn = ξn(ϑ) is a sequence of random variables on (Ω,F). We write ξn = OP,Θ(rn) for a sequence
of positive numbers rn if

lim
A→∞

lim sup
n→∞

sup
ϑ∈Θ

Pϑ(|ξn(ϑ)| > Arn) = 0.

Theorem 8.3. Suppose that the weight functions w1
σ, w1

γ, w1
λ and w1

ν satisfy

w1
σ(u)/us, w1

γ(u)/us, w1
λ(u)/us, (1− w1

ν(u))/us ∈ L2(R),

F [w1
σ(u)/us],F [w1

γ(u)/us],F [w1
λ(u)/us],F [(1− w1

ν(u))/us] ∈ L1(R).

Choosing for some σ̄ > σmax the cut-off value Un := σ̄−1(log(n)/∆)1/2, we obtain the conver-
gence rates

σ2
n − σ2 = OP,Gs((log n)−(s+3)/2), for s > 0,

γn − γ = OP,Gs((log n)−(s+2)/2), for s > 0,

λn − λ = OP,Gs((log n)−(s+1)/2), for s > 0,

‖νn − ν‖∞ = OP,Gs((log n)−s/2), for s > 1.
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Proof for σn, sketch of proof for γn, λn, νn. We recall the error decomposition

σ2
n − σ2 =

∫ Un

0
wUnσ (u) Re(F ν(u)) du︸ ︷︷ ︸

=:Dn Deterministic error

+
1

∆

∫ Un

0
wUnσ (u) Re

(
ϕn(u)− ϕ(u)

ϕ(u)

)
du︸ ︷︷ ︸

=:Ln Linear term

+ Rn︸︷︷︸
Remainder

.

By (8.4) and (8.7) we have

|Dn| . U−(s+3)
n =

(
∆σ̄2

log(n)

) s+3
2

,

P
(
|Ln| >

A

∆
ε1,n

)
6 A−2.

For n large enough

ε1,n =

√
2√

nU2
n

∫ 1

0
|w1
σ(u)/ϕ(uUn)|du

.
1√
nU2

n

∥∥∥∥ 1

ϕ

∥∥∥∥
Un

∫ 1

0
|w1
σ(u)|du

.
1√

n log(n)
nσ

2/(2σ̄2) = O(n−(1−σ2
max/σ̄

2)/2).

We have by (8.5) and (8.6)

|Rn| . ∆−1

∥∥∥∥ϕn − ϕϕ

∥∥∥∥2

Un

U−2
n on Gn :=

{∥∥∥∥ϕn − ϕϕ

∥∥∥∥
Un

6
1

2

}
and

P
(
‖(ϕn − ϕ)/ϕ‖2Un > Aε2

2,n

)
= O

(
(
√
nUn)(64−4A)/128

)
for A > 16. Furthermore,

ε2,n = 2
√

log(nU2
n)/n

∥∥∥∥ 1

ϕ

∥∥∥∥
Un

.

√
log n

n
nσ

2/(2σ̄2) = O
(√

log nn−(1−σ2
max/(σ̄

2))/2
)
.

So P(Gn)→ 1 as n→∞. The above bounds yield

lim
A→∞

lim sup
n→∞

sup
(γ,σ2,ν)∈Gs

P(γ,σ2,ν)

(
|σ2
n − σ2| > A

(
∆σ̄2

log n

)(s+3)/2
)

= 0.

The bounds for the error terms of γn and λn are larger than the error terms of σ2
n by a factor Un

and U2
n, respectively. Otherwise the convergence rates for γn and λn follow similarly.

For νn we have

νn(x)− ν(x) = F−1

[(
(ψn − ψ)(u) +

σ2
n − σ2

2
u2 − i(γn − γ)u+ λn − λ

)
wν

(
u

Un

)]
(x)

−F−1

[(
1− wν

(
u

Un

))
F ν(u)

]
(x).
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By the exercises we know

‖F−1[(1− wν(u/Un))F ν(u)]‖∞ . U−sn .

The term F−1[(ψn − ψ)(u)wν(u/Un)] is treated similarly to the stochastic error of σ2
n. The

following terms remain

σ2
n − σ2

2
U3
n F−1[u2wν(u)](Unx)− i(γn − γ)U2

n F−1[uwν(u)](Unx) + (λn − λ)UnF−1wν(Unx).

Since (1−wν(u))/us ∈ L2(R) and F [(1−wν(u))/us] ∈ L1(R), we have (1−wν(u))/us ∈ L∞(R).
By the bounded support of wν we infer wν ∈ L∞(R), so that u2wν(u), uwν(u), wν ∈ L1(R).
This yields F−1[u2wν(u)], F−1[u1wν(u)], F−1wν ∈ L∞(R). The result follows by∣∣∣∣σ2

n − σ2

2

∣∣∣∣U3
n + |γn − γ|U2

n + |λn − λ|Un = OP,Gs((log n)−s/2).

These rates of σ2
n, γn and λn are minimax optimal over the class Gs(R, σmax) [2].

9 Extension to the infinite intensity case

The estimators σn, λn are designed for the finite intensity case. We want to analyse their
behaviour in the infinite intensity case, i.e., under model misspecification. In the infinite intensity
case Re(ψ(u)) → −∞ even if σ = 0. Since the jump part of Re(ψ(u)) diverges slower than
−u2, adding an additional infinite intensity jump part leads to larger σ2

n and larger λn when
fitting −σ2

nu
2/2 − λn to Re(ψ(u)). For d = 1 symmetric stable Lévy processes (σ2 = 0, γ = 0,

ν(x) = c|x|−α−1) have the characteristic exponent ψ(u) = −c′|u|α, α ∈ (0, 2), c′ > 0. We restrict
the analysis to stable like behaviour.

Proposition 9.1. Suppose the Lévy triplet of the Lévy process X satisfies σ > 0 as well as∫∞
−∞(1− cos(ux)) dν(x) = cα|u|α +O(|u|β) for 0 6 β < α < 2 and cα > 0 with the asymptotics

u→∞. Then for any σ̄ > σ and Un 6 σ̄−1(log n/n)1/2

σ2
n = σ2 +OP

(
U−(2−α)
n + n−1/2U−2

n e∆σ̄2U2
n/2
)
,

λn & Uαn +OP

(
n−1/2e∆σ̄2U2

n/2
)
.

In particular, for Un as in Theorem 8.3 the estimator σ2
n is consistent with rate (log n)−(2−α)/2.

Proof. The deterministic error of σ2
n can be expressed using the general formula (6.1) for ψ:∫ Un

0
wUnσ (u) Reψ(u) du− σ2 =

∫ Un

0
wUnσ (u)

∫ ∞
−∞

(cos(ux)− 1) dν(x) du.

Substituting s = u/Un and using the assumption on ν we obtain∣∣∣∣∫ Un

0
wUnσ (u) Reψ(u) du− σ2

∣∣∣∣ =

∣∣∣∣U−2
n

∫ 1

0
w1
σ(s)

∫ ∞
−∞

(1− cos(Unsx)) dν(x) ds

∣∣∣∣
. U−2

n

∫ 1

0

∣∣w1
σ(s)

∣∣Uαn sα ds+ U−2
n

∫ 1

0

∣∣w1
σ(s)

∣∣Uβn sβ ds

. Uα−2
n .
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λn decomposes into stochastic error and∫ Un

0
wUnλ (u) Re(ψ(u)) du =

∫ 1

0
w1
λ(s)

∫ ∞
−∞

(cos(Unsx)− 1) dν(x) ds

= −cαUαn
∫ 1

0
w1
λ(s)sα ds+O(Uβn ).

By the exercises we know

w1
λ(u) = w̃(u)

∫ 1
0 w̃(s)s2 ds u2 −

∫ 1
0 w̃(s)s4 ds∫ 1

0 w̃(s)s4 ds
∫ 1

0 w̃(s) ds− (
∫ 1

0 w̃(s)s2 ds)2

so that ∫ 1

0
w1
λ(u)uα du = C

(∫ 1

0
w̃ s2

∫ 1

0
w̃ s2+α −

∫ 1

0
w̃ s4

∫ 1

0
w̃ sα

)
, C > 0.

By the Hölder inequality in L1(w̃) with p = (4− α)/(2− α), q = (4− α)/2 we obtain∫ 1

0
w̃ s2 =

∫ 1

0
w̃ s

8−4α
4−α s

2α
4−α <

(∫ 1

0
w̃ s4

)1/p(∫ 1

0
w̃ sα

)1/q

,∫ 1

0
w̃ s2+α =

∫ 1

0
w̃ s

8
4−α s

2α−α2

4−α <

(∫ 1

0
w̃ s4

)1/q (∫ 1

0
w̃ sα

)1/p

.

This shows
∫ 1

0 w
1
λ(u)uα du < 0. Consequently,

∫ Un
0 wUnλ (u) Re(ψ(u)) du & Uαn . The analysis of

the stochastic errors is as before.

σ2
n achieves the rate (log n)−(2−α)/2, which can be shown to be minimax optimal with respect

to jump components whose characteristic function decays at most like e−c|u|
α

as |u| → ∞, c > 0.

10 Spectral estimation for general Lévy measures‡

Assume
∫∞
−∞ x

2 dν(x) <∞. Then

dνσ(x) := σ2 dδ0(x) + x2 dν(x)

is a finite measure. The measure νσ is a natural object of the Lévy process X since Var(Xt) =
νσ(R)t, ψ′′(u) = −σ2 +

∫∞
−∞(ix)2eixu dν(x) = −F νσ(u) and by the Kolmogorov representa-

tion ϕt(u) = etψ(u) with ψ(u) = iγu +
∫∞
−∞(eiux − 1 − iux)x−2 dνσ(x), where the integrand is

continuously extended to −u2/2 at x = 0. Define the reweighted measure ν̄σ of νσ by

dν̄σ(x) := σ2 dδ0(x) +
x2

1 + x2
dν(x).

Let γ̄ be such that

ψ(u) = iuγ̄ − σ2

2
u2 +

∫ ∞
−∞

(
eiux − 1− iux

1 + x2

)
dν(x)

= iuγ̄ +

∫ ∞
−∞

(eiux − 1)(1 + x2)− iux
x2

dν̄σ(x).

‡This section is not part of the course in 2024.
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The pair (γ̄, ν̄σ) characterises weak convergence of P(γ̄,ν̄σ), the law of X1. By Theorem 19.1 in
[12] we have

Proposition 10.1. The convergence P(γ̄m,ν̄σ,m)
w−→ P(γ̄,ν̄σ) for a sequence of pairs (γ̄m, ν̄σ,m)m>1

takes place if and only if γ̄m → γ̄ and ν̄σ,m → ν̄σ (weak convergence of finite measures).

We introduce the Sobolev norm and Sobolev space by

‖f‖H1 :=
1√
2π

∥∥∥(1 + u2)1/2F f(u)
∥∥∥
L2

H1 := H1(R) :=
{
f ∈ L2(R) | ‖f‖H1 <∞

}
.

An equivalent norm of H1 is given by ‖f‖L2 + ‖f ′‖L2 , where f ′ denotes the weak derivative
of f . We estimate νσ and analyse the performance in H−1, the dual space of H1. In the spectral
domain we shall use

‖µ‖H−1 =
1√
2π

∥∥∥(1 + u2)−1/2F µ(u)
∥∥∥
L2
.

We will also use |
∫∞
−∞ f dµ| 6 ‖f‖H1‖µ‖H−1 and ‖µ‖H−1 = sup‖f‖H1=1 |

∫∞
−∞ f dµ|. We base the

estimation on the identity

νσ = −F−1[ψ′′] = − 1

∆
F−1

[
(logϕ)′′

]
= − 1

∆
F−1

[
ϕ′′

ϕ
−
(
ϕ′

ϕ

)2
]

and a plug-in approach. Let K ∈ L1(R) be such that
∫∞
−∞K(x) dx = 1 and supp(F K) ⊆ [−1, 1].

We define Kh(x) := 1
hK(xh) for h > 0 and

νσ,n := −F−1[ψ′′nF Kh] := − 1

∆
F−1

[(
ϕ′′n
ϕn
−
(
ϕ′n
ϕn

)2
)
F Kh

]
.

We obtain the following error decomposition for νσ

νσ,n − νσ := −F−1[(ψ′′n − ψ′′)F Kh]︸ ︷︷ ︸
stochastic error

−F−1[ψ′′(F Kh − 1)]︸ ︷︷ ︸
approximation error

.

The approximation error can be represented by −F−1[ψ′′(F Kh − 1)] = Kh ∗ νσ − νσ.

Lemma 10.2. Suppose that the kernel K satisfies
∫∞
−∞ |η|

1/2|K(η)| dη < ∞. Then we have as
h→ 0

‖Kh ∗ νσ − νσ‖H−1 . h1/2.

Proof. We calculate by the dual definition of H−1,
∫∞
−∞K = 1 and by the Cauchy–Schwarz

inequality:

‖Kh ∗ νσ − νσ‖H−1 = sup
‖f‖H1=1

∣∣∣∣∫ ∞
−∞

f d(Kh ∗ νσ − νσ)

∣∣∣∣
= sup
‖f‖H1=1

∣∣∣∣∫ ∞
−∞

(Kh(−•) ∗ f − f) dνσ

∣∣∣∣
6 sup
‖f‖H1=1

sup
x∈R
|(Kh(−•) ∗ f − f)(x)| νσ(R)
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. sup
‖f‖H1=1

sup
x∈R

∣∣∣∣∫ ∞
−∞

(f(x+ y)− f(x))Kh(y) dy

∣∣∣∣
. sup
‖f ′‖L2=1

sup
x∈R

∣∣∣∣∫ ∞
−∞

(∫ ∞
−∞

f ′(z)1[x,x+y](z) dz

)
Kh(y) dy

∣∣∣∣
6
∫ ∞
−∞
|y|1/2 |Kh(y)| dy = h1/2

∫ ∞
−∞
|η|1/2|K(η)| dη . h1/2.

For the stochastic error we have

Lemma 10.3. Let X be a one-dimensional Lévy process with finite (4+γ)-th moment for some
γ > 0. Let Mh := maxk=0,1,2 sup|u|61/h |(1/ϕ)(k)(u)|. If Mh = o(n1/2 log(h−1

n )−(1+δ)/2) holds for
a sequence hn → 0 and some δ > 0 then we have

F−1[F Khn∆(ψ′′n − ψ′′)](x) = F−1[F Khn((ϕn − ϕ)/ϕ)′′](x) +Rn(x)

with a second order term Rn satisfying

‖Rn‖H−1 = OP

(
M2
hnn

−1 log(h−1
n )1+δ

)
.

Proof. To linearise ψ′′n −ψ′′ = ∆−1(log(ϕn/ϕ))′′, we set F (y) = log(1 + y), η = (ϕn −ϕ)/ϕ and
use

(F ◦ η)′′(u) = F ′(η(u))η′′(u) + F ′′(η(u))η′(u)2

= F ′(0)η′′(u) +O(‖F ′′‖∞(‖η‖∞‖η′′‖∞ + ‖η′‖2∞)),

where the supremum norms are taken over the ranges of u and η(u), respectively. On the event
Ωn :=

{
‖(ϕn − ϕ)/ϕ‖L∞([−1/h,1/h]) 6 1/2

}
the values of η are in [−1/2, 1/2] and we obtain the

error estimate

sup
|u|6h−1

|(log(ϕn/ϕ))′′(u)− ((ϕn − ϕ)/ϕ)′′(u)| = O

(
max
k=0,1,2

‖((ϕn − ϕ)/ϕ)(k)‖2L∞([−1/h,1/h])

)
= O

(
M2
h max
k=0,1,2

‖(ϕn − ϕ)(k)‖2L∞([−1/h,1/h])

)
.

By the moment assumption and by Theorem 7.4 we have for k = 0, 1, 2 and any δ > 0

‖(ϕn − ϕ)(k)‖L∞([−1/h,1/h]) = OP

(
n−1/2∆(k∧1)/2 log(h−1)(1+δ)/2

)
.

Combining this with the growth assumption on Mh yields P(Ωn)→ 1 and then

sup
|u|6h−1

n

∣∣∆(ψ′′n(u)− ψ′′(u))− ((ϕn − ϕ)/ϕ)′′(u)
∣∣ = OP

(
M2
hnn

−1 log(h−1
n )1+δ

)
.

We conclude

‖Rn‖H−1 =
1√
2π

∥∥∥(1 + u2)−1/2F Rn(u)
∥∥∥
L2

6
1√
2π

∥∥∥(1 + u2)−1/2
∥∥∥
L2
‖F Rn‖∞

= OP

(
M2
hnn

−1 log(h−1
n )1+δ

)
.
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By the exercises VarC

(
ϕ

(k)
n (u)

)
6 1

n E
[
X2k

∆

]
for k = 0, 1, 2. We bound the main stochastic

error:

E
[∥∥F−1[F Kh((ϕn − ϕ)/ϕ)′′]

∥∥2

H−1

]
=

1

2π
E
[∥∥∥(1 + u2)−1/2F Kh((ϕn − ϕ)/ϕ)′′

∥∥∥2

L2

]
.M2

h

∫ 1/h

−1/h
(1 + u2)−1

2∑
k=0

VarC(ϕ(k)
n (u)) du . n−1M2

h .

We have proved the following result.

Proposition 10.4. Let X be a one-dimensional Lévy process with finite (4 + γ)-th moment for
some γ > 0. Let K ∈ L1(R),

∫∞
−∞K(x) dx = 1, supp(F K) ⊆ [−1, 1] and

∫∞
−∞ |η|

1/2|K(η)| dη <
∞. Suppose that h→ 0 as n→∞ such that Mh = O(n1/2 log(h−1)−(1+δ)) holds for some δ > 0.
Then the estimator νσ,n of νσ satisfies

‖νσ,n − νσ‖H−1 = OP

(
h1/2 + n−1/2Mh

)
.

The condition on Mh ensures that Rn is of appropriate order. Depending on the growth
of Mh this result leads to rates ranging from OP((log n)−1/4) to OP(n−1/2).

11 More on Lévy processes

11.1 Lévy–Itô decomposition

Theorem 11.1. (See Theorem 2.1 in [18]) Given any γ ∈ R, σ > 0 and a Lévy measure ν
on R, there exists a probability space on which three independent Lévy processes exist, X(1),
X(2) and X(3):

• X(1) is a Brownian motion with drift,

X
(1)
t = γt+ σWt, t > 0.

• X(2) is a square integrable martingale with characteristic exponent

ψ(2)(u) =

∫
R

(eiux − 1− iux)1{|x|61} dν(x).

• X(3) is a compound Poisson process,

X
(3)
t =

Nt∑
i=1

Yi, t > 0,

where N = (Nt)t>0 is a Poisson process with intensity λ := ν(R \[−1, 1]) independent of
the i.i.d. sequence (Yi)i>1 with distribution concentrated on the set {x | |x| > 1} and given
by dν/λ (unless λ = 0 in which case X(3) is identically zero).

By taking X := X(1) +X(2) +X(3) we see that there exists a probability space on which a Lévy
process is defined with characteristic exponent

ψ(u) = iuγ − σ2u2

2
+

∫
R

(eiux − 1− iux1{|x|61}) dν(x).
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In other words, the Lévy–Itô decomposition tells us that X is a Lévy process with charac-
teristic triplet (γ, σ2, ν) if and only if it can be written as the sum of three independent Lévy
processes:

Xt = γt+ σWt + lim
η→0

(∑
s6t

∆Xs1η<|∆Xs|61 − t
∫
η<|x|61

x dν(x)

)
+
∑
s6t

∆Xs1|∆Xs|>1,

where:

• W = (Wt)t>0 is a standard Brownian motion.

• (
∑

s6t ∆Xs1η<|∆Xs|61 − t
∫
η<|x|61 x dν(x))t>0 converges in L2, as η tends to zero, to a

martingale denoted by M = (Mt)t>0 with characteristic function given by

E[eiuMt ] = exp

(
t

∫
|x|61

(eiux − 1− iux) dν(x)

)
.

• (
∑

s6t ∆Xs1|∆Xs|>1)t>0 is a Lévy process with finite Lévy measure, i.e., it is a compound
Poisson process with intensity λ := ν({x| |x| > 1}) and jump distribution concentrated on
the set {x| |x| > 1} and given by dν/λ. In particular, its characteristic function is given
by

exp

(
t

∫
|x|>1

(eiux − 1) dν(x)

)
.

• The processes (γt+ σWt)t>0, (Mt)t>0 and (
∑

s6t ∆Xs1|∆Xs|>1)t>0 are three independent
Lévy processes.

Definition 11.2. If the limit limη→0

∫
η<|x|61 x dν(x) exists and is finite then we define γ :=

limη→0

∫
η<|x|61 x dν(x) and call the Lévy process X with the characteristic triplet (γ, 0, ν) a

pure jump Lévy process (also called purely discontinuous Lévy process).

The above limit γ exists for example if
∫ 1
−1 |x|dν(x) <∞ or if ν is symmetric with respect

to the origin that is ν([a, b]) = ν([−b,−a]) for all 0 < a < b.

Nota Bene: In the general form of the Lévy–Itô decomposition one separates the large
jumps (

∑
s6t ∆Xs1|∆Xs|>1)t>0 from the small jumps since the infinite sum∑

s6t

∆Xs1∆Xs 6=0, t > 0,

is almost surely not defined for Lévy measures ν such that
∫ 1
−1 |x|dν(x) =∞. It can be shown

that
∣∣∑

s6t ∆Xs

∣∣ < ∞ a.s. whenever
∫ 1
−1 |x| dν(x) < ∞. In particular, a pure jump Lévy pro-

cess X with a Lévy measure ν such that
∫ 1
−1 |x|dν(x) <∞ can be written as the sum of all its

jumps, i.e.,

Xt =
∑
s6t

∆Xs1∆Xs 6=0, t > 0.

Observe that the corresponding characteristic triplet is given by (
∫
|x|61 x dν(x), 0, ν), that is its

characteristic function is given by

exp

(
t

∫
R

(eiux − 1) dν(x)

)
.
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Examples.

• Brownian motion with drift: Xt = γt+ σWt, t > 0. The characteristic triplet is given by
(γ, σ2, 0).

• Poisson process: let N be a Poisson process with intensity λ, then its characteristic triplet
is given by (λ, 0, λδ1).

• Compound Poisson process: Xt =
∑Nt

i=1 Yi, where N is a Poisson process of intens-
ity λ independent of the i.i.d. sequence (Yi)i>1 with common law F . We call F the
jump measure and λ the intensity of X. The characteristic triplet of X is given by
(λ
∫
|x|61 x dF (x), 0, λF ).

11.2 Relationship between the Lévy measure of X and the law of X

Let X be a compound Poisson process with intensity λ and jump measure F . Denote by Nt the
number of jumps of X on [0, t]. Then for any Borel set A,

P(Xt ∈ A) =
∞∑
n=0

P(Xt ∈ A|Nt = n)P(Nt = n)

= e−λtδ0(A) +
∞∑
n=1

F ∗n(A)
e−λt(λt)n

n!
,

where F ∗n denotes the n-th convolution power of F and δ0 stands for the Dirac measure at 0.
Let ν be the Lévy measure of X, that is

ν(A) = λF (A) = λP(Y1 ∈ A), ∀A ∈ B(R).

In particular, for any Borel set A that does not contain 0, we have

lim
t→0

P(Xt ∈ A)

t
= lim

t→0

(
λP(Y1 ∈ A)e−λt + λ

∞∑
n=2

P(Y1 + · · ·+ Yn ∈ A)
e−λt(λt)n−1

n!

)
= ν(A)

(11.1)

since

0 6 λ

∞∑
n=2

P(Y1 + · · ·+ Yn ∈ A)
e−λt(λt)n−1

n!
6
e−λt

t

∞∑
n=2

(λt)n

n!
=
e−λt

t
(eλt − 1− λt)→ 0

as t→ 0. For general Lévy processes the following theorem holds.

Theorem 11.3. ([14], see also [7]) Let X be a Lévy process with characteristic triplet (γ, σ2, ν).

(a) If f is ν-a.e. continuous, bounded and satisfies f(x) = o(x2) as x→ 0 then

lim
t→0

1

t
E[f(Xt)] =

∫ ∞
−∞

f(x) dν(x).

(b) If f is ν-a.e. continuous, bounded and satisfies f(x)/x2 → 1 as x→ 0 then

lim
t→0

1

t
E[f(Xt)] = σ2 +

∫ ∞
−∞

f(x) dν(x).
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In particular, we have for any point of continuity s > 0 of ν that

lim
t→0

1

t
P(Xt > s) = ν([s,∞)).

12 High-frequency intensity estimation for compound Poisson
processes

Let X be a compound Poisson process, i.e.,

Xt =

Nt∑
i=1

Yi, t > 0,

where N is a Poisson process with intensity λ and (Yi)i>1 is an independent sequence of i.i.d.
random variables with common law F . We suppose that F is absolutely continuous with respect
to the Lebesgue measure and denote its density by f . In particular, X is a Lévy process with
Lévy measure ν = λF . We denote the density of ν by ρ. We note that λ = ν(R \{0}).

Our aim is to estimate the intensity λ from discrete observations of X. We observe

X0, X∆, X2∆, . . . , X(n−1)∆, Xn∆ with n∆ = T,

where ∆ > 0 is the observation distance and T the time horizon. We assume that ∆ → 0 and
T →∞ as n→∞. We set

Zi := Xi∆ −X(i−1)∆, i = 1, . . . , n.

The random variables Z1, Z2, . . . , Zn are i.i.d. with the same law as X∆.
By (11.1) we have

lim
∆→0

P(X∆ 6= 0)

∆
= ν(R \{0}) = λ.

So for ∆ small enough we have

λ ≈ P(X∆ 6= 0)

∆
. (12.1)

We define

n̂(0) :=
n∑
i=1

1Zi 6=0.

Replacing P(X∆ 6= 0) by its empirical counterpart n̂(0)/n in (12.1) leads to the estimator

λ̂n :=
n̂(0)

n∆
. (12.2)

The following proposition says that the mean squared error of λ̂n is of order 1
T + ∆2.

Proposition 12.1. For λ ∈ [0,Λ] the estimator λ̂n satisfies

E
[
|λ̂n − λ|2

]
= O

(
1

T
+ ∆2

)
.
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Proof. By the bias-variance decomposition we have

E
[
|λ̂n − λ|2

]
=
(
E
[
λ̂n

]
− λ

)2
+ Var

(
λ̂n

)
.

We first analyse the bias. Since F is absolutely continuous with respect to the Lebesgue measure
we have

P(Zi 6= 0) = P(X∆ 6= 0) = P(N∆ 6= 0) = 1− e−λ∆.

It follows

E
[
λ̂n

]
=

1

n∆
E

[
n∑
i=1

1Zi 6=0

]
=

1− e−λ∆

∆
= λ+O(∆).

Now we analyse the variance. From the previous computations we know E [n̂(0)] = n(1−e−λ∆).
Furthermore,

E
[
n̂(0)2

]
= E

 n∑
i,j=1

1Zi 6=01Zj 6=0


= nP(Z1 6= 0) + n(n− 1)(P(Z1 6= 0))2

= n(1− e−λ∆) + (n2 − n)(1− e−λ∆)2.

This yields

Var (n̂(0)) = E
[
n̂(0)2

]
− E [n̂(0)]2 = n(1− e−λ∆)− n(1− e−λ∆)2

= n(1− e−λ∆)(1− (1− e−λ∆)) = n(1− e−λ∆)e−λ∆.

We recall n∆ = T and conclude

Var(λ̂n) =
Var (n̂(0))

n2∆2
=

(1− e−λ∆)e−λ∆

n∆2
= O

(
1

T

)
as ∆→ 0.

Remark. Another estimator of the intensity can be based on

P(Zi 6= 0) = 1− e−λ∆.

This leads to the alternative estimator

λ̃n := − 1

∆
log

(
1− n̂(0)

n

)
.

Linearising the estimator λ̃n for small ∆ we recover the estimator λ̂n in (12.2). The advantage
of λ̃n is that it can be expected to work for large ∆ as well.

The jump density can be estimated from the density of the nonzero increments (see e.g. [5]).
Observe that the the number of nonzero increments and thus the sample size is random.
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13 High-frequency estimation of the intensity outside a zero
neighbourhood

In the last section we estimated the intensity of compound Poisson processes. In this section
we estimate the intensity of general Lévy processes outside of a zero neighbourhood. Let ν be a
Lévy measure. If

∫
|x|61 |x|dν(x) < ∞, the corresponding pure jump process has characteristic

triplet (
∫
|x|61 x dν(x), 0, ν) and can be written as

Xt =
∑
s6t

∆Xs1∆Xs 6=0.

Otherwise we will consider the Lévy process with characteristic triplet (0, 0, ν). So we will focus
on the class L of Lévy processes with characteristic triplets (γν , 0, ν), where

γν :=


∫
|x|61 x dν(x) if

∫
|x|61 |x| dν(x) <∞,

0 otherwise.

Thanks to the Lévy–Itô decomposition any X in L can be written for any 0 < ε 6 1 as

Xt = Bt(ε) +Mt(ε) + tbν(ε),

where:

• B(ε) = (Bt(ε))t>0 is a compound Poisson process with jumps larger than ε. We can write

Bt(ε) =
∑
s6t

∆Xs1|∆Xs|>ε.

B(ε) has intensity λε := ν(R \[−ε, ε]) and jump distribution Fε := ν
λε
1R \[−ε,ε].

• M(ε) = (Mt(ε))t>0 is a martingale with jumps smaller than ε. We can write

Mt(ε) = lim
η→0

(∑
s6t

∆Xs1η<|∆Xs|6ε − t
∫
η<|x|6ε

x dν(x)

)
.

• bν(ε) is given by

bν(ε) :=


∫
|x|6ε x dν(x) if

∫
|x|61 |x|dν(x) <∞,

−
∫
ε<|x|61 x dν(x) otherwise.

Assume that ν is absolutely continuous with respect to the Lebesgue measure. We denote the
densities of ν and Fε by ρ and fε, respectively. Next we will briefly outline the role of intensity
estimation when estimating ρ. Let ρ̂ be an estimator of ρ on a compact set A bounded away
from zero. We consider the Lp-risk

E
[∫

A
|ρ̂(x)− ρ(x)|p dx

]
.
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Let ε be small enough but fixed such that

ρ(x)1A(x) = λεfε(x)1|x|>ε1A(x).

We can estimate ρ by
ρ̂(x) = λ̂εf̂ε(x) for all x ∈ A,

where λ̂ε and f̂ε are estimators of λε and fε, respectively. We observe that

E
[∫

A
|ρ̂(x)− ρ(x)|p dx

]
= E

[∫
A

∣∣∣λ̂εf̂ε(x)− λ̂εfε(x) + λ̂εfε(x)− λεfε(x)
∣∣∣p dx

]
6 2p−1 E

[
|λ̂ε|p

∫
A
|f̂ε(x)− fε(x)|p dx

]
+ 2p−1 E[|λ̂ε − λε|p]

∫
A
|fε(x)|p dx.

Furthermore, by the Cauchy–Schwarz inequality we have∫
A
E
[
|λ̂ε|p|f̂ε(x)− fε(x)|p

]
dx 6

√
E
[
|λ̂ε|2p

] ∫
A

√
E
[
|f̂ε(x)− fε(x)|2p

]
dx.

In particular, in order to control the Lp-risk of ρ̂ it is enough to control the Lp- and L2p-risks
of λ̂ε and f̂ε. We will focus on the estimation of λε only. The estimation of fε is more involved
than in the compound Poisson case owing to the small jumps (see [6]).

Since ν is absolutely continuous with respect to the Lebesgue measure Theorem 11.3 yields

lim
∆→0

P(|X∆| > ε)

∆
= ν(R \[−ε, ε]) = λε.

This motivates the estimator

λ̂ε :=
n(ε)

n∆

with n(ε) :=
∑n

i=1 1(ε,∞)(|Xi∆ −X(i−1)∆|).
In order to compute the Lp-risk of λ̂ε we use Rosenthal’s inequality.

Theorem 13.1. (Rosenthal’s inequality [21]) Let 2 < p <∞. Then there exists a constant Cp
depending only on p, so that if ξ1, . . . , ξn are independent random variables with E[ξi] = 0 and
E[|ξi|p] <∞ for all i, then

E

[∣∣∣∣ n∑
i=1

ξi

∣∣∣∣p
]
6 Cp max

 n∑
i=1

E [|ξi|p] ,

(
n∑
i=1

E
[
ξ2
i

])p/2 .

Using (a+ b)p 6 2p−1ap + 2p−1bp for all p > 1 and for all a, b > 0 we obtain

E
[
|λε − λ̂ε|p

]
= E

[∣∣∣∣λε − E
[
n(ε)

n∆

]
+ E

[
n(ε)

n∆

]
− n(ε)

n∆

∣∣∣∣p]
6 2p−1

∣∣∣∣λε − P(|X∆| > ε)

∆

∣∣∣∣p + 2p−1 1

∆p
E
[∣∣∣∣P(|X∆| > ε)− n(ε)

n

∣∣∣∣p] .
Define

Ui :=
1(ε,∞)(|Xi∆ −X(i−1)∆|)− P(|X∆| > ε)

n
for i = 1, . . . , n.
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We observe that U1, . . . , Un are i.i.d. bounded centred random variables satisfying∣∣∣∣∣
n∑
i=1

Ui

∣∣∣∣∣ =

∣∣∣∣n(ε)

n
− P(|X∆| > ε)

∣∣∣∣ .
Applying Rosenthal’s inequality for p > 2 we obtain

E
[∣∣∣∣P(|X∆| > ε)− n(ε)

n

∣∣∣∣p] 6 Cp max

 n∑
i=1

E [|Ui|p] ,

(
n∑
i=1

E
[
U2
i

])p/2 .

By the variance of Bernoulli random variables we have

E[U2
1 ] =

P(|X∆| > ε)(1− P(|X∆| > ε))

n2
6

P(|X∆| > ε)

n2

and we derive (
n∑
i=1

E
[
U2
i

])p/2
6

(
P(|X∆| > ε)

n

)p/2
.

Furthermore, for p > 2

E
[∣∣1|X∆|>ε − P(|X∆| > ε)

∣∣p] = E
[∣∣1|X∆|>ε − P(|X∆| > ε)

∣∣2 ∣∣1|X∆|>ε − P(|X∆| > ε)
∣∣p−2

]
6 E

[∣∣1|X∆|>ε − P(|X∆| > ε)
∣∣2] 6 P(|X∆| > ε)

and thus E[|U1|p] 6 P(|X∆| > ε)/np. Combing the above results we obtain for p > 2

E
[∣∣∣∣P(|X∆| > ε)− n(ε)

n

∣∣∣∣p] 6 Cp max

(
P(|X∆| > ε)

np−1
,

(
P(|X∆| > ε)

n

)p/2)
.

Let n > 1 and ∆ > 0 such that nP(|X∆| > ε) > 1. For p > 2 it follows

n−
p
2

+1 6 (P(|X∆| > ε))
p
2
−1

so that

Cp
∆p

max

(
P(|X∆| > ε)

np−1
,

(
P(|X∆| > ε)

n

)p/2)
= O

((
P(|X∆| > ε)

n∆2

)p/2)
.

For p > 2 we conclude that there exists C depending only on p such that

E
[
|λε − λ̂ε|p

]
6 2p−1

∣∣∣∣λε − P(|X∆| > ε)

∆

∣∣∣∣p + C

(
P(|X∆| > ε)

n∆2

)p/2
.

For the case p = 2 we have

E
[
|λε − λ̂ε|2

]
= (λε − E[λ̂ε])

2 + Var(λ̂ε)

=

(
λε −

P(|X∆| > ε)

∆

)2

+
P(|X∆| > ε)(1− P(|X∆| > ε))

n∆2

6

(
λε −

P(|X∆| > ε)

∆

)2

+
P(|X∆| > ε)

n∆2
.
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Turning to the case 1 6 p < 2 we obtain by Jensen’s inequality and the above bound

E
[
|λε − λ̂ε|p

]
6
(
E
[
(λε − λ̂ε)2

])p/2
6

((
λε −

P(|X∆| > ε)

∆

)2

+
P(|X∆| > ε)

n∆2

)p/2

6

∣∣∣∣λε − P(|X∆| > ε)

∆

∣∣∣∣p +

(
P(|X∆| > ε)

n∆2

)p/2
.

Let n > 1 and ∆ > 0 such that nP(|X∆| > ε) > 1. Then the above results yield Theorem
2.1 in [6], i.e., there exists a constant C > 0 depending only on p such that

E
[
|λε − λ̂ε|p

]
6 2p−1

∣∣∣∣λε − P(|X∆| > ε)

∆

∣∣∣∣p + C

(
P(|X∆| > ε)

n∆2

)p/2
for all p ∈ [1,∞).

We combine the above statement with the following proposition.

Proposition 13.2. (Proposition 2.1 in [9]) Suppose that the Lévy density ρ of X is Lipschitz
in an open set D0 containing D = [a, b] ⊆ R \{0} and that ρ(x) is uniformly bounded on |x| > η
for any η > 0. Then there exist k > 0 and ∆0 > 0 such that for all 0 < ∆ < ∆0

sup
y∈D

∣∣∣∣ 1

∆
P(X∆ > y)− ν([y,∞))

∣∣∣∣ < k∆ if D ⊆ R>0,

sup
y∈D

∣∣∣∣ 1

∆
P(X∆ 6 y)− ν((−∞, y])

∣∣∣∣ < k∆ if D ⊆ R<0 .

Assuming the statement of above proposition at y = ε and y = −ε we obtain

E
[
|λε − λ̂ε|p

]
6 C̃

(
∆p +

(
λε + ∆

n∆

) p
2

)
,

where C̃ > 0 depends on p and k only.

14 High-frequency estimation of the Lévy density

We are interested in estimating the Lévy density ρ on an interval D := [a, b] ⊆ R \{0} based
on discrete observations up to time T . The interval D is bounded away from zero. We use the
method of sieves. We consider finite dimensional linear models of functions

S := {β1ϕ1 + · · ·+ βdϕd |β1, . . . , βd ∈ R},

where ϕ1, . . . , ϕd have support in D and are orthonormal with respect to the inner product
〈p, q〉 :=

∫
D p(x)q(x) dx. We denote by ‖ · ‖ the associated norm 〈·, ·〉1/2 on L2(D, dx). Relative

to the induced distance the element closest to ρ in S is given by the orthogonal projection

ρ⊥(x) :=
d∑
i=1

β(ϕi)ϕi(x),
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where β(ϕi) := 〈ϕi, ρ〉 =
∫
D ϕi(x)ρ(x) dx.

We will estimate ρ by an empirical version of ρ⊥ with coefficients β(ϕi) replaced by estimat-
ors β̂n(ϕi). We denote the observation times by 0 = tn0 < tn1 < · · · < tnn = T . Further we define
πn := (tnk)nk=0 and π̄n := maxk(t

n
k − tnk−1), where we will sometimes drop the superscript n. We

suppose that T →∞ and π̄n → 0 as n→∞. We estimate β(ϕ) by

β̂π
n
(ϕ) :=

1

tnn

n∑
k=1

ϕ
(
Xtnk
−Xtnk−1

)
.

Let us motivate the estimator in the case of equidistant observations tnk − tnk−1 = T/n = ∆n for
all k. We have

E[β̂π
n
(ϕ)] =

1

∆n
E[ϕ(X∆n)],

Var
(
β̂π

n
(ϕ)
)

=
1

T

(
1

∆n
E[ϕ2(X∆n)]

)
− 1

n

(
1

∆n
E[ϕ(X∆n)]

)2

.

If ϕ is ν-a.e. continuous, bounded and has support in D then by Theorem 11.3

lim
n→∞

E[β̂π
n
(ϕ)] =

∫
D
ϕ(x)ρ(x) dx and lim

n→∞
Var

(
β̂π

n
(ϕ)
)

= 0.

So β̂π
n
(ϕ) is an asymptotically unbiased estimator of β(ϕ) and its mean squared error vanishes

asymptotically. This justifies the estimator

ρ̂π
n
(x) :=

d∑
i=1

β̂π
n
(ϕi)ϕi(x). (14.1)

The estimator ρ̂π
n
is independent of the specific orthonormal basis of S since it can shown

that ρ̂π
n

is the unique solution of the minimisation problem

min
f∈S

γπ
n

D (f),

where γπ
n

D : L2(D, dx)→ R is given by

γπ
n

D (f) := − 2

tnn

n∑
k=1

f(Xtnk
−Xtnk−1

) +

∫
D
f2(x) dx.

We call γπ
n

D the contrast function.

14.1 Properties of the estimators

We decompose the estimation error

β̂π(ϕ)− β(ϕ) = β̂π(ϕ)− E
[
β̂π(ϕ)

]
︸ ︷︷ ︸

variance part

+E
[
β̂π(ϕ)

]
− β(ϕ)︸ ︷︷ ︸

bias part

,
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where β(ϕ) :=
∫∞
−∞ ϕ(x) dν(x). We begin by studying the bias part. Let ϕ be ν-a.e. continuous,

bounded and satisfy ϕ(x) = o(x2) as x→ 0. We define µ(f) :=
∫∞
−∞ f(x) dµ(x). We recall that

by Theorem 11.3

lim sup
∆→0

∣∣∣∣ 1

∆
E[ϕ(X∆)]− ν(ϕ)

∣∣∣∣ = 0.

We obtain∣∣∣E [β̂π(ϕ)
]
− β(ϕ)

∣∣∣ 6 1

tn

n∑
k=1

∆k

∣∣∣∣ 1

∆k
E[ϕ(X∆k

)]− ν(ϕ)

∣∣∣∣→ 0 as π̄ → 0.

Next we consider the variance part.

Proposition 14.1. (Proposition 2.1 in [8]) Let ϕ be ν-a.e. continuous, bounded and such that
ϕ(x) = o(|x|) as x→ 0. Let tn →∞ and π̄ → 0 as n→∞. Then

√
tn

(
β̂π(ϕ)− E

[
β̂π(ϕ)

])
d−→ ν(ϕ2)1/2Z as n→∞,

where ν(ϕ2) =
∫∞
−∞ ϕ

2(x) dν(x) and Z is a standard normal random variable.

Proof. Let Γt(ϕ) := E[ϕ2(Xt)]− (E[ϕ(Xt)])
2 and ∆k := tk − tk−1. We write

√
tn

(
β̂π(ϕ)− E

[
β̂π(ϕ)

])
=

n∑
k=1

ξπk ,

where ξπk = 1√
tn

(ϕ(Xtk −Xtk−1
) − E[ϕ(Xtk−tk−1

)]). The assumptions of Lemma 5.5 (a) in [14]

are satisfied and it yields lim sup∆→0 | 1∆Γ∆(ϕ)− ν(ϕ2)| = 0. It follows

σ2
n,π := Var

(
n∑
k=1

ξπk

)
=

1

tn

n∑
k=1

Γ∆k
(ϕ) (14.2)

and

σ2
n,π − ν(ϕ2) =

1

tn

n∑
k=1

∆k

(
1

∆k
Γ∆k

(ϕ)− ν(ϕ2)

)
−→ 0 (14.3)

as π̄ → 0. This shows the result for ν(ϕ2) = 0.
For ν(ϕ2) > 0 we use that ϕ is bounded and obtain

|ξπk |
σn,π

6 C
1√
tn
→ 0

as n→∞. The result follows by the Lindeberg central limit theorem.

Combining this with the bias bound we obtain that β̂π(ϕ) is a consistent estimator of β(ϕ)
if tn →∞ and π̄ → 0. For the convergence rate and for asymptotic normality we need stronger
assumptions. For simplicity we assume that [a, b] ⊆ R>0.

Lemma 14.2. (Modification of Lemma 3.2 in [8]) Suppose that ϕ has support in [c, d] ⊆ R>0

and that ϕ|[c,d] is continuous with continuous derivative. Then we have∣∣∣∣E[ϕ(X∆)]

∆
− ν(ϕ)

∣∣∣∣ 6 (|ϕ(c)|+ |ϕ(d)|+
∫ d

c
|ϕ′(u)|du

)
M∆([c, d]),

where M∆([c, d]) := limε→0 supy∈[c,d+ε) | 1∆ P(X∆ > y)− ν([y,∞))|.
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Let the Lévy density ρ of X be Lipschitz in an open set D0 containing D = [a, b] ⊆ R>0

and let ρ(x) be uniformly bounded on |x| > η for any η > 0. Then by Proposition 13.2 there
exist C > 0 and ∆0 > 0 such that for all 0 < ∆ < ∆0 we have M∆([a, b]) < C∆ and thus for
[c, d] ⊆ [a, b] ∣∣∣∣E[ϕ(X∆)]

∆
− ν(ϕ)

∣∣∣∣ 6 C

(
|ϕ(c)|+ |ϕ(d)|+

∫ d

c
|ϕ′(u)|du

)
∆. (14.4)

Definition 14.3. Let Φ be the class of functions ϕ for which there exists [c, d] ⊆ [a, b] such
that ϕ has support in [c, d] and such that ϕ|[c,d] is continuous with continuous derivative.

Assume ϕ ∈ Φ. Writing ∆k = tk − tk−1 we bound the bias of the estimator by∣∣∣E [β̂π(ϕ)
]
− β(ϕ)

∣∣∣ 6 1

tn

n∑
k=1

∆k

∣∣∣∣ 1

∆k
E[ϕ(X∆k

)]− ν(ϕ)

∣∣∣∣
< C

(
|ϕ(c)|+ |ϕ(d)|+

∫ d

c
|ϕ′(u)| du

)
1

tn

n∑
k=1

∆2
k (14.5)

6 C

(
|ϕ(c)|+ |ϕ(d)|+

∫ d

c
|ϕ′(u)| du

)
π̄.

We see that the bias is of order O(π̄). We can extend the bias bound to linear combinations
of functions in Φ. In the proof of Proposition 14.1 we have seen that Var(β̂π(ϕ)) = O(t−1

n ).
Combining bias and variance bound yields

Theorem 14.4. Let tn → ∞ and π̄ → 0 as n → ∞. If ϕ is a linear combination of functions
in Φ then we have

E
[(
β̂π(ϕ)− β(ϕ)

)2
]

= O

(
1

tn
+ π̄2

)
.

With the undersmoothing condition π̄
√
tn → 0 the bias is asymptotically negligible even

after scaling with
√
tn and we obtain

Theorem 14.5. (Theorem 2.3 in [8]) Let tn → ∞ and π̄
√
tn → 0 as n → ∞. If ϕ is a linear

combination of functions in Φ then we have
√
tn

(
β̂π(ϕ)− β(ϕ)

)
d−→ ν(ϕ2)1/2Z as n→∞.

Corollary 14.6. (Corollary 2.5 in [8]) Suppose that ϕ1, . . . , ϕd ∈ Φ have support in D and
are orthonormal with respect to the inner product 〈p, q〉 =

∫
D p(x)q(x) dx. Let tn → ∞ and

π̄
√
tn → 0 as n→∞. Then the estimator ρ̂π defined in (14.1) satisfies

√
tn

(
ρ̂π(x)− ρ⊥(x)

)
d−→ V (x)1/2Z as n→∞,

where V (x) := ν(f2
x) =

∫∞
−∞ f

2
x(y) dν(y) with fx(y) :=

∑d
i=1 ϕi(x)ϕi(y).

Proof. By linearity of β̂π and β we derive

√
tn

(
ρ̂π(x)− ρ⊥(x)

)
=
√
tn

d∑
i=1

(
β̂π(ϕi)− β(ϕi)

)
ϕi(x)

=
√
tn

(
β̂π

(
d∑
i=1

ϕi(x)ϕi

)
− β

(
d∑
i=1

ϕi(x)ϕi

))
=
√
tn

(
β̂π (fx)− β (fx)

)
d−→ V (x)1/2Z

as n→∞ by Theorem 14.5.
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Remark. Notice that we have the following bound for the variance

V (x) 6 ‖ρ‖∞,D
d∑
i=1

ϕ2
i (x),

where ‖ρ‖∞,D := supy∈D ρ(y).

14.2 The stochastic error on an interval

We decompose
‖ρ̂π − ρ‖2 = ‖ρ̂π − ρ⊥‖2︸ ︷︷ ︸

stochastic error

+ ‖ρ⊥ − ρ‖2︸ ︷︷ ︸
approximation error

,

where ‖f‖2 =
∫
D f

2(x) dx.

Standing Assumption 1. The linear model S is generated by an orthonormal basis G :=
{ϕ1, . . . , ϕd} with ϕi ∈ Φ for i = 1, . . . , d.

We introduce the following notation:

D(S) := inf
G

max
ϕ∈G

(
‖ϕ‖2∞ + ‖ϕ′‖21

)
,

where the infimums are taken over all orthonormal bases G of S. By Standing Assumption 1 we
have that D(S) is finite. It may grow as dim(S)→∞.

Proposition 14.7. (Proposition 3.4 in [8]) Let the Lévy density ρ of X be Lipschitz on an
open set D0 containing D = [a, b] ⊆ R \{0} and let ρ(x) be uniformly bounded on |x| > η for
any η > 0. Then there exists a constant K > 0 such that

E
[
‖ρ̂π − ρ⊥‖2

]
6 K

dim(S)

T

for any linear model S satisfying Standing Assumption 1 and for any partition π : 0 = t0 <
t1 < · · · < tn = T such that T > D(S) and π̄ 6 T−1.

Proof. Fix an orthonormal basis G := {ϕ1, . . . , ϕd} of S with ϕi ∈ Φ and corresponding intervals
[ci, di] for i = 1, . . . , d. Let D∆(ϕ) := 1

∆ E[ϕ(X∆)]− ν(ϕ). For any ϕi we have

E
[(
β̂π(ϕi)− β(ϕi)

)2
]

= Var
(
β̂π(ϕi)

)
+
(
E
[
β̂π(ϕi)

]
− β(ϕi)

)2
.

By (14.2), (14.3) and (14.4) we obtain

Var
(
β̂π(ϕi)

)
=
σ2
n,π

tn
6
ν(ϕ2

i )

tn
+

1

t2n

n∑
k=1

∆kD∆k
(ϕ2

i )

6
1

tn

∫ di

ci

ϕ2
i (x) dν(x) +

C

t2n

(
|ϕ2
i (ci)|+ |ϕ2

i (di)|+
∫ di

ci

|2ϕi(u)ϕ′i(u)| du
)
,

where we used
∑n

k=1 ∆2
k 6

∑n
k=1 ∆k/tn = 1. By (14.5) we have(

E
[
β̂π(ϕi)

]
− β(ϕi)

)2
6
C2

t2n

(
|ϕi(ci)|+ |ϕi(di)|+

∫ di

ci

|ϕ′i(u)|du
)2

.
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Combining the above yields

E
[(
β̂π(ϕi)− β(ϕi)

)2
]
6

1

T

∫ di

ci

ϕ2
i (x) dν(x) +

C + C2

T 2

(
2‖ϕi‖∞ + ‖ϕ′i‖1

)2
6
‖ρ‖∞,D
T

+ 8(C + C2)
maxj

(
‖ϕj‖2∞ + ‖ϕ′j‖21

)
T 2

.

Consequently

E
[
‖ρ̂π − ρ⊥‖2

]
6

dim(S)

T

‖ρ‖∞,D + 8(C + C2)
maxj

(
‖ϕj‖2∞ + ‖ϕ′j‖21

)
T

 .

The result follows by the assumption T > D(S).

14.3 The approximation error on an interval

In order to bound the approximation error we will need smoothness assumptions on ρ. We
assume that ρ|[a,b] belongs to the Besov space Bsp∞([a, b]) for some s > 0 and p ∈ [2,∞] (see for
example [4] for further information). Define the difference operator ∆h(f, x) := f(x+h)− f(x)
and inductively the higher order differences

∆r
h(f, x) := ∆h(∆r−1

h (f, ·), x)

for all x ∈ [a, b] such that x + rh ∈ [a, b] and r ∈ N. The space Bsp∞([a, b]) consists of the
functions f belonging to Lp([a, b]) with 0 < p <∞ (or being uniformly continuous for p =∞)
such that

‖f‖Bsp∞ := sup
δ>0

1

δs
sup

0<h6δ
‖∆r

h(f, ·)‖p <∞,

where r := bsc+ 1 with bsc denoting the integer part of s.
The advantage of working with Besov-smooth functions is that we have bounds available for

the approximation errors by polynomials, splines, trigonometric polynomials and wavelets (see
[4] and [1]). For example, let Sk,m be the space of piecewise polynomials of degree at most k on a
regular partition of [a, b] into m subintervals of equal length. Let ρ ∈ Bsp∞([a, b]) with s < k+ 1.
Then there exists a constant cbsc <∞ such that

inf
f∈Sk,m

‖ρ− f‖p 6 cbsc(b− a)s‖ρ‖Bsp∞m
−s

and for p ∈ [2,∞]

‖ρ− ρ⊥m‖ 6 cbsc(b− a)
1
2
− 1
p

+s‖ρ‖Bsp∞m
−s,

where ρ⊥m denotes the orthogonal projection of ρ onto Sk,m. Notice that the functions in Sk,m
are not necessarily smooth (not even continuous). The above bounds can be extended to certain
subsets of splines in Sk,m.

Let us gives a bound on D(Sk,m). We will use Legendre polynomials. For j = 0, 1, . . . let Pj
be a polynomial of degree j such that∫ 1

−1
Pj(x)Pi(x) dx = 0 if j 6= i.
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This determines the Legendre polynomials up to their scale, which we fix by Pj(1) = 1. The
space Sk,m is generated by the orthonormal functions

ϕi,j(x) :=

√
2j + 1

xi − xi−1
Pj

(
2x− (xi + xi−1)

xi − xi−1

)
1(xi−1,xi)(x),

where i = 1, . . . ,m, j = 0, . . . , k, and a = x0 < · · · < xm = b are equally spaced points. It holds
|Pj(x)| 6 1 and |P ′j(x)| 6 P ′j(1) = j(j+1)

2 for x ∈ [−1, 1]. Denoting ∆x := xi − xi−1 = (b− a)/m
we have

ϕ′i,j(x) = 2
√

2j + 1∆−3/2
x P ′j

(
2x− (xi + xi−1)

xi − xi−1

)
1(xi−1,xi)(x),

‖ϕ′i,j‖1 6 2
√

2j + 1∆−3/2
x

∫ xi

xi−1

sup
u∈[−1,1]

∣∣P ′j (u)
∣∣ dx 6

√
2j + 1∆−1/2

x j(j + 1).

It follows

max
i,j
‖ϕ′i,j‖21 6

(k + 1)2k2(2k + 1)

b− a
m,

max
i,j
‖ϕi,j‖2∞ 6

2k + 1

b− a
m

and

D(Sk,m) 6
(k + 1)2k2(2k + 1) + (2k + 1)

b− a
m.

14.4 Convergence rate on an interval

Let a, b ∈ R and ε > 0 be given such that D0 = (a − ε, b + ε) ⊆ R \{0}. Fix p ∈ [2,∞]. Let
s, L > 0 and M : R>0 → R>0 such that lim infη→0M(η) > 0. Define Θs(L,M) to be the class
of Lévy densities ρ such that

• ρ is L-Lipschitz on D0,

• for any η > 0 we have ρ(x) 6M(η) for all x with |x| > η and

• ρ|[a,b] belongs to Bsp∞([a, b]) with ‖ρ‖Bsp∞ < L.

Theorem 14.8. (Proposition 3.5 in [8]) Let mT := bT 1/(2s+1)c and let π̄ 6 T−1. Then

lim sup
T→∞

T s/(2s+1) sup
ρ∈Θs(L,M)

(
E
[
‖ρ̂T − ρ‖2

])1/2
<∞,

where for each T the estimator ρ̂T = ρ̂πmT is given by (14.1) with S = Sk,mT and k > s− 1.

Proof. From the two previous sections we know that there exists a constant K (depending on
k, a, b, ε, s, p, L,M) such that

E
[
‖ρ̂πm − ρ⊥m‖2

]
6 K

m

T
and ‖ρ⊥m − ρ‖ 6 Km−s,

for m ∈MT := {m′|T > Km′}. So there exists a constant C > 0 such that for T large enough

sup
ρ∈Θs(L,M)

E
[
‖ρ̂T − ρ‖2

]
6 C

(
bT 1/(2s+1)cT−1 + bT 1/(2s+1)c−2s

)
.

This shows the statement of the theorem.
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14.5 Lower bound on an interval

In this section we state a lower bound result that ensures that no estimator can achieve a faster
convergence rate than T−s/(2s+1) even under continuous-time observations. Inspection of the
proofs of the lower bounds in [8] shows that they are also valid for the slightly smaller classes
Θs(L,M) defined above. So we have

lim inf
T→∞

T s/(2s+1)

(
inf
ρ̂T

sup
ρ∈Θs(L,M)

(
E
[
‖ρ̂T − ρ‖2

])1/2)
> 0,

where the infimum is taken over all estimators ρ̂T based on continuous-time observations
(Xt)t∈[0,T ]. This means that no estimator can achieve uniformly over the class Θs(L,M) a

faster convergence rate than T−s/(2s+1). The estimator ρ̂T from the previous sections achieves
this minimax optimal rate using only discrete-time observations.
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frequency regime. Bernoulli, 27(4):2649 – 2674, 2021.
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Bernoulli, 17(2):643–670, 2011.

[10] Markus Fischer and Giovanna Nappo. On the moments of the modulus of continuity of Itô
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