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1 Diffusion processes

Definition 1.1. A (time-inhomogeneous) diffusion process on R is a stochastic process
(X¢)ter, solving the stochastic differential equation (SDE)

dX; = b(Xt, t) dt + O’(Xt, t) dWs, t >0, (11)

with initial condition Xg = X©), where b: Rx Ry = R, 0 : Rx Ry — R4 and (Wi)ier,, is
an one-dimensional Brownian motion.

We call b the drift coefficient and o the diffusion coefficient (or the volatility). The intuition

is that
dX;

dt = b(Xt,t) + O'(Xt,t)Wt,

X, =

where Wt is Gaussian white noise.

The rigorous interpretation of (1.1) is given by integration:

X is a strong solution of the SDE (1.1), where W is defined on (Q,F,P) and X© is
independent of W on (Q, F,P) if

(a) (Xi)ier, is adapted to the completion by null sets of Fy = o((Ws)o<s<t, X )
(b) X is a continuous process

(d

)
)

(c) P(Xo=X©0) =1
) P([5(Ib(Xs, )] + 0(Xs, 8)]?) ds < 00) =1 for all t > 0
)

(e) With probability one
t t
Vi>0 X;=X, —i—/o b(Xs,s)ds —i—/o o(Xs,s)dWs
The stochastic integral is to be understood in the It sense as the limit in probability of sums
m
Z U(th—1 ) tjfl)(Wtj - Wtj—l)?
j=1

where 0 =t) <t < -+ <tp =t and A :=max; |t; —t;—1| = 0.

Theorem 1.2. Grant the following global Lipschitz and linear growth conditions
(a) [b(z,t) = b(y,t)| + |o(x,t) —o(y,t)] < K|z —y|
(b) bz, )] + [o(z, )] < K(1+ |2])

for all z,y € R, t > 0 and some constant K. Let X©) € L2. Then the SDE (1.1) has a strong
solution, which is unique.



If we observe the path (Xi),co,7] (continuous-time observations), then by taking refined
partitions we can determine the quadratic variation

t
/ o(X,,s)ds
0

for all t € [0,7],

m t

Z(th - Xy, ) = / o(Xs,8)%ds

=1 0
almost surely as A — 0 (see Theorem 1.2.4 and the remarks thereafter in [20]). Thus o (X;,t)?
can be identified by taking the derivative at time ¢ € [0,7]. If X does not visit = at time ¢,
then there is no direct information on o(z,t)? contained in the sample path. Continuous-time
observations identify the diffusion coefficient as far as possible and the main interest is in the
drift estimation. The main tool for identifying the drift is the Girsanov theorem.

Theorem 1.3. (Girsanov theorem, Theorem 7.19 in [19]) Let (Xt).ejo,r) and (Yi)ieo,r) be two
diffusion processes with

dXt = bX(Xt, t) dt + O'(Xt, t) th
AY; = by (Y, t) dt + (Y, t) dW,

and Xo = Yy a.s. Let the coefficients of Y satisfy the global Lipschitz and linear growth conditions
from Theorem 1.2 and let bx (z,t) = by (z,t) for x and t such that o(x,t) = 0. If

bx (X, t)* + by (Xy, t)
g </0 U(Xt; t)2 :H'{O'(Xt,t)>0} dt <) = ]_7
T 9 )
bx (Y, t)? + by (Y, t)
v (/0 o (Y, t)? Lig(v,,py>0ydt < oo | =1,

then ]P’% and }P’¥ are equivalent and the Radon—Nikodym derivative is given by

dPY
—((X
dIP’:,)f(( t)telo,1])
T (by — bx)(X, 1) LT (0 — %)X )
= exp </0 (X, 1) Lio(x,,t)>0p dXt — 2/0 (X, 12 Lio(x,,t)>0} dt) .
Ezamples. (a) Brownian motion with drift:

Let bx (z,t) = bx(t), by (z,t) = by (t), o(x,t) = 0 > 0 and X(©) = 0. Then

¢ ¢
X; —/ bx(s)ds+ oW, Y; —/ by (s)ds + oW,
0 0

and the formula for the Radon—Nikodym derivative gives

dPY T (b _ b LT
oméf((Xt)te[o,T}Fexp(/o (Yaf)(t)dxt—2/0 (YUQX)(t)dt).



If we further specialise to Y; = ¢t + oW, and Xy = cW4, then

dP¥ ¥ 92T T (Xr X2
apy (Kihiepn) = exp (= 5z) = o (‘zaz (F7) *or)

We see that X is a sufficient statistic, i.e., for all statistical purposes it suffices to use Xp
instead of the whole sample path (X;),c(o,r). The maximum likelihood estimator (MLE)

of Xy = 9t + oW, with ¢ unknown is given by IMLE = X7/T ~ N(¥,02/T). We have
0 d . .
YvLe — ¢ if and only if T — oco.

Ornstein—Uhlenbeck process:
The Ornstein—Uhlenbeck process is the solution of the SDE

dXt = CLXt dt + O'th,
Xo=Xx©),

The SDE can be solved by variation of constants
t
X;p =X 4 / =55 AW, (1.2)
0

Remark. Integrals of the form f: f(s)dWs, f € L?([a,b]), are called Wiener integrals. We
have

b
/ () AWy ~ N (O, || 1122 ((as)s

=[/ “reaws [ aw] = | F@)g(s)ds, fog € L2(ab).

If @ < 0, then it follows from (1.2) that X; N N(0,—0?/2a) as t — oo. If X(©) is Gaussian
or deterministic, then (X;) is a Gaussian process. Take by (x,t) = az, bx(z,t) = 0. For
X©) e 12 and ¢ > 0 the conditions of the Girsanov theorem are satisfied and it yields

d P dPY T aX, 1 (Ta?x2
@((Xt)te[O,T]) = @((Xt)te[O,T]) = exp </0 > dX, — 2/0 2 ds | .

By taking the derivative of the log-likelihood

d dP2 TX ' x2
71 J X = idXS — =S
1 o8 < d]P’%(( t)te[O,T])) o2 a/o 72

we determine the MLE to be

o xadx,
ar = ﬁ
Jo X2ds
Under P%
R T X (aX,ds + o dW, T x,0dw,
a 0 a —+ 0
T = = _—
foT XZds foT X3Zds

For a < 0 it can be shown /T (ar — a) 4, N(0,—2a), see Example 5.2.5 in [17].



(c) Linear factor model:
We consider the SDE

dXt = 79b(Xt, t) dt + O'(Xt, t) th,
Xo =X,

with o(z,t) > 0 for all  and ¢. The unknown parameter is ¢ € © and we assume 0 € O.
Let X(© € L? and b, 0 be such that the conditions of the Girsanov theorem are satisfied.
Then we have

ap T 9b(X1, ) *b(Xy, 1)
\ _ ) AX, — = — 2 dt].
apn (Xodenm) = oxp </0 o(Xpt)2 2 /o o (X, 1)* >

We take the derivative of the log-likelihood

d dPﬁ T b(Xt7
dﬁl (d}P’O ((Xt)te[OT])> /0 (X, 1)? 7 dX¢ — 19/

The MLE is given by

T T 2
b(X4,t) / b(Xy,t)
dt dw, — = dt
< Xtv +/0 U(Xtvt) t) /< 0 U(Xt’t)2
T T 2
b

0 (Xt’ ) 0 U(Xt7t)
On appropriate assumptions the estimation error decays with a v/T-rate or even a CLT
holds for the estimator.

Remark. Let X be a solution of dX; = b(X,t)dt + o(X;,t)dW; and f : R x Ry — R such
that Of/0x, 0> f/0x?, Of /Ot exist and are continuous. Then the Ité6 formula holds

Under PY.

C’o)
||

t
(X, t) = f(Xo,0) / 5 Xs,s)ds+/ —f(Xs,s YdX, + = /a 5 (X5, 5)0(Xs, 5) ds.

2 Nonparametric drift estimation with continuous-time obser-
vations

We consider the SDE
dX; = b(Xy) dt + o(Xy) AW, t>0, (2.1)

and our aim is the nonparametric estimation of b. We suppose that we observe the whole sample
path Xy, t € [0,T], up to time T (continuous-time observations). To get an intuition we analyse

rescaled increments
XA —Xo / /
et S U o) d il
A N s+

~b(Xo) if b cts. =0 lf o bounded
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We see
E[x(Xira — Xo)| Xy = x] ~ b(x)

for A > 0 small. The same holds if we condition on a small neighbourhood
E[x(Xera — Xo)|z —h < Xy <+ h] ~ b(x).

Letting A — 0 we obtain heuristically

T t
Jo dii [x—h,x+h}(Xt)dtN

b(x).
ST L parn (Xe) dt

This motivates the estimator

T
- Loy o (X,)dX
bT(LU,h) — fOT [x—h, +h]( t) t -~ b(x)
f() ]l[ar—h,x-I—h](Xt) di

We decompose the error

|§T(:E b b < foT Ly pwrn) (Xe) (0(X¢) — b(z)) dt fOT Lo i) (Xe)o(Xe) AW,
Jo Voo (X0) dt Jo Vamhan (Xe) dt

bias part By p variance part V; p,

In order to control the bias part B, ; we assume Hélder continuity of b. Let there be v € (0, 1]
and R > 0 such that for all z,y € R

b(z) — b(y)| < Rlz —y|*.

For all x € R this yields the bound
B, < RR®.

We simplify the analysis of the variance part V, ; by assuming that X is stationary.

Definition 2.1. Let 7 C R be such that s,t € 7 implies s +t € T. A stochastic process
(X¢)teT is called stationary if

d
Vn € N, t1,...,tn,t € T: (th,...,th) = (Xt1—|—t7---7th+t)-

If X is a stationary solution® of an SDE, then the distribution of any Xy, ¢t € 7, (and thus of
all X;) is called an invariant measure of the SDE.

Remark. Let f(Xy,t) be adapted. Then we have the [to isometry

(/abf(Xt,t) thﬂ =FE [/abf(Xt,t)th}

provided the right hand side is finite.

E

*Solution can be read throughout as either strong or weak solution.



For analysing the variance part we suppose that X is a stationary solution. Furthermore,
we assume that a Lebesgue density p of the corresponding invariant measure exists. For the
numerator of the variance part we have by the It6 isometry

E

T 2 T
(/ ]]-[x—h,x—l-h](Xt)U(Xt)th) ] Z/ E [Lp—ppin (X))o (X)?] dt
0 0
=TE [1jz—pa+n (Xo)o(Xo0)?]

x+h
= T/x_h o(y)*uy) dy

< 2Th||o? || ~ Th,

where finiteness of |0y« was assumed. Turning to the denominator we see

T
E [/o Ly poyn) (Xt) dt} =TE [1jz—pz4n (Xo0)]

z+h

= 2Thi

dy ~ Th
oh ) . u(y) dy

if p and 1/p are locally bounded. We hope that the denominator concentrates around its ex-
. . . VTR _ 1
pectation such that the variance part is of order Op <W> =Op (ﬁ)

Remark. For random variables (X, )aca we write X, = Op(1) if for all € > 0 there exists M > 0
such that sup,c 4 P(|Xo| > M) < e. Given random variables (Ry)qaca we further introduce the
notation X, = Op(R,) if Xo = R.Y, and Y, = Op(1).

Proposition 2.2. (See Lemma 9 and Theorem 18 in [23, Chapter I]) Let b, o and 1/o be
measurable and locally bounded functions. Let

/Oz exp < /Oy ig((’z)) dz) dy — 400
o [~ atgen [ )<

(a) If the SDE (2.1) has a solution for every initial distribution,! then there exists a stationary
solution of the SDE.

as T — oo and

(b) Let X be a stationary solution of the SDE (2.1). Then the invariant measure of the SDE
is unique and absolutely continuous with respect to the Lebesque measure. Its density is

given by ) ,  95(y)
)= o ([ 7).

Proposition 2.3. Let b and o be measurable and locally bounded and let inf ek 0?(x) > o2 > 0.
Let there be M,~v > 0 such that sign(x)g—g(x) < — for all x with |x| > M. Let X be a stationary

fThe assumptions of the proposition ensure that for every initial distribution there exists a weak solution that
is unique in the sense of probability in law, see [16, Section 5.5.B].



solution of the SDE (2.1). Then the invariant measure p is unique and there exists a constant C
such that for all functions f € L*(u) with E[f(Xo)] = 0 we have

([ s

The constant C' depends only on M, v, G, a® and Sup|g|<ar 10(z)]-

E

<OA+T) (1f12:0 + sup |f(@)).
( lx|=M

Proof.  (a) (invariant density) We are in the setting of Proposition 2.2(b).

(b) (initial bound) We start by considering the Ité6 formula (It6—Tanaka formula)
1
dF(X;) = F'(X,) dX; + §F”(Xt)a2(Xt) dt

= (F/(Xt)b(Xt) + 1F//(Xt)0'2(Xt)> dt + F/(Xt)O'(Xt) th

2
=AF(X4)
Let S(z) = 2o%(z)u(z) = % exp ( o i’;(é’/)) dy). This yields
! 1 " o 1 / /
AF(z) = b(z)F'(z) + 502(33)F (x) = ) (S(z)F'(z)) . (2.2)

We call A infinitesimal generator. We obtain fOT AF(Xy)dt = F(Xp) — F(Xp) —
fOT F'(X;)o(X;) dW;. Suppose we can find F such that AF = f. Then

( /0 L rx) dt>2 ( /0 P X)e(x) th>2]

= 6E[F(X0)?] + 3T E[F'(X0)%0(X0)?]. (2.3)
(c) (finding F') Motivated by (2.2) we define

Py [ ([ s as) an

where p denotes the Lebesgue density of the invariant measure. To check that AF = f
we calculate the first two derivatives

F@) = [ fene)a
P A (. —/;ib(y)dy> dz,

( 2
F(z) = 2{8 v [0 1) <—22(x)> exp (-/j%@)@) dz.

g

E < 3E[F(Xr)?] + 3E[F(X0)?] + 3E

N

We verify
0_2
AF(@) = (GF" 48] (2) = @) = M@ F'(a) + o) (o) = f(0).

7



(d) (bounding E[F'(X()?0(X()?]) For x < —M we obtain

|F' (2

Using J*,_ f(=)u(=) dz =

|F' (2

‘We conclude that

With this preparation we

E[F'(Xo)?o(Xo)

\/2 (- ) o
o

<2 / oy e (a2

<C swp |f(x)].
x<—M

— [° f(2)u(z) dz we likewise obtain for z > M

g ([ Bww) e
2 [” ‘f(())‘ xp (—( — 2)) d>

< Csup |f(2)].
x>M

)=

N

sup |F'(z)| < C sup |f(z)].
lx|=M |x|=M

bound

21 / .’E2
]—/RF() o(2)?u(x) da

< s ([ somerss) o

C? su z)|? o(x)?u(z) da
¥ p|f<>|/|$|>M<>u<>

ja|>M

) M T 9p
<A Za g M4Gexp -/, =W dy ) de

1 *2b
+C?% sup fm2/ exp(/ydy)dx
m}M! (z)| ot @ ; =)

¢ (rf\%w + sup rf<x>r2> .
lz|=M

(e) (bounding E[F(X()?]) We can bound |F(z)| by

|F(z)] < sup
x€[—M,M]

<M sup
ze[—M,

|F(x)| + max(|z| — M,0) sup [F'(x)]
lz|=M

z)dz

+ |z| sup |F'()]

M) lx|=M

2b
<Ml sup Gexp( /0 02<>dy)+cwx| sup [f(x)

< CIfllpr )

z€[—M,M)]

+ Clz| sup |f(z)].
|z|=M

|z| =M



By the exponential decay of u we see that E[XZ] is bounded and obtain
E[F(X0)*] < 20" f|1 71,y +2C%E[X§] sup |f(z)]?

lz|=M
<c” <\fH%1(H) + sup \f($)2> : (2.5)
|z[=M
The proposition follows by combining (2.3), (2.4) and (2.5). O

Let 0, b and X be as in the previous proposition. Then g is bounded and the proposition
applies to

f= ]l[x,mﬁh} - E[ﬂ[th,:wrh] (Xo)]

since
E[lf(Xo)l] = E [|Lpp—hztn](Xo0) = E[Lp—p 2t (X0)]|]
< 2E[1p—p,ztn)(Xo)] < 4h|ptllo
and E[f(Xo)] = 0. Let I be a closed interval in (—M, M). For = € I and h > 0 small enough

sup [f(y)] = E[ljz—pz+n) (Xo)] 20|l oo
For h > 0 small enough we obtain

ly[=M
T
Var (/ :ﬂ.[z h,xz+h) (Xt dt> </ f Xt dt)
0

It follows for 7' > 1 and for some constant C’ > 0

I C’
Var (MA ]]-[:th,z+h} (Xt) dt) < ? —0 (26)

as T — oo. Furthermore, 1/p is locally bounded such that for some C” > 0

< C+T) - 20h°|ll3,

T 1 T
E [/ Lo—poin (Xt) dt] >C"Th = E [Th/ Lo hz+h) (Xt)df] >C">0.
0

Consequently
1 T c"
]P <1_’h/0 ]]'[Qt—h,x-i-h] (Xt) dt 2 2) — 1

We conclude V., = Op (%) = Op (ﬁ) and obtain the following theorem.

Theorem 2.4. Let b be Holder contz’nuous of exponent o € (0,1] and o be measumble and
locally bounded with inf,cr 0%(z) > o > 0. Let there be M,~y > 0 such that sign(z ) b(z) < —v
for all x with |x| > M. Let X be a stationary solution and I a compact interval. Then uniformly
for x € I we have

B (2, h) — b(x)| < Rh® + Op <\/%h) .

In particular, /b\T(CL‘, h) is a consistent estimator of b(z) if h — 0 and Th — oo.

Corollary 2.5. The choice h ~ T_ﬁ yields

[br(z.h) = b(2)| = Op (T~ %7 .

9



3 Nonparametric estimation of the invariant density with con-
tinuous-time observations

We consider
dXt = b(Xt) dt + O'(Xt) th, t > O,
where b and ¢ are as in Proposition 2.3.

Definition 3.1. For a Borel set A define up(A4) = fOT 14(X¢)dt. The Lebesgue density Ly of
pr is called local time of X at time T (see [3, 20]). For all positive Borel measurable f we have

ST F(Xy)dt = [, f(z)Lr(z) da.

This definition differs from the usual definition in the above and in other literature, where
it is common to call o(z)?Ly(x) the local time.
There exists a version of the local time Lz (z) such that almost surely

Ly _ilzir(l)h/ a::c—‘rh Xtd

for every x and T' (Corollary VI.1.9 in [20]).
Let o be a cadlag function (right-continuous with left limits). Then the invariant density p
is cadlag, too. We estimate the invariant density by the normalised local time

fir(z) = %LT@).

Let X be a stationary solution. We rewrite

) —1
hlg%)h/ ‘

Eﬁazvljﬁ (Lot (X2) = E[Lpy gy (X0)]) dt .

i (x) — p(2)| =

~~

::Sa;,h,T
As in (2.6) in the last section we deduce as T' — oo and for A > 0 small enough

C
Var(&, p 1) < T

for some constant C' > 0. We obtain the following theorem.

Theorem 3.2. Let b be a measurable, locally bounded function and o a cadlag function with
infyer 0?(x) = o? > 0. Let there be M,y > 0 such that sign(z )2b (x) < —v for all x with
|| > M. Let X be a stationary solution and I a compact interval. Then uniformly for z € I
we have

|mm—mm:w(z).

The invariant density can be estimated nonparametrically with a /T-rate.

10



4 Nonparametric volatility estimation with high-frequency data

4.1 Introduction

We consider the diffusion process
dXt = b(Xt) dt + O'(Xt) th

The observations are given by
Xo, Xa, Xoa, ..., Xna.

We will base our estimator on the increments. To get an intuition we will analyse the approx-
imate size of the different terms in the rescaled increments

Xa — Xo
S A/ b(X,) ds + A/ . (4.1)

~b(Xo) if b cts. E[...]=0 if E[f; 0(Xs)2ds] < oo,
in particular if o is bounded

For the estimation of o we consider squared increments

W—i(/fb( s) s) +2/ / o(Xs)dWs

~A ~VA
2
O‘(XS) dWS> .

I/~
S—
>

S
A

El..] = L E[[ o(Xs)? ds]
~a(X ) by It6 isometry

As an example we consider dB; = o dW;. We observe By, Ba, Baa, ..., Bya with N — o0,
NA =T fixed. The analysis of the increments motivates the estimator

N-1 2 N-1
1 (B +1)A B A) 1
~2 E (n+1) n E 25/'2
7 T\/ A N s o Iy,

n=0

where (Y,) are iid with distribution N(0,1). Then the estimator is unbiased, E[6%] = o2, and
the quadratic risk is given by

N-1 ol ol
B[(6* - o) =B | (1 > ot - 1>)2] = TR 1) =2

We see E[(62 — 02)?]1/2 ~ N~1/2. By the CLT we even obtain v/ N (62 — o2) N N(0,20%).
What makes this calculation easy?

e independent increments

e o is constant

11



Remark. (a) By the Burkholder—Davis—Gundy inequality (BDG inequality) there is for all
p € (0,00) a constant Cp, > 0 such that for all f(Xy,t) adapted

E [ </abf(Xt,t)2dt>p/2] .

(b) Let X be a solution of dX; = b(X;)dt 4+ o(X¢) dW;. The Tanaka formula states

P

b
/ f(Xtat) th < CYpIE:'

t
| X — 2| = | Xo — x| —I—/ sign(X — x) dXg + JQ(I‘)Lt(l‘),
0

where L; is the local time at ¢, sign(z) = 1 for x > 0 and sign(z) = —1 for x < 0. (The
Tanaka formula can be viewed as a generalisation of the It6 formula for f(y) = |y — z|.)
4.2 Error bounds for the Florens-Zmirou estimator

Definition 4.1. Let 0 < m < M and define

O(m, M) = {a € C*(R) ’m < inf o(z) <supo(x) < M, suplo(z)] < M}
zeR zeR zeR

Each o € ©(m, M) satisfies the Lipschitz and the linear growth conditions and thus
dX; = o(Xy) dWy,
Xo=XO e L2(q),
has a unique strong solution. We observe
Xo, XA, XoA, ..., XNA
as N — oo and with NA =1 fixed. We define the Florens-Zmirou estimator [11] by

N-1
Zn=0 ]l{|XnA*$‘<hA}%(X(n+1)A - XnA>2

U%‘Z(xa hA) = N—1
> n—0 L{|X,a—al<ha}

if Zg:_ol L{x,a—z|<ha} > 0. This estimator is of Nadaraya—Watson type.
Lemma 4.2. For every p > 0 holds sup,cg zer E[L(7)P] < K, for L(z) = L1(x).
Proof. By the Tanaka formula

1 1
L(x) = (\Xl —z| — | Xo —z| — / sign(X; — x) dXt>
0

()2
).

1
where sign(z) = 1 for > 0 and sign(z) = —1 for < 0. By the BDG inequality we have

<2Qm—&w
m
1 p/2
</ o(X,)? ds)
0

( /0 den(X, - 2)20(X)? dt)p/

1
/ sign(X; — ) d Xy
0

Bl - XoP] = E | <,

“|

1 p
/ O'(Xt) th :| < CpE
0

2

1 P
/ sign(Xy — ) dX; } <G, E < Cp,MP.
0

12



Theorem 4.3. Let I be an open interval, v > 0 and L = {w € Q|infyer L(x) > v}. Let
ha ~ AY3. Then there exists C > 0 such that for all x € T

sup (IE “O’%Z(x, ha) A M? — 02(30)|2 14)1/2 < CAY3,
o€

Notation:
fo < g0 (or g5 2 fo) means that there exists C' > 0 such that f, < Cg, for all 0 € ©, z € I.
We write fo ~ g5 if fo S g5 and fo 2 g5

Proof.  (a) (error decomposition) For n =0,..., N — 1 we define

1 (n+1)A 2 A ,
Np = Z /nA O'(Xs) dW; — Z A U(Xs) ds.

E[nn| Fral = 0 and for m < n we have E[nm,n,] = E[nm E[n,| Fral] = 0.
E[n2| Fna] < 1 since by the BDG inequality

WA 4 (nt1)A 2
A2 E[TI?J ]:nA] 5 E / U(Xs) dWs FnA +E / U(Xs)2 ds an

A A

i (n+1)A 2
<E / o(Xs)?ds | | Fan| < A%

A

We decompose
|07, ha) — o2 ()]

_ n+1)A
ZnNolﬂ{|XnA—x|<hA}( (f( (X)) th) —02(96))

N—-1
> =0 L{|X,a—zl<ha}

_ n A
S L1l <ha) ( f( TR 52X t)dt—Uz(x))

N_
> n=0 L{|Xna—a|<ha}

N—-1
> =0 L{|X,a—z|<ha}ln N

N

N-—1
> n=0 L{|Xna—a|<ha}

martingale part My A bias pa‘rrt B, A

(b) (good event of high probability) Define the modulus of continuity as the random variable

WX(A)p = sup |[Xi— X,  W(A):=W*(A).
0<s,t<T
[t—s|<A

Let 0 <e <1/6 and o = 3/2—3c > 1. We define R = {w € Q|W(A) < h} }. By Markov’s
inequality we have for all p > 0

P(RC) < hyP* E[W (A)P]. (4.2)

13



Claim:

EWX (A% <C, <A log (f))pm (4.3)

Reason:

e (4.3) is true for Brownian motion, see [10].

e Let dX; = o(X;)dW;. By the Dambis-Dubins—Schwarz theorem X; = Bft o2
0

(Xw)du
for some Brownian motion B. Consequently for 0 < s,¢ < T

B 2
X = Xl = | Bt o2,y au = By ozxydu| S W7 ([t = 81M7) 1

We bound (4.2) by

2 p/2
P(RS) < AP/3 (A log <A>>

o 3)

and conclude that P(R°) < A%/ for p large enough.

(¢) (martingale part) We define N (z, ha) 1= zg;ol 141X, n—a|<ha}-
Claim: On R we have

N(z,hpa) 1 /”’m 1

< —

L(z)dz| < /
ha {ha—hi <|z—z|<ha+h} }

LA L
Nin A (z)dz

z—ha

Proof of claim:

N-1
1
¥ 2 LiXuaal<ha) —/ L{ix.~zl<na} ds
n=0

1
0

N-1 .(n+1)A
< /A ‘1{|XnA—$|<hA} - H{IXs—$\<hA}| ds

T i
- O

(n+1)A

(n+1)A N-1
< /A Lina<ixs—al<ha+wi(a)} ds + Z/A Lina-w(a)<ix.—al<ha} 48
n n=0 n

i
= o

g/o ]l{hA*hzg‘Xs*x‘<hA+hZ}dS

/ L(z)dz
{hA—haAélz—x‘<hA+haA}

For simplicity we define A := {z|ha — hQ} < |z — 2| < ha + hX} and observe that A has
Lebesgue measure 4h% . Using Markov’s and Jensen’s inequalities we obtain for p > 1

IP’(hlA/AL(z)dz>y> gﬁ{hli (/AL(z)dz>p]

a(p—1
< hA(p )

/ E[L(2)?) dz < AP < A%/3
A

14



for p large enough. So there is an event Q@ C R with P(Q°) < A?3 such that
N(z,ha)/(Nha) is bounded from below on Q N L. Using the martingale properties of
N, We obtain

N-1

2
1
’ n=0

1 N-1 2
S NTLQAE (Z ]l{|XnA—a:|<hA}77n> Tonc

| \n=0
1 [ N-1
S 7]\,2}%1@ D Lxua-al<ha)} LXpa—a<ha} Il

n,m=0

1 [N—1
E Z l{anA_x<hA}E[n727,"FnA]]

- N2K3 =
1
S ——5 E[N(z, ha)].
N2h23
Finally
1 1 1
R < _— c
Vs BN ha)l S 5 EIN (e, ha)1r) + 5, BIN (2, ha) e
1 [otha 1
<E [/ L(z)dz + / L(z) dz} +h'P(R)
ha Jo—ha ha Ja
1
< — E[L(2)]dz + h*A%/3
ha J(@—hp,ztha)ua
<1

(d) (bias part) If | X,A — x| < ha, then

1 (n+1)A
B / o2(X) dt — o2(z)

1 (n-‘rl)A
< X, _
NN N / | Xt — x| dt

1 (’rH—l)A
SA/ | Xt — Xpa|dt + | Xpa — @
n

So we have By Algr S ha.
(e) (conclusion) We have shown

E DO'IQ?Z($7 ha) — 02($)|2 1509] SE[MZalzno + Bialg]

Furthermore,

E[[ofs(z, ha) A M? = 0%(2)|* Long: | S P(Q7) S A%,

15



Corollary 4.4. Let ©* = ©(m, M) x {b € C(R)|b is Lipschitz and sup,ep |b(z)| < M }. Let
(o,b) € ©* and define dY; = b(Y;) dt + o(Yy) dWy, Yo = Xo. For ha ~ AY3 and L as before
there exists C > 0 such that for all x € I

sup E HU%Z(.%', ha) A M? — 02(1’)‘ 1z] < CAY3,
(o,b)€O*

Proof. The assumptions of the Girsanov theorem are satisfied. The laws of X and Y on C([0, 1])

are equivalent and
dPy Lb 1 [te?
X)= —(Xs)dXs — = Xg)d
e =ew ([ Zeax - [ 5o

o2

1'p 4 1 [t b? 4
—exp(/o ;(Xs) Ws_2/0 ;(Xs) S)'

We define &, a := |0, (z, ha) A M? — 62(x)| 1. By the Cauchy—Schwarz inequality

[ d Py
E =K — (X
v [Ex,A] X _&,A dIP’X( )]

r 1 b 1 1 b2
— Ex |£a exp </ (Xs)dWs—/ (Xs)dsﬂ
L o O 2 0 U2
- -
< Ex |&zaexp </ ;(Xs) dWs>]
L 0

Ly
< Ex [€2 ] PRy [exp (2/ U(Xs)dWs>]
0

Ex [exp ( /O 1 %b(xs) d%)]

1/2

It remains to show that

is uniformly bounded. Since Ex [exp ( 01 %(X s) ds)} < 00, by Novikov’s condition the process
b 2b b 2p?
My := exp (/ —(Xs) dW;s —/ — (Xs) ds) , tel0,1],
0o 7 0o 7

is a martingale so that Ex[M;] = Ex[My] = 1. We conclude
1 2
2b 2M
Ex [exp </ —(Xs) dWs>] < exp< 5 ) )
0o O m

Theorem 4.5. (Florens-Zmirou, 1993) Let X satisfy

dX; = b(Xt) dt + O'(Xt) dWy, te [0, 1],

where b is bounded with two continuous and bounded derivatives, o has three continuous and
bounded derivatives and m < o < M for some 0 <m < M. If Nhi tends to zero, then

() o v

where Z is a standard normal random variable independent of L(x).
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5 Nonparametric estimation with low-frequency data
We consider the SDE
dXy = b(Xy)dt + o(Xy)dW,, t > 0.
For A > 0 fixed we observe Xg, Xa,...,Xnya as N — oco. We define the transition operator
Paf(z) :=E[f(Xa)| Xo=2].

We recall the infinitesimal generator

Af(@) = 2o”@)f"(@) + b)),

We have P = exp(AA) in the operator sense. The estimation method can be summarised by

estimation identification

X0, XA, ..., Xya TEEON p RSO 4 0 (6%,D).
We simplify the statistical problem by considering a diffusion with boundary reflections

dX; = b(Xt) dt + O'(Xt) dW; + U(Xt) dL(X),
Xo=x9 and XtE[O,H, t >0,

where v(0) = 1, v(1) = —1 and L(X) is a continuous nondecreasing process that increases only
when X; € {0,1}.
For s > 0 we define the Sobolev space

1(R) = {1 € LR gy 1= [ (02 + 117 F0)du < o,

where Ff(u) = [ e f(z) dz denotes the Fourier transform of f. We define

H*([0,1]) == {f € L*([0,1])| 3g € H*(R) with g[jo.1] = [},

and
11l 2= 0,17 := inf { gl r=w)| 9 € H*(R), glpo,) = [} -

Definition 5.1. For s > 1 and given constants C' > ¢ > 0 we consider the class O, = ©(s, C, ¢)
defined by

{(o0) € 7(0.11) 5 10,9 ol sy < Cullbll oy < C._inf o(@) > c}.

The invariant density has the form

We further define . v op
S(z) = 2q P (/0 Jg(y)dy> :



The infinitesimal generator can be expressed by

1

Af(x) = S0 (@) '(x) + b(@) () = S0

()

f'(x) +
The domain of this unbounded operator in L?(j) is given by

dom(A) = { f € H2([0,1])£'(0) =0}

The operator A has a discrete point spectrum {vgx|k = 0,1,...}. The largest eigenvalue is 0
with constant eigenfunction. Let v be the second largest eigenvalue with corresponding eigen-
function w;. By the reflecting boundary «}(0) = v/ (1) = 0 and thus we obtain from

1

5 (S(@)ui (@) = viw (2)
by integration .
S@hit(@) = v [ ).

We can choose uy such that v} (z) > 0 for all € (0,1). Furthermore, u; is eigenfunction of Pa
with eigenvalue r; = e®*1. We derive

A~ log(k1) [y wi(y)u(y) dy

S(x) = 0,1
so that
22y = 256 _ 28" og(k1) Jy wi(y)p(y) dy
() uy (z)p(x)
and
/ / _
ba) = ) At o) 1AL ) o aw)lo)
() uf () ()
The estimation method can be summarised in more detail by
XOaXAa‘--vXNA eStirn—at>ion (,U’aPA) — (,U/,Uhlﬂll) — (,U,, S) — (0276)‘

With this method estimators 2 and b can be defined such that we have the following theorem.

Theorem 5.2. (Gobet, Hoffmann, Reif, 2004, [13]) For alls >1,C > ¢>0and0<a<b<1
we have

~ 1/2 —s/(2s
sup  Eop (167 — 0”122 pa))] /2 < N7/

(U,b)e s

sup B [6 bl ] S MO0,
(0,)€Os
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They also show that these rates are minimax optimal. Let s; = s — 1 be the smoothness of
the drift b and let so = s the smoothness of the volatility o. Then b can be estimated with rate
N—1/(25145) and o2 with rate N—2/(2s243)

The following table shows minimax convergence rates for the diffusion model with continu-
ous, high-frequency and low-frequency observations.

Parametric Nonparametric
Volatility Drift Volatility Drift
Continuous known T-1/2 known T—s/(2s+1)
High-frequency N-1/2 (NA)~1/2 N=s/@sth) (N A)=s/(2s+1)
Low-frequency N—1/2 N—1/2 N—s/(2s+3) N —5/(25+5)

6 Lévy processes

Definition 6.1. An R%valued process X = (X;);o defined on a filtered probability space
(Q, F, (F)i=0,P) is called a Lévy process if it is (F;)-adapted and has the following properties

(a ]P(XO = 0) =1.
(

(c
(d

)

b) (Independent increments) For 0 < s < ¢, X; — X, is independent of Fj.
) (Stationary increments) For 0 < s < ¢, X; — X is equal in distribution to X;_s.
)

(Continuity in probability) For fixed u > 0, P(| Xy — X,| > ¢) — 0 holds as ¢t — u for all
e > 0.

Remark. Every Lévy process has a cadlag modification. Without loss of generality we will
assume that all sample paths of Lévy processes are cadlag.

Definition 6.2. A Lévy measure on R? is a o-finite measure v on R¢ such that v({0}) = 0 and

/d(l A L2]?) du(z) < oo.
R

Proposition 6.3. (Lévy—Khintchine Representation) Let X be a Lévy process taking values in
Re. Then for each t > 0 the characteristic function ¢, of X, satisfies

pr(u) ==K [e““’th = V(W) u € RY,

with characteristic exponent ¥ (u) given by

p(u) =i(u,v) — %(u, Su) + /R (€™ =1 — i, 2) 1 g <1y) dv(2), (6.1)

where vy € R%, ¥ e R is a positive semi-definite matriz and v is a Lévy measure on RY.

The quantity (v,3,v) is called the characteristic triplet of X. If d = 1, we also write o?
instead of ¥. Under additional assumptions on v (6.1) has simpler forms:
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) If Jga [2[1{jz<1y dv(2) < 0o holds, then (6.1) reduces to

1 :
W(w) = i{u, o) — = {u, Su) + / (%) 1) du(a)
2 1
with 70 =7 — [ga <1y dv(z).

) If [Ra |2[1{|4>1y dv(2) < oo holds, then we can write (6.1) as

(u, Xu) + /Rd (/0w —1 —i(u, z)) dv(z)

N

P(u) = i(u,m) —

with 1 = v + [ga #1{jz>13 dv(z) and we have E[X;] = y1t.

(¢) If d=1and [ 2?dv(z) < oo holds, then we have the Kolmogorov representation

2,2 o) iu:v_l_' _
wlo) =i - S0+ [ (e

2 o 22
) o0 eUT _ ] _ jux
—im+ [ ()
oo T

with dv(z) = z2dv(z) and dv,(z) = dv(z) + 02 ddo(z), using at = = 0 the continuous
extension of the integrand to —u?/2 in the second representation. We have E[X,] = it
and Var(X;) = (02 + 7(R))t = v, (R)t.

Proposition 6.4. (Corollary 25.8, [22]) Let X be a Lévy process and p > 0. Then E[| X;|P] < oo
for one t > 0 implies E[|X;|P] < oo for all t > 0. We have E[|XiP] < oo if and only if

f]Rd |x‘pﬂ{\x|>1} dv(z) < oo.

7 Empirical characteristic functions and processes

Definition 7.1. The empirical characteristic function (ecf) of i.i.d. R%valued random variables
X1,...,X, is given by

n
)= 13 X e R,
n
k=1
and the empirical characteristic process (ecp) is given by
u = Co(u) = Vn(pn(u) = o(u))
with ¢(u) = E[e!wX1)],

It holds C,, J P as n — oo for a centred complex-valued Gaussian process I'(u) satisfying
I'(—u) =T'(u) and E[I'(u)['(v)] = @(u+v) —p(u)p(v), i.e., for all k € N and uy, ..., u; we have

(Cn(ur), .., Colur)) -5 (T(ur), ..., T(ug)).

Proposition 7.2. (Hoeffding’s Inequality) Suppose the real-valued and centred random variables
Yi,...,Y, are i.i.d. and set S, = Y ,_, Y. If there exists a deterministic number R with
|Y1| < R almost surely, then for all 7 >0

7_2
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Proposition 7.3. For i.i.d. random vectors (Xj)i>1 in R® with X € L' and any constant
R > 8V/d the empirical characteristic process satisfies uniformly inn € N and K > 2

P( max_|Cn(u)| > R\/log(TQ)> < O(VnK)(64d-R?)/(64d+64)

ue[-K,K|?
for some constant C depending on d and E[|X1|] only.

Proof. First we treat the real part and define

n

Sn(w) :="> " (cos((u, X3)) — E[cos((u, Xz))]) .

k=1

For each u € R?, S,(u) is the sum of centred i.i.d. random variables bounded by 2 so that
Hoeffding’s inequality yields

P (15,0 > 7) < 2exp (—%?2) .

For an integer J = J(n) > 1 we consider the grid on the cube [~K, K]¢ given by the (2.J)%
points u; = jK/J, j € G4 :={-J+1,-J +2,...,0,1,...,J}% and obtain

P (max|5 ()] > 72') <y 2exp< (7/2)" ) — 2(27) exp <—;> |

jeqe

For all u,v € R? we have | cos((u, X;,)) —cos((v, Xi))| < |u—v||Xj|. Since E[|X}|] < 0o, we have
Su(w) — Su(0)] < 1 — v Sy (1Xpl + E[Xi]). Further max, e o min [u — ;] < VK /]
so that

1@( max |y (u)] >T> <P<maX|S (u))| + VAK T~ 12 X5 + E[| X4]]) > )

— d
UE[ K,K] je 1

By Markov’s inequality we obtain for 7 > 0

(18,01 7)

ue[—K,K]?
<P (IIGlZX‘S (uj)] = ;) +P (\[KJ 12 | Xk| + E[| Xk[]) > ;)
J k=1

2<2J>dexp<_;>+mm (/20 S B+ {1

k=1

2>+4anJ LR X4]).

_ gd+1 yd
exXp 32

Case 1: (nK/7)Y/(@Yexp (72/(32(d + 1)n)) > 1
The choice J = [(nK /7)Y exp (72/(32(d + 1)n))| > & (nk /7)Y @D exp (12/(32(d + 1)n))

yields
e AGan)) -2
>7) < - S
=) < (5 e (i)
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with C' = 29! 4+ 8VdE[| X1]].
Case 2: (nK /7)Y exp (72/(32(d + 1)n)) < 1
Taking the grid G¢ = {0} € R? and observing that S, (0) = 0 we obtain

IP’( max | Sp(u)| = T) < WdnKr 'E[|X1]

ue[—K,K]?
<o nk d/(d+1) . 72
<O | — Xp | —o55
T P 32(d+1)n

by the condition of Case 2. This establishes the same bound as in Case 1.
Since R > 8V/d and nK? > 4, we obtain

IP’( max | S, (u)| > R nlog(nK2)> < C(v/nK)¥ @+ exp<
ue

_R? log(nK2)>
[-K,K]d 2

128(d + 1)
< O(v/nK)¥ (@+) =R/ (64(d+1)) |

An analogous result holds for the imaginary part. The statement follows by

]P) n - 2
(s, onto) — ol > )

<P< max u%waw—wwm>p)+P( max | Tm(pn() — ()] >
u€[-K,K]? 2 ue[—K,K]d

N

)

Proposition 7.3 implies that the empirical characteristic function converges uniformly on
compact sets in LP, p > 1, to the true characteristic function with rate (log(n)/n)'/2. Using
empirical processes, in particular bracketing entropy arguments, it is possible to improve to a
1/n'/?-rate and to bound any derivative on the whole real axis.

O]

Theorem 7.4. (Kappus and Reifs, 2012, [15]) Let X be a one-dimensional Lévy process with
finite (2k 4 )-th moment and choose w(u) = (log(e + |u]))~1/27° for some constants ~,6 > 0

and an integer k > 0. Then for the k-th derivative an)A of the empirical characteristic process

1 < . ,
Ca(u) =vn (n Ze’“(xm_x(k*UA) —-E [eWXA}> ) ueR, A>0,
k=1

we have
sup A~RAN2R [sup ’Cflk)A(u)‘ w(u)] < 0.

n>1,A<1 uelR
8 Spectral estimation of the Lévy triplet in the finite intensity
case

8.1 Estimation method

Consider a Lévy process X on R, where the Lévy measure v is absolutely continuous with
respect to the Lebesgue measure and with A = v(R) < oo. We observe X, Xa, ..., X,a for
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n — 0o, and with A > 0 fixed. Our aim is to estimate o2, v, A and v. By the Lévy-Khintchine
representation we have ¢;(u) = e!¥(*) with

Y(u) = —%azu2 +iyu — A+ Fr(u), (8.1)

where Frv(u) = ffooo ¢ dy(z) denotes the Fourier transform of v. By the Riemann-Lebesgue
lemma F v(u) — 0 as |u] — oo. We view 1 as quadratic polynomial in u plus F v. We consider

the optimisation problem

inf ~o®u? —iyu+ Al d
(U%I:}Y:)\)/O w(u))¢(u) + 50 U iyu + u

for some nonnegative function w. Let ¢, (u) = %Z?:l e (Xia=Xi-1na) and define ¥y, (u) =
A~ log (o, (u)), where the complex logarithm is taken such that v, is continuous on (—ug ,, uo )
with ¢, (0) = 0 and wg,, being the smallest positive zero of ¢,. Using that ¢ does not vanish
on R one can show that ug, — co almost surely [24, Thm 3.2.1, p.165].

‘We have
() — () = A (log(pn(u)) — log(ip(u))) ~ AW (8.2)

For 02 > 0, |p(u)| decreases exponentially in u so that 1), is only a good approximation of 1
for u not too large. So we restrict to u € [0, U,] with U,, — oo as n — co. Let

1 u
~Up — ”
w M (u) = nw ( n> ,

where w(u) is continuous, suppw C [0, 1] and w(u) > 0 on (0,1). We consider the optimisation
problem

(02, \,) == angH;\i)n/O @V (u) (Ren(u) + So2u? + )\)2 du.

The solution is given by

Q
SN

/OO wY™ (u) Re by, (u) du and
0

An /OO w/\U" (u) Re ¢y, (u) du
0

for some w¥" and w)". We have

Un Un
/ (—u?/2)wY (u) du = 1, / wYn (u) du = 0,
0 0 (8.3)

Un Un
/ (—D)w{™ (u)du = 1 and / (—u?/2)wi (u) du = 0.
0 0
Further w3 (u) = U, 3wl (u/Uy,) and wy" (u) = U, w}(u/U,). The optimisation problem

= arguin | @Y ) () = 70
Y 0
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is solved by v, = [5° wf/]" (u) Im ¢y, (u) du for some w,[YJ”. We have fOU” uw;]" (u)du = 1 and

w,[{" (u) = U,;Qw%(u/Un). All functions w}, w,ly7 w} are bounded and supported on [0, 1]. We

denote by v both the Lévy measure and its density. We define the inverse Fourier transform by
F L f(u) = % > e e f(z)dz and estimate the Lévy density by

—00

o2

() = 77| (5204 GO = i)+ ()| @ e,

where w,, is a symmetric weight function supported on [—1, 1]. The estimated Lévy density vy,
might take negative values. One could modify the estimator to ensure nonnegative values.

8.2 Error decomposition

We will exemplify the error analysis by considering 02 — 2. By (8.1) and (8.3) we have
Un Un
72 -0t = [ ulr @ Rewn(w) — v dut [ w(w) Re(w(u) du o?
0 0

Un Un
= / wg" (u) Re(¢n(u) — (u)) du +/ wg" (u) Re(Fr(u))du.
0 0

Stochastic error Deterministic error

The approximation (8.2) motivates the decomposition

Un 1 Un _
Un _ _ L Un Pn(u) = p(u)
/0 wy" (u) Re(¢n(u) —(u))du = A/o wy™ (u) Re( o) ) du—i—R Réd
=:L, Linear term

Linear term

By the exercise we know E[L,,] = 0 and

Cove(pn(u), 9n(v)) = E [0n(w)pa(v)] ~E [¢a(w)] E [0n(0)]

Using |p(u)| < 1 for all u € R we obtain

Var(Ly,) < % /OUn /OUH wd™ (u)wZ™ (v) Cove (gon(u), gon(v)) dudv
1

e(u) = ¢(v)
Un pUn
~ hAZ /0 /0 wgn (u)wg” () (W)t (—v) (p(u —v) — p(u)p(—v)) dudv
Upn 2
< % (/0 ‘wU"(u)/go(u)| du>

P <|Ln| > sl,n) <A (8.4)



Remainder term

We define the good event

oo

It holds |log(1+ z) — 2| <

Pn —
¥
2|z|2 for |z| < 1/2. This yields on G,

~X
2 u|<Up

<1} with [|f]lo, = sup |f(u)].

Un

Yn(u) — p(u) = %(log ¢n(u) —logp(u))

L en(w) —p(w)) _ 1 [ on(w) — p(u)
- glon (14 2 A( (] +O<

By Proposition 7.3 for R > 8, n € N and U, > 2

P (\/ﬁllwn - olu, = R\/W) C(v/nU,)61-F)/128,
We have
1 .
) <P ( n/log(nUz)lon — ¢llu, > 3 n/log(nU2) ‘u1|r<1fU Sp(u)‘)

=P (v/n/10gnU)lln — llu, > #in)
-0 ((\/ﬁUn)(64—ni)/128>

provided that U, is chosen such that

n == 1 U2) inf > 8.
o 1= 5V og(n3) inf [(uw)

U|xUn
This means that U, should not increase too fast. We define €3, := 1/k, and using again

Proposition 7.3 we obtain
— ¢llt, > 4Alog(nUy))

P ([(en — ) /0lF, > Acs,) <P (n]en
—-0 <(\/ﬁUn)(64—4A)/128) (8.5)
for A > 16. On G,, we have
2
TR 2, (8.6)

n

—ol? Un
2ol [l wlaus At
¥ Un J0
(a) The definition of the Fourier transform can be extended from L'(R) to L'(RR)

|Rn| S A7
¥ Un

Remark.
L?(R) and the Plancherel identity states for all f, g € L?(R)
1 & —_
/ f(x =5 ff(u)}"g(u) du.
T

(b) Let f € L?(R) be such that for all k € {0,1,...,s} the (weak) derivative f(*) satisfies

)
f®) € L2(R). Then for all k € {0,1,...,s}
F P (w) = (—iu)* F f(u).

25



(c) For U > 0 we have

F [(u) =UF[f(Ue)](Uu),
FHfw) =UFHf(Ue)(Uu).

Deterministic error

Let v satisfy for an integer s > 0 that maxz—g . s HI/(k)HLQ(]R) < C and [[v®)]|o < C for some
C > 0. Let wi(u)/u® € L*(R) and F [wy(u)/u®] € L'(R). By the Plancherel identity we have

/000 wY (u) Re(F v(u)) du

< \ |l Fotu)au

—00

| wF Tl
/oo 33)‘/771[wclr(u/Un)/(u/Un)s](x) dx

<UL oo || Fluog (u) /1)l 1 ).

=2m

F g™ (u) /(iw)*)(x) da
V9)(

= 27TU;(S+3)

So we obtain
< U3, (8.7)

~ n

/000 wYn (u) Re(F v(u)) du

8.3 Convergence rates

Definition 8.1. For an integer s > 0 and R, omax > 0 let Gs(R, o0max) denote the set of all Lévy
triplets 7 = (v, 02, v) such that v is s-times (weakly) differentiable and
o0

o< [O>Umax]a |’7|a A€ [OaR]7 / |x| dl/(;U) < R, max ||V(k)||L2(R) <R, ||V(8)||OO < R.

—00 k=0,1,...,s

Definition 8.2. Let {Py,? € ©} be a family of probability measures on (€2, F). Assume that
&n = &n () is a sequence of random variables on (€2, F). We write &, = Op g(ry,) for a sequence
of positive numbers r;, if

lim limsup sup Py(|&,(9)| = Ar,) = 0.

Theorem 8.3. Suppose that the weight functions w}, w%, wi and w} satisfy
we (w) /u®, w3 (u) fu®, wy () /u®, (1 = w, (u)) /u® € LA(R),
Flwg(u) /], Fluws () /u®], Flw) (u) /u®], F[(1 = wy, (w) /u’] € L'(R).

Choosing for some & > Omax the cut-off value U, = 5 (log(n)/A)'/?, we obtain the conver-
gence rates

02 — 0% = Opg,((log n)~(5+3)/2), fors >0,
M =7 = Opg,((logn)"CT272), fors >0,

An — A= Opg,((log n)~(s+D/2), for s >0,
[vn — Voo = OP,QS((IOgn)_S/2)7 for s = 1.



Proof for o,, sketch of proof for vn, An, Vn. We recall the error decomposition

Un Un u) — u
0721—02:/0 w9 (u) Re(}"y(u))du—i-i/o w9 (u) Re (W) du+ i{ﬁ/

=:D,, Deterministic error =:L,, Linear term

By (8.4) and (8.7) we have
|Dy| S U, F9) ( Ad )2

A 2
]P’<|Ln|>A ) A™

1
/0 () () | du

Remainder

For n large enough

V2
L = U2

1 1
| wbto)du
Yllu, Jo
/(262) — O(nf(l max/g )/2)

< 1
~ VU
<
S Jrog(n)
We have by (8.5) and (8.6)
2
$n — P
Un

|Rn| < AL Un_2 on G, := {ngn@_ L4

1
g,
Un 2}

P (I(en — @)/ elF, > Ac3,,) = O ((\/ﬁUn)(64—4A)/128)

for A > 16. Furthermore,

and

ea = 2y/log(nUZ)/n ||~

Un

5,/bﬂna2/<262>20< flognn—(1=%ax/ (@ >>/2)
n

So P(G,,) — 1 as n — oo. The above bounds yield

Aa_g (s+3)/2
lim limsup sup P, 2, \0721 — 02\ > A ( ) =0.
€Gs

A=00 nsoo (y,02,0) logn

The bounds for the error terms of v, and A, are larger than the error terms of 07% by a factor U,
and U2, respectively. Otherwise the convergence rates for v, and A, follow similarly.
For v,, we have

2 2
(o) — 0 2

onte) = v(a) = 7 | (n = ) + 5T i =yt =3 ) () | @

[l
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By the exercises we know
IF7H = wy (u/Un)) Fr(ullles S Uy

The term F1[(¢, — ) (u)w,(u/Uy,)] is treated similarly to the stochastic error of 2. The
following terms remain

0_2

U3 F uPw, (w)](Unz) —i(yn — v)U2 FHuw, (w)](Unz) + A — NUn F L w, (Up).

2
Since (1—w,(u))/u® € L*(R) and F[(1—w,(u))/u®] € L}(R), we have (1—w,(u))/u® € L¥(R).
By the bounded support of w, we infer w, € L>®(R), so that u?w,(u), uw,(u),w, € L'(R).
This yields F~u?w, (u)], Fulw, (u)], F~ 1w, € L®(R). The result follows by
2
2 o2

2

g

U3 + | — Y|U2 + [ A — AU, = Opg, ((logn) ~*/?).

These rates of 02, v, and )\, are minimax optimal over the class Gs(R, omax) [2]-

9 Extension to the infinite intensity case

The estimators o,, A, are designed for the finite intensity case. We want to analyse their
behaviour in the infinite intensity case, i.e., under model misspecification. In the infinite intensity
case Re(¢(u)) — —oo even if o = 0. Since the jump part of Re(y)(u)) diverges slower than
—u?, adding an additional infinite intensity jump part leads to larger o2 and larger ), when
ﬁttlng —02u?/2 — A\, to Re(2(u)). For d = 1 symmetric stable Lévy processes (o2 = 0, v = 0,
v(z) = c|z|7%"1) have the characteristic exponent 9 (u) = —c'[u|%, a € (0,2), ¢ > 0. We restrict
the analysis to stable like behaviour.

Proposition 9.1. Suppose the Lévy triplet of the Lévy process X satisfies o > 0 as well as
[, (1 = cos(u)) dv(z) = calul® + O(Jul?) for 0 < B < a <2 and co > 0 with the asymptotics

u — oo. Then for any & > o and U, < & '(logn/n)'/?

02 =0+ Op (Un*(%a) + n71/2U52eA52U’3/2) ,
A 2 UL+ Op (n_l/QeA‘_’ZU’zLﬂ) .

2

In particular, for U, as in Theorem 8.3 the estimator o2 is consistent with rate (logn)~(=®)/2,

Proof. The deterministic error of o2 can be expressed using the general formula (6.1) for v

/OUn w™ (u) Rep(u) du — 0% = /OU" wZ (u) /OO (cos(uz) — 1) dv(z) du.

—00

Substituting s = u/U,, and using the assumption on v we obtain

U”L
/ wY (u) Re p(u) du — o
0

U2 / Lol (s) / " (1 = cos(Uysz)) du() ds

(e 9]

S U, /‘w Uo‘sads—i—U /}w Uﬁ B ds

<Ua2
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A decomposes into stochastic error and

/OUn w™ (u) Re((u)) du = /01 wh(s) /OO (cos(Upsz) — 1) dv(z) ds

—o0
1
= —c Uy / wi (s)s*ds + O(UP).
0
By the exercises we know

fol w(s)s? dsu2 fol w(s )54 ds
fo s)stds fo s)ds — fo 5)s2ds)?

1 1 1 1 1
/ w}\(u)uo‘du:C,"(/ 17752/ 11752"’0‘—/ @34/ {Bsa>, C > 0.
0 0 0 0 0

By the Holder inequality in L'(w) with p = (4 — a)/(2 — @), ¢ = (4 — a)/2 we obtain
/1 ) /1~ S 4a 24 </1~ 4>1/10 </1~ a>1/q
ws*= [ wsiasia < ws ws ,
0 0 0 0
1 1 s 20 a2 1 1/q 1 1/p
/ @32“‘—/ wsi-as d-a <(/ 634) (/ @sa> .
0 0 0 0

This shows fo w} (u)u®du < 0. Consequently, fo U (u) Re(y(u)) du > US. The analysis of
the stochastic errors is as before. O

so that

o2 achieves the rate (log n)*(Q*a)/ 2 which can be shown to be minimax optimal with respect
to jump components whose characteristic function decays at most like e~¢** as |u| — oo, ¢ > 0.

10 Spectral estimation for general Lévy measures?
Assume [ 2% dv(z) < co. Then

dvg () := o2 ddo(x) + 2% dv(z)
is a finite measure. The measure v, is a natural object of the Lévy process X since Var(X;) =
ve(R)E, ¥"(u) = —o? + [%_(iz)?e™™ dv(z) = — F vy(u) and by the Kolmogorov representa-
tion ¢y (u) = ¥ with ¢(u) = iyu + [*_(e™® — 1 — juz)z~2 dvy(z), where the integrand is
continuously extended to —u?/2 at x = 0. Define the reweighted measure 7, of v, by

2

x
14 22

P(u) = iuy — U—Quz + /OO (ei“m -1- W) dv(x)

2 oo 1+ a2

00 iuw_l 1
:iu"y—l—/ (e )(xjx) T 45, ().

dv,(z) == o ddy(z) +

dv(z).

Let 4 be such that

—0o0

#This section is not part of the course in 2024.
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The pair (¥, 7,) characterises weak convergence of Py 5 y, the law of X;. By Theorem 19.1 in
[12] we have

Proposition 10.1. The convergence Py, 5. . LAY P (5.5, for a sequence of pairs (Ym, Vom)m>1
takes place if and only if Y — 7 and Vg m — Uy (weak convergence of finite measures).

We introduce the Sobolev norm and Sobolev space by

|1+ u®) 2 F f(w)

£l :—r\ p
H':= H'(R) := {f € L*(R) | [|f]| g < oo}

An equivalent norm of H?' is given by ||f|lz2 + || f'||z2, where f’ denotes the weak derivative
of f. We estimate v, and analyse the performance in H~!, the dual space of H'. In the spectral
domain we shall use

‘ (1+u?) 2 F pu ))

il = —=|

We will also use | [*° fdu| < || fllg|pll -1 and ||l g1 = SUp| £, =1 | [ fdp|. We base the
estimation on the identity

—17,m _ J— " o_ 1| ¢ ?
Vg =—F IWJ]—A}-I[(IOgSD)]—A}—ILO<(p>]

and a plug-in approach. Let K € L'(R) be such that ffooo K(x)dx =1 and supp(F K) C [-1,1].
We define Kp,(z) := %K(%) for h > 0 and

1 1" 1\ 2
Vo = — F YW FRy = F [ 22— (22) ) F Ryl
A Pn ®n

We obtain the following error decomposition for v,

Von — Vo := _]:_1[( n— V") F Ky _]:_1[7/}”(]:[{11 -1)].

stochastic error approximation error

The approximation error can be represented by — F [/ (F K}, — 1)] = K}, * vy — V.

Lemma 10.2. Suppose that the kernel K satisfies [~ In|'/2|K (n)|dn < oo. Then we have as

h—0
1K, * vo — vl g1 < W2,

Proof. We calculate by the dual definition of H~1, ffoooK = 1 and by the Cauchy—-Schwarz
inequality:

1Kn <o = valls = swp | [ Fa(Ry «ve - )
Il gr=11/~
— swp | [ i s - v,
1l =1 oo

< sup  sup [(Kp(—e)* f— f)(z)|vs(R)
Ifll =1 z€R
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sup_sup | [ (Fa-4) — @) Kn0)
< sup sup

S Ifll =1 2€R
/ </ f xm+y](z) dZ> Kh(y) dy’
If/]l =1 z€R

< [ R R dy = 02 [ ) dn £ 10

For the stochastic error we have
Lemma 10.3. Let X be a one-dimensional Lévy process with finite (44 )-th moment for some
v > 0. Let My, := maxg—0,1,2 SUP|y|<1/h 1(1/0)®) (w)|. If My, = o(n'/?log(h,;1)~(1+9)/2) holds for
a sequence hy, — 0 and some § > 0 then we have
FHF Kn, Ay —9")(x) = FHF K, (90 — 9)/0)")(x) + Ru(2)
with a second order term R, satisfying

| Rullir-r = Op (M2 0~ log(hy "))

Proof. To linearise 1! — " = A~ (log(¢n/v))", we set F(y) =log(1+y), n = (vn —¢)/p and
use
(Fom)"(u) = F'(n(u))n" (u) + F" (n(u)n (u)”
= F'(0)1"(w) + O(IF" llss(Inllsslln”lloo + 17'12.)),

where the supremum norms are taken over the ranges of u and n(u), respectively. On the event
Qn = {|l(on — ©)/PllLoo(=1/n,1/m)) < 1/2} the values of 7 are in [-1/2,1/2] and we obtain the
error estimate

sup |(log(in /)" () = ((on — ¢)/#)"(w)| = O ( max_|[((¢n 90)/90)(k)H%OO([—l/h,l/h}))

lu|<h—1 k=0,1,2

=0 (31} s o0 = P 1y )

By the moment assumption and by Theorem 7.4 we have for £k = 0,1,2 and any § > 0

(on — W)(k)HLW([—l/h,l/h}) — Op (n71/2A(k/\1)/2 1og(h*1)(1+5)/2> '

Combining this with the growth assumption on M}, yields P(€2,) — 1 and then

sup AW () = 0"(w) = ((pn = )/)" ()] = Op (MF,n " og(h "))

|u|<hy!

We conclude

\|Rn||H1_rH1+u T2F Ry,
<= [arey 2 1F Rl

= Op (MZ 0 log(h,")1+0).

31



By the exercises Varg (gpq(lk) (u)) < LE[X%] for k =0,1,2. We bound the main stochastic
error:
2 1 _ 2
E 10 Kal(on — 00/ 1] = o= B |0 +02)72 F Bl — 010" LQ]
1/h
SM,%/ (1+u?) 12Var@ ))du < n M7
“1/h

We have proved the following result.

Proposition 10.4. Let X be a one-dimensional Lévy process with finite (4 4 ~)-th moment for
somey > 0. Let K € L'(R), [ K(x)dz =1, supp(F K) C [-1,1] and [~ |2 |K (n)|dn <
0. Suppose that h — 0 as n — oo such that My, = O(n*/?log(h=')~(%9) holds for some & > 0.
Then the estimator vy, of v, satisfies

Vo — Vollu-1 = Op (hl/z + nfl/QMh) .

The condition on M), ensures that R, is of appropriate order. Depending on the growth
of Mj, this result leads to rates ranging from Op((logn)~1/%) to Op(n=1/2).

11 More on Lévy processes

11.1 Lévy-Itoé decomposition

Theorem 11.1. (See Theorem 2.1 in [18]) Given any v € R, 0 > 0 and a Lévy measure v

on R, there exists a probability space on which three independent Lévy processes exist, X1,

X gnd X©):
e XU is a Brownian motion with drift,

XM =qt+ oW, t>o0.

o X@ s a square integrable martingale with characteristic exponent
V) = [ (€= 1= )11y doo).
R

e X3 is a compound Poisson process,

where N = (Ny)i>0 is a Poisson process with intensity A :== v(R\[—1,1]) independent of
the i.i.d. sequence (Y;)i>1 with distribution concentrated on the set {z||x| > 1} and given
by dv/\ (unless A = 0 in which case X©) is identically zero).

By taking X := XU + X@ 4 XG) we see that there exists a probability space on which a Lévy
process is defined with characteristic exponent

o?u?

b(u) = duy —

+/( W1 — dualyg <ry) dv(@).
R

32



In other words, the Lévy—Itdé decomposition tells us that X is a Lévy process with charac-
teristic triplet (vy,02,v) if and only if it can be written as the sum of three independent Lévy
processes:

X, =yt + oW, + lim ZAXsnn<|AXS|<1—t/ rdv(z) | + ) AXLjax, 1,
n—0 <|z|<1

s<t n s<t
where:

o W = (Wy)i>0 is a standard Brownian motion.

o (Dt AXsTcjax,<1 — ¢ ,7<|x‘<133d7/(1'))t>0 converges in L?, as 1 tends to zero, to a
martingale denoted by M = (M;)¢>o with characteristic function given by

E[e?M] = exp <t/| |<1(eiw — 1 —dux) dl/(ﬂ:)) .

° (ngt AXSIL|AXS|>1)t>0 is a Lévy process with finite Lévy measure, i.e., it is a compound
Poisson process with intensity A := v({z||z| > 1}) and jump distribution concentrated on
the set {z||x| > 1} and given by dv/A. In particular, its characteristic function is given

by
ex e — 1) du(z) | .
b (t /m»( )dv( ))

e The processes (vt + oWy)i=0, (Mp)i=0 and (3 s AXs1jax,[>1)t=0 are three independent
Lévy processes.
Definition 11.2. If the limit lim, g fn<lfc\<1 xdr(z) exists and is finite then we define v :=
lim,, 0 fn <lal<1 xdv(z) and call the Lévy process X with the characteristic triplet (v,0,v) a
pure jump Lévy process (also called purely discontinuous Lévy process).

The above limit ~ exists for example if f_ll |z| dv(x) < oo or if v is symmetric with respect
to the origin that is v([a,b]) = v([—b, —a]) for all 0 < a < b.

Nota Bene: In the general form of the Lévy—Itdé decomposition one separates the large
jumps (3, s AXsTjax,|>1)t=0 from the small jumps since the infinite sum

ZAXS:[]-AXS;déO) t> 07

s<t
is almost surely not defined for Lévy measures v such that fil |z| dv(z) = oo. It can be shown
that |-, ., AX,| < oo a.s. whenever f_ll |z| dv(z) < oco. In particular, a pure jump Lévy pro-

cess X with a Lévy measure v such that fil |z| dv(x) < oo can be written as the sum of all its
jumps, i.e.,

X, = ZAXSJIAXS;H), t>0.

s<t

Observe that the corresponding characteristic triplet is given by ( fm < xdv(x),0,v), that is its
characteristic function is given by

exp <t /}R (e — 1) dy(a:)) .
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Examples.

e Brownian motion with drift: X; = vt + oW, t > 0. The characteristic triplet is given by
(7,02,0).

e Poisson process: let N be a Poisson process with intensity A, then its characteristic triplet
is given by (A, 0, \d1).

e Compound Poisson process: X; = Zfiﬁlm, where N is a Poisson process of intens-
ity A independent of the i.i.d. sequence (Y;);>1 with common law F. We call F' the
jump measure and X\ the intensity of X. The characteristic triplet of X is given by
(A f|x\<1 zdF(x),0,\F).

11.2 Relationship between the Lévy measure of X and the law of X

Let X be a compound Poisson process with intensity A and jump measure F'. Denote by N; the
number of jumps of X on [0,¢]. Then for any Borel set A,

P(X, € A) = ip(xt € AIN; = n) P(N; = n)
n=0

7)\t At
—Atdo +ZF*n ( ) ’

where F*" denotes the n-th convolution power of F' and §y stands for the Dirac measure at 0.
Let v be the Lévy measure of X, that is
v(A) =AF(A) = AP(Y1 € 4), VA€ BR).

In particular, for any Borel set A that does not contain 0, we have

_ P(X € A) _xt e M () _
li === = lim (wm € A)e —|—)\n§:2[[” (V144 Yy e A)——"— | =v(4)
(11.1)
since

e—At(At)n—l - e—)\t > ()\t)” B e—)\t

~
|
t o n! t

(eM—1—-Xt) =0

0<AY P(Yi+--+Y, €A) m

as t — 0. For general Lévy processes the following theorem holds.
Theorem 11.3. ([1}], see also [7]) Let X be a Lévy process with characteristic triplet (v, 02, v).

(a) If f is v-a.e. continuous, bounded and satisfies f(x) = o(x?) as x — 0 then
fim S ELF(X0)] = [ f(a) dvta)
(b) If f is v-a.e. continuous, bounded and satisfies f(z)/x? — 1 as x — 0 then

lim — E[f(Xt)] =0’ + /00 f(z)dv(x).

t—0 ¢
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In particular, we have for any point of continuity s > 0 of v that

1
lim - P(X; > s) = v([s, 0)).
t—0 ¢

12 High-frequency intensity estimation for compound Poisson
processes

Let X be a compound Poisson process, i.e.,
Ny
Xi=) Y, t>0,
i=1

where N is a Poisson process with intensity A and (Y;);>1 is an independent sequence of i.i.d.
random variables with common law F'. We suppose that F' is absolutely continuous with respect
to the Lebesgue measure and denote its density by f. In particular, X is a Lévy process with
Lévy measure v = \F'. We denote the density of v by p. We note that A = v(R\{0}).

Our aim is to estimate the intensity A from discrete observations of X. We observe

XOvXAaXQAJ"'7X(n71)A7XTLA with nA:T;

where A > 0 is the observation distance and T the time horizon. We assume that A — 0 and
T — oo as n — co. We set

Zz' = iA_X(i—l)Aa izl,...,n.

The random variables 71, Zs, ..., Z, are i.i.d. with the same law as Xa.
By (11.1) we have

. P(Xa#0) _
ilin() A =v(R\{0}) = A.
So for A small enough we have
A~ P(XAA#O). (12.1)

We define .
ﬁ(O) = Z ﬂzﬁgo.
i=1

Replacing P(Xa # 0) by its empirical counterpart n(0)/n in (12.1) leads to the estimator

5 . 10)

ni= (12.2)

The following proposition says that the mean squared error of Xn is of order % + A2

Proposition 12.1. For A € [0, A] the estimator An satisfies

E [\Xn —Aﬂ -0 (;, +A2> .
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Proof. By the bias-variance decomposition we have
~ 5 2 ~
E [|/\n — Aﬂ - (E [An} - /\> + Var ()\n> .

We first analyse the bias. Since F' is absolutely continuous with respect to the Lebesgue measure

we have
P(Z; #0) =P(Xa #0) =P(Na #0) =1 -2,
It follows
5 1 n 1—e A
E [An] - —E ;nzﬁéol = —— =2+ 0.

Now we analyse the variance. From the previous computations we know E [7(0)] = n(1 —e *4).

Furthermore,

E [7(0)?] =E Z 17,4017,20
i,j=1

=nP(Z; #0) +n(n —1)(P(Z; # 0))?
=n(l—e )+ (n? —n)(1 —e )2
This yields
Var (7(0)) = E [7(0)*] —E [7(0)]? = n(1 —e™2) —n(1 — e ?4)?
=n(l—e )1 - (1—e ) =n(l—e e
We recall nA =T and conclude

~ Var (n(0 1 —e M)A 1
Var(dn) = nQ(Ag b ¢ nAQ) =0 (T>

as A = 0. O

Remark. Another estimator of the intensity can be based on
P(Z; #0) =1—e 2,

This leads to the alternative estimator

~ 1 n(0)
Ap 1= Alog<1 n>

Linearising the estimator An for small A we recover the estimator A, in (12.2). The advantage
of A\, is that it can be expected to work for large A as well.

The jump density can be estimated from the density of the nonzero increments (see e.g. [5]).
Observe that the the number of nonzero increments and thus the sample size is random.
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13 High-frequency estimation of the intensity outside a zero
neighbourhood

In the last section we estimated the intensity of compound Poisson processes. In this section
we estimate the intensity of general Lévy processes outside of a zero neighbourhood. Let v be a
Lévy measure. If f\xl <1 |z]dv(z) < oo, the corresponding pure jump process has characteristic

triplet (f|$|<1 xdv(z),0,v) and can be written as

Xy = AX lax, o0
s<t
Otherwise we will consider the Lévy process with characteristic triplet (0,0,2). So we will focus

on the class .Z of Lévy processes with characteristic triplets (v,,0,v), where

f|a:\<1 xdv(z) if f\x|<1 |z| dv(z) < oo,

0 otherwise.

T =

Thanks to the Lévy—-It6 decomposition any X in .Z can be written for any 0 < ¢ < 1 as
X = Bi(e) + My(e) + tby(e),
where:

e B(e) = (Bt(€))e=0 is a compound Poisson process with jumps larger than . We can write

By(e) = Z AXTax,>e-

s<t
B(e) has intensity A. := v(R\[—¢,¢]) and jump distribution F; := L 1g\[cq)-
o M(e) = (M(e))i>0 is a martingale with jumps smaller than €. We can write

ZAXSIL,K\AXSKE - t/ xdy(m)) :
<|z|<e

—0
K s<t n

Mt(E) = lim (

e b,(e) is given by

fmgaxdy(m) if f|a:\<1 |z| dv(z) < oo,

. fs<|1;|<1 rdy(x) otherwise.

by(g) :==

Assume that v is absolutely continuous with respect to the Lebesgue measure. We denote the
densities of v and F. by p and f., respectively. Next we will briefly outline the role of intensity
estimation when estimating p. Let p be an estimator of p on a compact set A bounded away
from zero. We consider the LP-risk

5| [ 9o) - )P da
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Let € be small enough but fixed such that

p(l’)ﬂA(x) = )‘Efe(x)]l|a:\>5]1A($)'

We can estimate p by L
p(x) = A fe(x) for all z € A,

where /):5 and ]?5 are estimators of A\. and f., respectively. We observe that

[ -

<PE [X€|p/4\ﬁ(x) —fa(x)pdx] +2p—1EHX5—As\p]A\fe(x)lpdx-

RF) = Aefile) 4 Aufelo) - el @]

Furthermore, by the Cauchy—Schwarz inequality we have

J E[Rpife) - ﬂ|pM<ﬁHM%/J [7:@) = felaypr] ae

In particular, in order to control the LP-risk of p it is enough to control the LP- and L?P-risks
of )\ and fE We will focus on the estimation of A. only. The estimation of f. is more involved
than in the compound Poisson case owing to the small jumps (see [6]).

Since v is absolutely continuous with respect to the Lebesgue measure Theorem 11.3 yields

. P(Xal>¢e) _
ilino —x = v(R\[—¢,¢]) = Ae.
This motivates the estimator
S n(e)
T nA

with n(e) := 37001 1e00) ([ Xia = X(i-1)al)-
In order to compute the LP-risk of A\, we use Rosenthal’s inequality.

Theorem 13.1. (Rosenthal’s inequality [21]) Let 2 < p < co. Then there exists a constant Cp,
depending only on p, so that if &1,...,&, are independent random variables with E[¢;] = 0 and
E[|&P] < oo for all i, then

n n p/2
<Cpmax Seter, (S e

i=1 i=1
Using (a + b)? < 2P~ taP + 2P~10P for all p > 1 and for all a,b > 0 we obtain

ir]-ef o[22 2] 21
< 2Pt P(Xal>e)[* 21?11 HP|X|>5_”(€)

Ae — A

|
Define
L ooy (1 Xia — X(i—1)al) = P(IXa| > €)

n

U; .= fori=1,...,n.
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We observe that Uy, ..., U, are i.i.d. bounded centred random variables satisfying

nf) —P(|Xal > ¢)|.

Applying Rosenthal’s inequality for p > 2 we obtain

. . n p/2
n(€> :| < Cp max Z ]E HUz‘p] ) <Z ]E |:U12]>
=1

i=1

By the variance of Bernoulli random variables we have

P(IXal > e)(1 —P(Xa| >¢)) _ P(Xa|>¢)
n2 = n2

<iE [Ug})”” < (el s))p“_

i=1

E[Uf] =

and we derive

Furthermore, for p > 2
D 2 p—2
E[|1xupse = B(Xal > )] = E [[Lxy5c — P(Xa] > &) [11x,y 5 = P(Xa| > €)["?]
2
E |[1jx,5¢ — P(Xa| > €)*] <P(Xa] > ¢)

and thus E[|U;|P] < P(|Xa| > €)/nP. Combing the above results we obtain for p > 2

p} < O max (IP’(|X§_]1> 6)7 (P(IXA! > g))p/?) |

Let n > 1 and A > 0 such that nP(|]Xa| > ¢) > 1. For p > 2 it follows

B [|Pixal > o - 22

5L (P(|Xal > €)2 !

p/ p/
- (Pﬂfiﬁ_l 29, (Bl >) ) 0 ((P(%’; ) ) |

For p > 2 we conclude that there exists C' depending only on p such that

P P(|Xa| > ) \?/?
*C(mz ) .

so that

P(1Xal > €)

Ae — A

E [|)\5 - qu} < orl

For the case p = 2 we have

o~

E 1A = %] = (A - ERD? + Var (o)
:<A8 ]XA\>5>2 P(|Xa| > e)(1 = P(Xa| > ¢))

+ nA?

(1Xa| > 2)\? Xal| >
<<)\€_ !A\ 9\, BUXal>¢)

nA?
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Turning to the case 1 < p < 2 we obtain by Jensen’s inequality and the above bound
~ ~ /2
e[ < (2 [0~ 1)

< ((Ae_ P(|Xa| >5))2+ P(|Xa| >a)>”/2

A nA2
P p/2
|y PUXal> 9, (RUXsl > )
A nA2

Let n > 1 and A > 0 such that nP(|Xa| > €) > 1. Then the above results yield Theorem
2.1 in [6], i.e., there exists a constant C' > 0 depending only on p such that

P(].X
N CAEY

E [IAE - Xglp} <ot A

p/2
) for all p € [1, 00).

P P(|XA| > ¢)
+C<m2

We combine the above statement with the following proposition.

Proposition 13.2. (Proposition 2.1 in [9]) Suppose that the Lévy density p of X is Lipschitz
in an open set Dy containing D = [a,b] C R\{0} and that p(x) is uniformly bounded on |x| > n
for any n > 0. Then there exist k > 0 and Ag > 0 such that for all 0 < A < Ay

1
sup |~ P(Xa 2 y) — v([y,00))| < kA if D € R,
yeD A
1
sup| 3 P(Xa <)~ n(-oa)| <k DR,
yeD A
Assuming the statement of above proposition at y = ¢ and y = —e we obtain

. _ A\ 2
oo (v (2.

where C' > 0 depends on p and k only.

14 High-frequency estimation of the Lévy density

We are interested in estimating the Lévy density p on an interval D := [a,b] C R \{0} based
on discrete observations up to time 7. The interval D is bounded away from zero. We use the
method of sieves. We consider finite dimensional linear models of functions

SI:{ﬁl@l“‘"‘"i’ﬁd@(”ﬁla"'aﬁdeR}v

where ¢1,...,¢q have support in D and are orthonormal with respect to the inner product
(p,q) :== [, p(x)q(x)dz. We denote by || - || the associated norm (-, /2 on L2(D, dz). Relative
to the induced distance the element closest to p in S is given by the orthogonal projection

d

p(a) =Y Blei)pi(x),

=1
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where B(¢;) := (¢i, p) = [ pi(z)p(z) da.

We will estimate p by an empirical version of pt with coefficients 3(y;) replaced by estimat-
ors (3, (¢i). We denote the observation times by 0 = tfj < ¢} < --- < t]' = T. Further we define
"= (1))}, and 7" := maxy (1} —t}_,), where we will sometimes drop the superscript n. We
suppose that T'— oo and @™ — 0 as n — co. We estimate [5(p) by

Iy 1 "
BT (p) = fnZ‘p (Xt;; - thil) :

" k=1
Let us motivate the estimator in the case of equidistant observations ¢t} — ¢ | =T /n = A,, for
all k. We have

E[B™ (¢)] E[p(Xa, )],

1
A,
Var (37 (9)) = (B0, ) — & (o BlptXa)

n

If ¢ is v-a.e. continuous, bounded and has support in D then by Theorem 11.3

lim E5 () = [ (plo)ds and L Var (5 (¢) = 0.

n—0o0

So B’rn () is an asymptotically unbiased estimator of 5(¢) and its mean squared error vanishes
asymptotically. This justifies the estimator

d

n ~

(z) ==Y B (i) pi(x). (14.1)

=1

i

The estimator p™ is independent of the specific orthonormal basis of S since it can shown
that p™ is the unique solution of the minimisation problem

min~h (f),
oS D (f)

where 7" : L?(D, dz) — R is given by
I 2 -
D (f) = —ﬁZf(th - X )+ /sz(:c) da.
" k=1

We call ’yg" the contrast function.

14.1 Properties of the estimators

We decompose the estimation error

~

B"(¢) - B(v) = B™(¢) —E [B™()| +E [B™()] - B(»),

variance part bias part
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where (¢ f o(z) dv(x). We begin by studying the blas part. Let Lp be v-a.e. continuous,

bounded and satlsfy gp( ) o(x?) as & — 0. We define p(f) := [%_ f(z) du(z). We recall that
by Theorem 11.3

lim sup
A—0

L Elp(Xa)] - u<¢>] ~0

We obtain

E[5(0)] - 50)] < - Zm

Next we consider the variance part.

o(Xa, )] — ((p)'%o as ™ — 0.

Proposition 14.1. (Proposition 2.1 in [8]) Let ¢ be v-a.e. continuous, bounded and such that
o(x) = o(|z|) as x — 0. Let t,, — oo and T — 0 as n — co. Then

ATI' Aﬂ' d
Vin (5 () —E [5 (SD)D w2z as m — oo,
where v(?) = [ _*(x)dv(z) and Z is a standard normal random variable.

Proof. Let T'y(p) := E[p?(X¢)] — (E[p(X¢)])? and Ay, := tg — tx_1. We write
Via (B7(0) - E [B7(0)]) = >_éF,
k=1

where & = \/%(go(th — X1, ) — Elp(Xt,—+,_,)]). The assumptions of Lemma 5.5 (a) in [14]
are satisfied and it yields limsupa_, |[xa(¢) — v(¢?)| = 0. It follows

02 = Var (Z 517;) = %ZFA}C<Q@) (14.2)
k=1 " k=1
and
oh = ZAk ( Ta, (@) — V((pZ)) —0 (14.3)

as ™ — 0. This shows the result for 1/(<p ) = 0.
For v(p?) > 0 we use that ¢ is bounded and obtain

T
1
1< <C—= =0
On,m Vin

as n — oo. The result follows by the Lindeberg central limit theorem. O

Combining this with the bias bound we obtain that B’r(@) is a consistent estimator of ()
if t,, = 0o and ™ — 0. For the convergence rate and for asymptotic normality we need stronger
assumptions. For simplicity we assume that [a,b] C Rsp.

Lemma 14.2. (Modification of Lemma 3.2 in [8]) Suppose that ¢ has support in [c,d] C Rsg
and that ¢|(.q) is continuous with continuous derivative. Then we have

d
P ()] < (1ot + (@l + [ 1wl du) (e,

where M ([¢,d]) := lime05upyefeato) |5 P(Xa > y) — [y, 0))].
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Let the Lévy density p of X be Lipschitz in an open set Dy containing D = [a,b] C Rsg
and let p(x) be uniformly bounded on |z| > n for any n > 0. Then by Proposition 13.2 there
exist C' > 0 and Ag > 0 such that for all 0 < A < Ay we have Ma([a,b]) < CA and thus for
[e,d] C [a,b]

d
<C (Iw(C)I + le(d)] +/ | (u)] dU) A. (14.4)

Definition 14.3. Let ® be the class of functions ¢ for which there exists [¢,d] C [a,b] such
that ¢ has support in [c, d] and such that ¢l 4 is continuous with continuous derivative.

Assume ¢ € &. Writing Ay =t — tx_1 we bound the bias of the estimator by

‘E 37(4)] - B(@)‘ < tlzn:Ak
" k=1

A Elp(Xa ) - V(w)‘
a 1
<c(\so<c>r+rgo<d>\+ [l <u>\du)tn;Az (145)

<c <|s0(0)| +le@l+ | 1w du) 7.

We see that the bias is of order O(7). We can extend the bias bound to linear combinations
of functions in ®. In the proof of Proposition 14.1 we have seen that Var(87(¢)) = O(t;1).
Combining bias and variance bound yields

Theorem 14.4. Let t, — oo and ™ — 0 as n — oo. If ¢ is a linear combination of functions

in ® then we have
B | (50 - 00) | =0 (- +7).

n

With the undersmoothing condition 74/t, — 0 the bias is asymptotically negligible even
after scaling with /,, and we obtain

Theorem 14.5. (Theorem 2.3 in [8]) Let t, — oo and T/t, — 0 as n — oco. If ¢ is a linear
combination of functions in ® then we have

Vo (B7(¢) = B9)) S v()?Z asn— .

Corollary 14.6. (Corollary 2.5 in [8]) Suppose that ¢1,...,0q € ® have support in D and
are orthonormal with respect to the inner product (p,q) = [, p(x)q(x)dx. Let t, — oo and
TVtn — 0 as n — oo. Then the estimator p™ defined in (14.1) satisfies

Vin (ﬁ“(m) - pJ‘(:c)) L V@)?Z  asn— oo,

where V(x) = v(f2) = [°, f2(y) dv(y) with fo(y) = S0, i@)ei(y).
Proof. By linearity of B\“ and 8 we derive

Vin (77(@) 0" (@) = ﬁi (B (00~ B(e0) ila)

d d
=Vt (3” <Z %‘(1’)%‘) - B <Z %(UC)%)) = Vi, (3” (fz) — B (f;,;)) L v(@)\z
=1 i=1

as n — oo by Theorem 14.5. O
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Remark. Notice that we have the following bound for the variance

d
V(@) < plloop Y #E(2),
i=1

where |[p[|oo,p := supyep p(y)-

14.2 The stochastic error on an interval
We decompose
1p™ = pl* = " = ot 1>+ ot —0l®
| ——— —_———
stochastic error  approximation error

where ||| = [, f(z) da.

Standing Assumption 1. The linear model S is generated by an orthonormal basis G :=
{o1,...,pq} with o; € ® fori=1,...,d.

We introduce the following notation:
D(S) := inf ma 2 111113,

where the infimums are taken over all orthonormal bases G of S. By Standing Assumption 1 we
have that D(S) is finite. It may grow as dim(S) — oo.

Proposition 14.7. (Proposition 3.4 in [8]) Let the Lévy density p of X be Lipschitz on an
open set Dy containing D = [a,b] € R\{0} and let p(x) be uniformly bounded on |x| > n for
any n > 0. Then there exists a constant K > 0 such that
dim(S)

T

for any linear model S satisfying Standing Assumption 1 and for any partition 7 : 0 = ty <
t) < <tn,=T such that T > D(S) and # < T~ 1.

E[Ip" - 2] < K

Proof. Fix an orthonormal basis G := {1, ..., pq} of S with ¢; € ® and corresponding intervals
[c;,d;] for i =1,...,d. Let Da(p) := x E[p(Xa)] — v(). For any ¢; we have

B | (570 - 8e0) | = Var (B7(o0) + (& [F7(00)] - 800)
By (14.2), (14.3) and (14.4) we obtain

2 2 n
i~ n,m v p; 1
Var (B(e0) = 2 < MOy DS A (0h)
n n n k=1

I C %
< [ e (@l [ Ratgdwla).

where we used Y_p_; A2 < Y7 Ag/t, = 1. By (14.5) we have
2

(=[] - 5600)" < 5 (el + louta + [ 1l

42
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Combining the above yields

C+C?

T2
max; (llelZ + 1417
T2 '

2leillso + I£4l1)*

E [(3“(%) - B(@i)ﬂ < ;/Cd @ () dv(z) +

T
Consequently

max; (lle 2 + I¢112)

dim(S)
E[ ~r 1 2} < . 2
1P = | 7 | IPlloo,p +8(C + C7) T
The result follows by the assumption 7 > D(S). O]

14.3 The approximation error on an interval

In order to bound the approximation error we will need smoothness assumptions on p. We
assume that p|(, ;) belongs to the Besov space B;([a,b]) for some s > 0 and p € [2, 00] (see for
example [4] for further information). Define the difference operator Ay (f, x) := f(x+h) — f(x)
and inductively the higher order differences

AL(f,2) = Ap (AT, ) @)

for all x € [a,b] such that z + rh € [a,b] and r € N. The space B, ([a,b]) consists of the
functions f belonging to LP([a,b]) with 0 < p < oo (or being uniformly continuous for p = c0)
such that

1
11l = sup = sup [|AL(f,-)llp < oo,
6>0 0<h<d

where r := |s] + 1 with |s| denoting the integer part of s.

The advantage of working with Besov-smooth functions is that we have bounds available for
the approximation errors by polynomials, splines, trigonometric polynomials and wavelets (see
[4] and [1]). For example, let Sj, ,, be the space of piecewise polynomials of degree at most k£ on a
regular partition of [a, b] into m subintervals of equal length. Let p € By ([a,b]) with s < k+1.
Then there exists a constant ¢| | < oo such that

3 f _ < b _ S s —S
nf o= flly < epoy(6 = @)l m
and for p € [2, o0]
1 11 —s
[0 = pmll < ¢ (b—a)2 2| pll g m ™,

where p;- denotes the orthogonal projection of p onto Sk,m- Notice that the functions in S,
are not necessarily smooth (not even continuous). The above bounds can be extended to certain
subsets of splines in Sy, .

Let us gives a bound on D(Sk,,). We will use Legendre polynomials. For j =0,1,... let P;
be a polynomial of degree j such that

/1 Pj(z)Pi(x)dz =0 if j # 4.
-1
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This determines the Legendre polynomials up to their scale, which we fix by P;(1) = 1. The
space Sy, is generated by the orthonormal functions

2741 20 — (x; + xi—
pugla) = [ 2Ly (B o)

Ti — Tj—1 Ti — Tj—1

> ]l(zi,l,xi)(x)a

wherei=1,...,m,j=0,...,k, and a = 9 < --- <z, = b are equally spaced points. It holds
|Pj(z)| < 1 and |Pj(z)| < Pj(1) = w for x € [-1,1]. Denoting A, :=z; —xi—1 = (b—a)/m
we have

2¢ — (z; + x;—
@;7j(x) :2mAx3/2P]{< r—(z;+x 1)) Lo 4 00)(2),

T — Tij—1
T
Ti—1 ue|—1,
It follows
;e (B+1)2K2(2k + 1)
Hll.%XH%,jHl < b—a m,
2k +1
2
max [|ijlloe < 5 —m
and

k+1)2k2(2k + 1 2k + 1
DS < EHUHCELD £ GELD,

14.4 Convergence rate on an interval

Let a,b € R and € > 0 be given such that Dy = (a — e,b+¢) C R\{0}. Fix p € [2,00]. Let
s,L > 0 and M : Rs9 — Ry such that liminf, .o M(n) > 0. Define ©°(L, M) to be the class
of Lévy densities p such that

e pis L-Lipschitz on Dy,
e for any n > 0 we have p(z) < M(n) for all x with |z| > n and
® pla,p belongs to By ([a,b]) with [|pl|ss. < L.
Theorem 14.8. (Proposition 3.5 in [8]) Let mp == |TY/ stV | and let # < T~'. Then

‘ /(28 = 1/2
limsup T’ /(2s+1) sup (E [HPT - P||2D / < 00,
T—00 peOs(L,M)

where for each T the estimator pr = py,.. is given by (14.1) with S = Sk, and k > s — 1.
Proof. From the two previous sections we know that there exists a constant K (depending on

k,a,b,e,s,p, L, M) such that

m
E |57, - | < K-

for m € Mp :={m/|T > Km'}. So there exists a constant C' > 0 such that for T" large enough

s

and |[|py, — pll < Km ™,

sup E [HﬁT . P||2] <C (LTI/(2S+1)JT_1 + LTI/(2S+1)J_2S> )
pEOS(L,M)

This shows the statement of the theorem. O
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14.5 Lower bound on an interval

In this section we state a lower bound result that ensures that no estimator can achieve a faster
convergence rate than 77%/(25t1) even under continuous-time observations. Inspection of the
proofs of the lower bounds in [8] shows that they are also valid for the slightly smaller classes
©3(L, M) defined above. So we have

hzrﬂninfTs/(QSH) (i;lf sup  (E[[pr —p||2])1/2> >0,
oo PT pe©s(L,M)

where the infimum is taken over all estimators pr based on continuous-time observations
(Xt)tefo,r)- This means that no estimator can achieve uniformly over the class ©°(L, M) a
faster convergence rate than 7~%/(25t1) The estimator pr from the previous sections achieves
this minimax optimal rate using only discrete-time observations.
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