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When a volcano shows signs of unrest scientists are asked to forecast whether an
eruption will happen, when it will happen and what kind of eruption it will be.
They are also expected to provide information on hazardous volcanic phenomena
and their effects, and how long the eruption will last. Eruptions are complex phe-
nomena, however, involving magma ascent to the Earth’s surface and interactions
with surrounding crust and surface environments during eruption. Magma may
change its properties profoundly during ascent and eruption, and many of the gov-
erning processes of heat and mass transfer can be highly non-linear. There are both
epistemic and aleatory uncertainties involved, which can be large, making precise
prediction of a certain event in time and space a formidable or impossible objec-
tive; that is, volcanoes can be intrinsically unpredictable. As with other natural
phenomena, forecasting is a more achievable goal and needs to be expressed in
probabilistic terms that take account of the uncertainties. Ensemble modeling in
which uncertainties are sampled with Monte Carlo techniques is likely to become
the basis for such forecasting. Despite the limitations, there is significant progress
in anticipating volcanic activity and, in favorable circumstances, in making pre-
dictions. Data from enhanced monitoring techniques are being combined with
advanced numerical models of volcanic flows and their interactions with the envi-
ronment. Statistical analysis of volcanological data and improvements in methods
to treat subjective information are also beginning to provide viable, complemen-
tary approaches to basic numerical modeling.

INTRODUCTION

Earth scientists are required to look into the future to advise
governments and inform the public about threats from natural
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hazards. The challenges of prediction become immediate when
a volcano is about to erupt. About 500 million people live close
enough to volcanoes to be affected by eruptions [Newhall,
2000]. Volcanic phenomena can affect climate and are an impor-
tant contributing factor in forecasting global environmental
change. The challenges of forecasting volcanic activity are
considerable and come at a time when the demands and expec-
tations of society are increasingly onerous. Some societies are
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becoming ever more litigious, and prospects of scientists hav-
ing to justify their judgements in court are emerging.

Volcanic activity has many features in common with other
natural hazards, such as extreme weather, earthquakes and
landslides. Natural hazards are characteristically complex
and involve numerous parameters and processes. Some of
the controlling processes are highly non-linear, so that in cer-
tain circumstances abrupt changes of behaviour can happen,
such as the sudden transition from effusive to explosive erup-
tion. Of particular significance is the need to understand and
quantify uncertainty. There is both epistemic and aleatory
uncertainty in natural phenomena [Woo, 1999], the former
being defined as deficiencies in knowledge about natural
processes and the latter as natural variability within those
processes. Many volcanic processes are stochastic, and need
to be characterised by statistical models. Complex nonlin-
ear systems can be very unstable close to critical thresholds
between stable states, becoming inherently unpredictable.
Such attributes and the importance of quantifying uncer-
tainty are now central in forecasting volcanic phenomena.
As a consequence, volcanologists will inevitably shift from
deterministic to probabilistic perspectives. This change in
focus will require alterations in the conceptual framework
within which observations on volcanoes are interpreted. There
will be many challenges, because uncertainties in many
aspects of volcanic systems are large, and may prove hard
to quantify.

Here we consider emerging new approaches to prediction,
forecasting, the assessment of volcanic risk, and provision
of scientific advice. We also discuss the roles of statistical
analysis and computer modelling. This paper complements
those of Sparks [2003], who reviewed the methods of fore-
casting volcanic eruptions based around interpretation of
monitored data, and of Newhall and Hoblitt [2002], who
developed parallel themes.

VOLCANIC PROCESSES AND HAZARDS

Volcanism is caused by the buoyant ascent of magmas to the
Earth’s surface. Magmas change their properties as they ascend,
principally due to changes in pressure and temperature. The
properties of a magma and its interactions with its surround-
ings determine whether a given magma erupts or not, and
dictate the nature of the activity, if it does erupt. These prop-
erties and interactions give rise to a range of physical effects
that can be monitored. Important interactions include: frac-
turing of rocks due to propagation of dykes (Rubin, 1995),
generating seismicity; escape of pressurised gases and heat-
ing of ground waters, leading to ‘long-period’ volcano-seis-
mic events [e.g. Chouet, 1996; Neuberg, 2000]; and variations
of magma pressure in chambers and conduits leading to ground
deformation [e.g. Voight et al., 1999; Dzurisin, 2000]. Ascend-
ing or erupting magma can cause perturbations of electric,
gravity and magnetic fields. Additionally, fluxes of magma
and gas, geochemical and petrological variations in erupted
products, and observations of surface activity provide impor-
tant information. Observations from space of heat, strain,
topography, gravity, electromagnetic transients and atmos-
pheric emissions are also emerging as a major source of infor-
mation [Wadge, 2003]. Systematic monitoring and observations
provide the basis for forecasting, but require understanding of
the processes to interpret.

Major types of volcanic hazards, their effects and extents are
listed in Table 1. The scale and occurrence of volcanic hazards
are inversely related, with small events occurring worldwide
at a rate of 10—-20 per month, whereas catastrophic eruptions
(>10 km?), that might affect the economy of an entire coun-
try, occur every hundred years or so [Pyle, 1998]. The very
largest volcanic eruptions (>1000 km?) could threaten civi-
lization [Rampino, 2002] and occur about every 50,000 years
on average [Mason et al., 2004].

Table 1. Summary of the effects and extents of major volcanic hazards.
L = local; R = regional; N = national; I = international

Hazard Threat to life Threat to property Areas affected
ash and pumice fall low except near vent depends on thickness: L.RN,I

high for aviation roof collapse, bomb damage, fire
pyroclastic flows very high very high LR
lava flows low very high L
lahars/flooding high to moderate high LR
gases/dusts/acid rain low to moderate moderate LR




Volcanic hazards can be entirely caused by the volcanic
activity itself, but external factors can be important. Lavas and
pyroclastic flows, for example, are strongly influenced by
topography. Tephra fall hazards depend on wind strength and
direction [e.g. Bonadonna et al., 2002]. Collapse of a lava
dome to form pyroclastic flows can be triggered by intense
rainfall [Matthews et al., 2002]. Flank collapses can be trig-
gered by earthquakes, as happened on 18th May 1980 at
Mount St Helens [Endo et al., 1981]. Separate earth-
quake—volcano interactions can apparently take place over
surprisingly long distances and time-scales [Linde and Sacks,
1998; Hill et al., 2002]. Other, subtle complex-systems
dynamics [e.g. stochastic resonance; Weisenfeld and Moss,
1995] may link volcanic responses to low-level external forc-
ings, such as tides or atmospheric pressure or hydrological
cycles [Jupp et al., 2004]. Thus forecasting of hazards in
both space and time requires not only understanding of the
eruptive processes themselves, but also understanding of the
surface and subsurface environment and external processes
that interact with volcanic phenomena.

PREDICTION AND FORECASTING

Prediction and forecasting are sometimes used inter-
changeably, but can be usefully distinguished. A prediction
involves a statement about a specific event that is regarded as
inevitable within certain defined time limits and, in its most
developed form, is found in established laws of physics (e.g.
Newton’s Laws of motion of bodies). Scientists may judge, for
example, that a volcano that is showing unrest will definitely
erupt and that lava will reach a village. The prediction will
have limited value unless some constraints on time, place and
scale are specified, even if these assessments are themselves
uncertain to some degree. Forecasting, on the other hand, is a
probabilistic statement that a specific event might occur with
a certain likelihood in a given time-frame, commonly with
associated scales and effects being defined as well.

The requirements for prediction, as defined above, are strin-
gent, because the event must be inevitable. It might be thought
that a volcano like Vesuvius, with an historical record of fre-
quent eruptions, would meet the requirements of inevitability
of another eruption. However, all volcanoes become extinct and
the criteria for recognising that a volcano has had its last ever
eruption are very problematic, if not unknowable (and con-
ditional on definitions of ‘eruption’ and ‘extinct’). One can-
not be certain that the 1944 eruption of Vesuvius was not its
last ever eruption, even though the probability that this is so
would be widely judged as diminishingly small. In most erup-
tions the case for inevitability cannot be easily made.

Many volcanoes erupt in such a way that patterns of behav-
iour can be established and an eruption can be forecast, and
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even predicted if these patterns are repeated sufficiently often.
In 2000, the eruption of Mount Hekla in Iceland was accu-
rately predicted. Several years earlier borehole strain meters
had been deployed in central Iceland and, in the 1991 erup-
tion, large and systematic strain variations (Figure 1), together
with seismic data, traced the propagation to the surface of a
dyke from a magma chamber about 6 km below Hekla [Linde
et al., 1993]. The agreement between the observations and
conceptual model gave a high degree of confidence that an
eruption was inevitable when the same pattern was repeated
in March 2000. Scientists from the Icelandic Meteorological
Office informed Icelandic radio that an eruption was immi-
nent in 20 minutes. The prediction was announced at the
beginning of a news broadcast and the eruption occurred
within 2 minutes of the expected time. In the 1981-1983
activity of Mount St. Helens, patterns of periodic dome growth
with precursory ground deformation allowed accurate fore-
casts to be made of the timing of dome extrusion events
[Swanson et al., 1983]. These forecasts became increasingly
focussed on narrow time windows to the extent that they,
too, might be viewed as predictions.

The above examples show that forecasting and prediction
are easier at persistently active volcanoes or in long-lived
eruptions with established and repeatable patterns of activity;
forecasting and prediction become more difficult for dor-
mant volcanoes with a limited or no historical record. The
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Figure 1. Strain measured in five borehole strainmeters in Iceland
in 1991 associated with the eruption of Hekla Volcano [after Linde
et al., 1993]. The eruption took place within 20 minutes of the start
of the changes in strain at the time when the strain at BUR reached
a minimum. Four of the stations show an expansion (positive changes)
and the closest station to the volcano (BUR) shows an initial con-
traction. The data are interpreted as the ascent of a dyke from the
magma chamber to the surface.
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issue of whether a restless volcano is going to erupt has been
a source of angst, controversy and, in some cases, the under-
mining of scientific credibility. The cause célebre is the 1976
volcanic crisis at La Soufriere, Guadeloupe, which led to
major public disagreements between scientists [Fiske, 1984].
One group, led by Haroun Tazieff, judged that the seismic
swarm and phreatic activity was not the prelude to a major
eruption. Others regarded these disturbances as potential
signs of a major eruption, which would endanger over 70,000
people, and so advised an evacuation. The authorities, con-
cerned to incur no public risk in the light of events in Mar-
tinique in 1902, accepted the precautionary advice and the
consequent three-month evacuation caused hardship and con-
siderable economic cost, running into several hundreds of
millions of dollars. A magmatic eruption did not happen and,
in some sense, Tazieff’s assessment might be construed as
“right”. A considered appraisal of the Guadeloupe case sug-
gests, however, that the more cautious scientists had better
appreciation of scientific uncertainties and the inadequacy
of knowledge about how volcanoes work, a view supported
by subsequent analysis [Feuillard et al., 1983]. In contrast, the
climatic eruption of Mount Pinatubo in June 1991 is a good
example of a successful forecast based on a spread of evi-
dence, including precursory seismicity, and variations in SO,
emissions [Punongbayan et al., 1996]. The prospect of a very
substantial explosive eruption was deduced from geological
evidence of past eruptions and dating of pyroclastic deposits.
The decision to evacuate 250,000 people based on the vari-
ous strands of evidence was a judgement call and the advice
of the Philippine Institute of Volcanology and US Geological
Survey to the authorities avoided huge loss of life.

In view of the inherent difficulties in prediction of vol-
canic phenomena it is often better to address future volcanic
activity in terms of probabilistic forecasting. For many erup-
tions, forecasts are qualitative and expressed in terms such as
‘very likely’ or more cautious statements that a volcano is
showing the signs of unrest and might erupt. Every volca-
nologist is, however, acutely aware of the problems provoked
by calling an evacuation and then nothing happens. The sci-
entists are perceived to have been “wrong”, and to have raised
a false alarm. For this reason it is better to present forecasts
rather than predictions, and to find ways of expressing these
in probabilistic terms based on quantitative scientific evi-
dence and analysis.

In the USA public and political decision-makers are used
to weather forecasts. In general, weather forecasters have gained
public credibility both by a record of improving the accuracy
of forecasts and by getting the public accustomed to basic con-
cepts of probability. The statement that there is an 80% chance
of rain in a particular town is familiar, and most people will
accept that if it doesn’t rain then it was not necessarily a wrong

forecast. Even in this arena, however, forecasters still have dif-
ficulties with extreme conditions and can lose credibility when
the weather is much more severe than anticipated. Likewise vol-
canologists have considerable problems with forecasting the
onset and effects of extreme volcanic events.

We now illustrate some of these matters and present prac-
tices with the example of the Soufriere Hills volcano, Montser-
rat, since that ongoing eruption (which started in July 1995)
is very familiar to us.

MONTSERRAT: CASE STUDY IN FORECASTING,
PREDICTION AND RISK ASSESSMENT

The focus on the Soufriére Hills volcano, Montserrat is
selective, but the eruption has displayed a wide range of vol-
canic phenomena and has proved to be a very good testing
ground for development of new approaches to prediction,
forecasting and risk assessment. Here we illustrate the prin-
ciples of probabilistic forecasting with the example of tephra
fall hazards. We also consider pyroclastic flow hazards on
Montserrat to illustrate methods of risk assessment.

Tephra Fall Hazards

Tephra fall is one of the better understood of volcanic
processes (Plate 1). Understanding the dynamics of volcanic
plumes is reasonably advanced, as summarised in Sparks et
al. [1997], with quantitative models for plume ascent, for
the interaction of plumes with the wind, and for tephra trans-
port. These models have been calibrated against observed
events and consequently there is confidence that the models
are simulating natural processes appropriately. There is also
information on hazardous effects; for example, mass accu-

Plate 1. An ash-laden volcanic plume at the Soufriere Hills Volcano
is blown across Montserrat. Note that the source of the plume is from
a pyroclastic flow about 1 km to the east of the crater of the volcano.



mulations of tephra that can lead to roof collapse are well
documented [Blong, 1984].

The study of Bonadonna et al. [2002] on assessment of
tephra fall hazards on Montserrat illustrates the main fea-
tures of probabilistic modelling. The model treated the tephra
dispersal as an advection—diffusion problem with a source
function that reflected the observed origin of the ash plumes
from above the pyroclastic flows along the valleys, and the
observed approximately exponential decrease of plume height
with distance along the valley. The model also considered
Vulcanian explosions sourced at the crater. Model simula-
tions were first run for individual volcanic events and for the
effects of activity in the sequence from June 1996 to June
1997, under the atmospheric conditions prevailing at the time
(wind speeds and directions). Parameters in the model were
then adjusted to give best-fits to the observed thickness vari-
ations. The volcanic activity of 1996—1998 was then used to
build a characteristic scenario for the volcano of combina-
tions of dome collapses, pyroclastic flows and explosions.
This scenario was then run several hundred times using re-
sampling of the statistical data on daily wind speeds and
directions at 1 km intervals up to a height of 20 km for
1992-1996, to generate a statistical distribution of resulting
tephra accumulations across the island.

Figure 2 plots the model output in contours of probability
(as a percentage) that tephra accumulation will exceed 12
kg/m? (Figure 2a) and 120 kg/m? (Figure 2b). The first value
represents the threshold above which crops commonly fail,
and the latter value is the threshold at which roof collapse
becomes a problem. This particular model assumes that either
erosion or human intervention (e.g. sweeping roofs) removes
the ash between each tephra fall event. Such probabilistic
models were used on Montserrat to assess vulnerability to
roof collapse and to make a risk assessment of the health haz-
ards due to respirable volcanic dust. The forecasts have also
been used to guide the UK government in planning the sus-
tainable development of the island.

Tephra fall also poses health hazards. In the case of
Montserrat the volcanic dust (<10 um) contains 10-25 wt%
cristobalite, which is a carcinogen and causes silicosis, a
chronic lung disease [Baxter et al., 1999]. The model of
Bonadonna et al. [2002] was an input into a risk assessment
commissioned by the UK Department of Health. In this
assessment, simulations of tephra dispersal were combined in
a synthesis with other information and processes, including
models of ash suspension, epidemiological data and biolog-
ical data such as in vivo and in vitro experimental results.
Multiple model runs were made to assess the exposure of
the population to suspended ash. The results of this study
have identified outdoor workers (eg gardeners) and children
as having relatively high exposure. This study illustrates the
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Figure 2. Maps showing contours of probability (as a percentage)
across the island of Montserrat of accumulation of 12 and 120 kg/m?
or more of volcanic ash over a 3-year period [after Bonadonna et al.,
2002]. The maps are based on a scenario of activity similar to that
experienced on the island. Pyroclastic flows extend in the scenario
down the valleys and plumes (co-PF) are source at the points indicated
by the solid diamonds. The mass accumulations are equivalent to ash
thicknesses of about 1 cm (for 12 kg/m?) and 10 ¢cm (for 120 kg/m?).

way in which relatively ‘soft’ qualitative data can be incor-
porated into a multi-factor simulation. To produce a proba-
bilistic assessment of human exposure to suspended dusts it
is, for example, necessary to parameterise the erosion process,
since once ash is eroded it is no longer available for suspen-
sion. At the moment, it is beyond present understanding to
replicate in a model all the complex processes of tephra ero-
sion and redistribution on a tropical island, but a simple time-
dependent removal scheme could be parameterised from
empirical information. This was combined with statistical
information on rainfall to provide a significant advance on the
end member probabilistic maps in Figure 2.

Such modelling can always be improved. An ambitious tar-
get might be to produce a probabilistic model of dome growth,
collapse and explosion rather than simply adopt a specific,
albeit plausible, single scenario as a class example. Monte
Carlo sampling of all uncertainties in key parameters that
control the underlying volcanic processes could then be incor-
porated to represent a wide range of potential scenarios. How-
ever, the processes of dome growth are not yet well enough
understood to do more than develop ‘soft” parameterisations,
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as in the case of erosion. Such models are in the future and will
require significant computing power and code development,
although adroit use of newly-emerging model inference tech-
niques [O Hagan et al., 1999] offer the prospect of reduced
computing costs. Eventually one can imagine volcano fore-
casting centres that assist observatory teams with synoptic
outputs, just as weather centres have sprung up to underpin
local and regional forecasts.

Pyroclastic Flow Hazards

The principal hazard on Montserrat during the eruption is
the formation of pyroclastic flows from collapse of the lava
dome [Cole et al., 2002]. The assessment of hazards and atten-
dant risks from pyroclastic flows and their accompanying hot
turbulent clouds of ash (surges) is described here to illustrate
generic issues in relation to prediction and methods of prob-
abilistic forecasting.

The andesite dome has grown in pulses [ Watts et al., 2002].
In each pulse a lobe of lava extrudes in a particular direction
(Plate 2a). Rockfalls and collapse-induced pyroclastic flows
are generated preferentially at the leading edge of a lobe (Plate
2b) and tend to flow away in the same direction as the extru-
sion direction [Calder et al., 2002]. This behaviour is very
useful for forecasting, since the probability of flows going
down a particular valley is greatly increased when the dome
is extruded in that direction. Pulses in extrusion rate can be
marked by the onset of shallow seismicity or by changes in
cyclic patterns of ground deformation, as recorded by tilt-
meters [Voight et al., 1999], and both symptoms are com-
monly associated with formation of a new lobe in a new
growth direction.

Most major dome collapses on Montserrat (defined here
as 3 million cubic metres or greater since only flows of this
size or above are large enough to threaten populated areas)
occurred within a few hours or days of a pulse in extrusion
rate. There have been many such pulses and switches in the
extrusion direction, which tend to occur at intervals of a few
weeks to a few months. From May to December 1997 the
surges and accompanying major dome collapses occurred
quite regularly at 67 week intervals [Voight et al., 1999;
Sparks and Young, 2002]. For a while, the regularity of the
pattern was sufficiently clear to provide a basis for fore-
casting. On the other hand, some of the largest dome col-
lapses appear to have been triggered by intense rainfall
[Voight and Elsworth, 2000; Matthews et al., 2002]. One of
these occurred on 3 July 1998 in a period when there was no
dome growth. Two large dome collapses occurred on 20
March 2000 and 29 July 2001 (volumes of 20 and 45 million
m?, respectively) and were associated with intense rainfall of
over 80 mm/hour.

Aug 5-9

Plate 2. Activity of the Soufri¢re Hills volcano, Montserrat illus-
trating factors determining the directions of pyroclastic flows. In (a)
a lobe of lava is extruded towards the north between August 5 and 9,
2002 (view from the east), and in (b) small collapses from the lead-
ing edge of a lava lobe generates rock-falls and pyroclastic flows
towards the north of the island (view from the north). Images repro-
duced by permission of the Montserrat Volcano Observatory.

The critical issues in hazard forecasting of pyroclastic flows
are the areas that a flow (or series of flows) will inundate and
the occurrence of the associated overlying clouds of hot tur-
bulent suspended ash (known as surges) that can spill out of
the valleys that confine the main flows. Data on run-out dis-
tances and areas affected on Montserrat have led to empirical
relationships between flow volume and run-out distance
[Calder et al., 1999]. The observed distributions of particular
flow deposits can be used to construct a semi-empirical model
of run-out [Wadge et al., 1998]. The model incorporates grav-
itational flow across the observed topography, which is
described by a digital elevation model (DEM). The model
contains three friction parameters, which can be adjusted by
trial and error, or by Monte Carlo techniques, to give a best-



fit to the observations. The model can then be run for events
that have not yet happened to assess volcanic hazards. Such
models have many uncertainties and hidden assumptions. For
example, at Soufriere Hills dome collapses typically last for
tens of minutes to several hours and may involve numerous
individual avalanches. On 25 June 1997, there were three
main collapses in 20 minutes [Loughlin et al., 2002]. Using the
final total volume of the deposits in a particular collapse
episode as a basis for defining mobility by run-out distance,
or inundation area, or to estimate friction coefficients might
lead to misleading or inappropriate results. There is rarely
sufficient information to discriminate the volumes of indi-
vidual pulses. The fact that dome collapse episodes are almost
always pulsed multi-collapse events [Calder et al., 2002]
means that there are intrinsic uncertainties and pitfalls in
analysing the resulting field data. Another element of semi-
empirical models is that the frictional parameters not only
reflect the true frictional properties of the flow but implicitly
incorporate topographic effects on flow which, as yet, are not
explicitly modelled.

The behaviour of the surge clouds is even more problematic
because quantitative models of surge generation and dynam-
ics are not yet available. On Montserrat, the development of
surge clouds seems to be linked not only with flow volume, but
also with the internal pressurisation of the dome, which itself
is thought to be related to the extrusion rate [Cole et al., 2002;
Calder et al., 2002]. Surge cloud generation and behaviour can
also be sensitive to topographic features and can be influ-
enced by wind. Finally, surge clouds can generate dense “sec-
ondary” pyroclastic flows, which can move obliquely down
valleys away from the main originating flow [Druitt et al.,
2002b]. Thus the dispersal of surge clouds is not yet amenable
to rigorous modelling and so the assessment of hazards must
depend more on qualitative judgements based on observa-
tions in circumstances of considerable uncertainty.

Risk Assessment of Dome-Collapse Pyroclastic Flows

We illustrate the development of a quantitative risk assess-
ment of pyroclastic flow hazards, the main hazards issue in
the management of the Montserrat crisis, using the recent
example of one particular residential area, the Belham Val-
ley. The problem emerged in 2002 when relentless dome
growth raised concerns that a large collapse could inundate
the lower parts of the Belham Valley, northwest of the vol-
cano (Plate 3). This section describes the modelling proce-
dures that were used to estimate risks and thus inform
decisions by the civil authorities. The accompanying map
(Figure 3) shows the area evacuated after 8 October 2002
on the basis of scientific advice. This area was re-occupied
in August 2003 after a huge dome collapse to the east, on 12
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Plate 3. The andesite lava dome of the Soufriére Hills volcano,
Montserrat in May 2003, showing the main features pertinent to
hazard assessment. If the dome were to collapse down Tyres Ghaut
then pyroclastic flows would enter into the lower Belham Valley (see
Figure 6), an area that was evacuated after 8™ October 2002 because
of this threat. (note: ‘ghaut’ is used locally to denote a valley with a
stream or river).

July 2003, removed the threat. For Montserrat, a Risk Assess-
ment Panel has conducted such assessments and involves
the scientific staff of MVO and external experts. The authors
acted as Chair of the Panel (RSJS) and expert in risk assess-
ment methods (WPA).

The risk to the lower Belham Valley area is a function of the
probability that a pyroclastic flow will inundate part or all of
the area and the vulnerability of people there. Historical data
indicate that 90% of people in areas directly affected by pyro-
clastic flows and surges are killed [Baxter, 1990]. Only those
on the fringes of the devastated area might survive and so
vulnerability is very high. To estimate risk quantitatively the
Montserrat Panel was required to estimate the probability that
a flow would happen over a fixed period of time. The time
window used was 6 months as this was a useful timescale for
decision-makers and was commensurate with the temporal
variations in dome-building eruptions.

The procedure for estimating the hazards involved a sys-
tematic series of steps in a structured discussion and use of pro-
cedures to combine relatively hard and soft information. The
risk assessments used, wherever possible, quantitative models
of volcanic processes. Thus to assess the run-out distances
empirical correlations [Calder et al., 1999] and models (e.g.
Wadge et al., 1998) were used. For Belham Valley, the Panel
concluded that collapses of 3 million cubic metres or more
would have a high likelihood of reaching the lower valley and
that collapses of 10 million cubic metres or more would reach
the sea and affect most, if not all of the area.
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Figure 3. A map showing the location of the Belham Valley, Tyres
Ghaut (marked T) and the area (shaded) which was evacuated after
8t October 2002 due to the assessed high level of potential risk from
collapse of the lava dome to the northwest. Contour intervals are
200 feet.

The assessment also used a structured method of expert
elicitation in which the judgements of the Risk Assessment
Panel were pooled. The method, described in Cooke [1991],
has become a common approach in many scientific and engi-
neering situations that involve significant uncertainty, and it
has been applied for the first time in a volcanic crisis on
Montserrat. Each expert assesses their judgement of some
parameter and his or her confidence limits on that assess-
ment, based on shared, available scientific information. Experts
are calibrated by a facilitator, so that the pooled results of the
group are weighted according to the individual experts’ abil-
ity to be informative and knowledgeable. This procedure is
designed to give greater weight to those individuals with good
judgement in urgent circumstances; that is, a ranking rele-
vant to decision-making capabilities in crisis conditions, and
not merely a metric of considered scholarship. The procedure
has the advantage of reducing the influence of overconfident,

vocal or highly opinionated individuals, while providing a
neutral medium for the inclusive incorporation of a spectrum
of views, and the outcome can be viewed as a mathematically
rational consensus of the opinions of all participants.

A formalised expert elicitation provides a mechanism for
structured scientific discussions in an evidence-based approach
in which all sources of information (e.g. observations, empir-
ical relationships and theoretical models) are utilised. In the
case of the Belham Valley assessment the directionality of
dome growth and surge cloud behaviour are examples of com-
ponents in the estimation of overall probabilities of pyro-
clastic flow hazards where expert judgement elicitations have
proved helpful. For endogenous collapses, directionality of
the lava lobe was judged on empirical evidence to be the main
determinant of the collapse direction. However, the group dis-
cussion concluded that the evidence did not support a ran-
dom process, since certain directions had not been common
during the eruption (possibly related to buttressing effects of
older, pre-existing domes) and that switches which might trig-
ger collapses tended to occur away from the direction of pre-
vious stagnated lobes, which acted as a barrier [Watts et al.,
2002]. The Panel also considered the chances of a collapse
triggered by rainfall unrelated to dome growth direction. In this
case the previous episodes had all been down the eastern
flanks of the volcano. Additionally, the chances of such an
event would be greater in the rainy season than in the dry sea-
son. An important factor also was the frequency of collapses
of 3 million cubic metres or above; not all switches caused a
significant collapse. Other factors included the chances of
the eruption stopping, and large collapses in directions other
than to the northwest over the 6-month period, which would
either reduce or entirely remove the threat to the Belham Val-
ley. Thus relatively soft information was integrated into the pro-
cedure to produce probabilities of a range of collapse events
that might affect the Belham Valley.

The final stage of the risk assessment involved Monte Carlo
re-sampling of the probability density functions (pdf) of all
controlling factors that contribute to the hazards in different
areas, in repeated simulations. The final output evaluates the
integrated probability of occurrence of life-threatening events,
expressed as the risk of a person being killed in a particular
area, or as the associated probability of exceeding a number
of casualties in the population at large (Figure 4). The indi-
vidual risk exposure can be compared with a suitable risk
scale: for Montserrat, the comparison was with the UK Chief
Medical Officer’s Risk Scale. Societal risk diagrams like Fig-
ure 4 help illustrate to public officials the consequences of
decisions. Volcanic risks can also be compared with other
kinds of risk: for instance, casualty exceedance curves in Fig-
ure 4 compare the case of the lower Belham Valley being
occupied by residents with the case the area is evacuated.
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Figure 4. Example of probability curves for societal risk in Montser-
rat. Each curve shows the probability plotted against number of casu-
alties over a 6-month period, and is the mean of thousands of
simulations using Monte Carlo re-sampling from uncertainty dis-
tributions on the parameters that influence risk. The upper curve
(solid line) is the exposure with the Belham Valley area (Figure 3)
populated before the evacuation, and the lower curve (dashed line)
shows the reduction in risk with evacuation. Regional risk curves
for hurricanes and tectonic earthquakes are shown for comparison.
Note that for each curve uncertainties at the 5% and 95% levels were
calculated but are not shown for clarity.

Evacuation reduces societal risk by a factor of 10, to levels
below those associated with hurricanes in the Caribbean and
close to the long-term exposure to earthquakes.

STATISTICS IN VOLCANOLOGY

We now consider the statistical analysis of data, particu-
larly time series data, to extract information on volcanic
processes in the context of forecasting and assessment of haz-
ards and risks. With burgeoning amounts of instrumental and
other data being acquired statistical analysis is emerging as a
major area of research that goes well beyond simply provid-
ing measures of uncertainty. Here we give two examples.
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Longevity of the Soufriére Hills Volcanic Eruption

The Soufriere Hills eruption has continued for over eight
years. The civil authorities have asked the scientists at MVO
how long the eruption will last, as an accurate assessment
has implications for the sustainable development of the island.
To address this issue, duration data on 137 dome-forming
eruptions taken from the Smithsonian Institution database
[Simkin and Siebert, 1994] were gathered, re-interpreted, and
fitted to a Generalised Pareto Distribution model (Figure 5).
The Generalised Pareto family of distributions have special
properties that make them particularly appropriate for
analysing extreme-value information in a peaks-over-thresh-
old approach, the mathematical utility of which for ‘heavy-
tailed’ distributions has been recently elucidated (Woo, 1999).
An unanticipated outcome was the identification of two dis-
tinct groupings in the size distribution of the selected dataset:
most dome eruptions (85%) last less than 5 years and fall on
a frequency-duration trend (Figure 5) different to those that
last more than 5 years. In the latter cases, the eruptions can
be very long-lived. Based on this analysis (and no other infor-
mation) there was, for instance, only a 3% chance of the
eruption lasting less than a further 6 months, having already
lasted 94 months. There is a 50% chance that the eruption
duration will last 20 years or longer, and a 5% chance of last-
ing more than 180 years.

Such analyses are limited by the quality and nature of the
data. There are problems in defining durations because the
beginning of an eruption is usually accurately recorded but the
ending is often poorly or vaguely recorded. Further, there are
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Figure 5. The exceedence probability distribution for the durations
of 137 dome-building eruptions, drawn from the Smithsonian data-
base. The data for eruptions lasting longer than 86 months are fitted
to a Generalised Pareto Distribution law, which can be used to esti-
mate the likelihood of the duration of an eruption exceeding a given
number of months. In the text we have used the distribution for long-
lived eruptions (>86 months) to assess the probability of the eruption
stopping, given that the eruption had lasted 94 months.
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only 15 cases of eruptions lasting more than 5 years so the data-
base is very limited and, in some of these cases, conservative
decisions had to be made about what constituted a coherent
long-term episode of dome-building when punctuated activ-
ity is reported. Nevertheless, the two different distributions are
quite distinctive and alternative assumptions on the reliabil-
ity and uncertainties in the Smithsonian database fail to remove
the feature.

This example shows that process information can be
extracted by a data-analytic approach, which invites the ques-
tion of why dome eruptions that last much more than 5 years
tend to become very long-lived. A possible answer is that this
is sufficiently long for conduits to become mature and sta-
bilise so that heat loss to the walls is balanced or even exceeded
by heat advection by magma flow with the longevity of the
eruption being controlled by the dynamics of the chamber
rather than by gradual freezing of the magma at shallower
level. This is certainly not the only possibility; the point is
that the data and its analysis provoke scientific enquiry.

Explosion Sequence Time Series

Seventy-five Vulcanian explosions occurred at the Soufriére
Hills volcano between 22 September and 22 October 1997. The
timings of this sequence were investigated by Connor et al.
[2003]: on average, there was an explosion every 9.5 hours, but
individual intervals varied from as short as 4 hours to as long
as 33 hours. Voight and Cornelius [1991] had found that, in the
run-up to an eruption, time series of volcanic data, such as
Real Time Seismic Amplitude Measurement (RSAM) or
deformation rate, could fit a Weibull distribution which, in
the context of engineering reliability, is widely used to represent
times-to-failure in materials. However, the Soufri¢re Hills
explosion data did not fit this form of relationship (Figure
6a), suggesting that the physical controls on intervals between
the events were not just an analogue of material mechanics in
which strain rate increased with time until failure (explosion)
was inevitable. A memory-less (Poisson) process also failed
to reflect the data, indicating that the timing to the next explo-
sion had some independence on previous explosions. Instead,
Connor et al. [2003] found that the explosion interval data
fitted a log-logistic statistical distribution extremely well.

They proposed the following dynamic equation as repre-
senting the causative processes:

dQ k
t—=kQ-—Q? (1)
dt Q,,
where t is the time since the last explosion, Q is some state
variable, k is a power-law exponent and €, is a character-

istic value of Q when the two right hand terms are equal. A
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Figure 6. Statistics of intervals between Vulcanian explosions at the
Soufriere Hills volcano, Montserrat in September and October 1997.
(a) Comparison of the observed interval distribution (open circles)
and calculated distributions using the Weibull model with a time
constant of I = 9.6 hours and various values of the power exponent
k [after Connor et al., 2003]. Using k = 4, estimated from experi-
mental data, gives a good fit to the observed distribution at t < {i, but
a poor fit at t > {i. The exponential (Poisson) model corresponds to
k=1, and does not fit the observed distribution. (b) The observed dis-
tribution of repose intervals are fit with > 99% confidence using a
log-logistic survivor function with a time constant of {i = 9.0 hours
(observed distribution median) and an exponent of k = 4 [after Con-
nor et al., 2003].

log logistic survivor function that describes the statistical
distribution of repose periods can then be defined [Connor
et al., 2003] which fits the observations within 99% confi-
dence limits (Figure 6b). This kind of analysis illustrates
that constraints or process information with relevance to
hazards can be extracted from such an analysis; in other



words, it throws light on the context of what is, otherwise,
an abstract statistical model.

For the Montserrat case, the best-fit statistical model sug-
gests that the stochastic dynamics of the system must have
certain properties: equation (1) represents two competing
processes acting on different time scales which, respectively,
increase and decrease internal gas pressure. Connor et al.
[2003] postulated that after an explosion, gas pressure increases
by exsolution from magma, but gas escape by permeable flow
through the magma reduces the gas pressure. At early stages,
gas exsolution is dominant and gas pressure increases. Later,
gas escape plays an increasingly important role and counter-
acts the exsolution-driven increase in gas pressure. This com-
peting-processes model is consistent with current
understanding of the mechanisms of repetitive explosive erup-
tions at Montserrat [ Voight et al., 1999; Druitt et al., 2002a;
Melnik and Sparks, 2002]. However, a full fluid dynamic
model of magma ascent that incorporates all the complex
interacting processes involved has not yet been developed.
Indeed, a test for the viability of numerical models should be
that their outputs mimic closely both the statistical and tem-
poral properties of the natural data.

Such an approach has forecasting relevance, as proposed
by Voight and Cornelius [1991]. Almost all statistical mod-
els can lead to some form of distributional ‘hazard function’
which, in this case, can be interpreted as the relative proba-
bility of an explosion at some definite time after a previous
explosion. This probability is constant for a Poisson arrival
process, asymptotic after some definite time for a Weibull
distribution, but reaches a maximum before declining for a
log-logistic model.

This type of analysis of a complex stochastic dynamic sys-
tem, the analysis of large sample data, and the assessment
of uncertainty in wider areas of public concern are some-
what outside the traditional realms of statistical inference
[see, e.g., Chatfield, 2002], but constitute important propo-
sitions for advancing volcanology. As such, they need to be
integrated into an overall strategy for modelling volcanic
activity, hazards and risks.

MODELLING STRATEGIES IN VOLCANOLOGY

Forecasting of complex volcanic phenomena involves a
combination of empiricism, understanding (often at an intu-
itive level) of the underlying physical processes, and model-
ling. Monitoring data and observations provide the ingredients
for the empirical approach in that patterns may be recognised
and interpreted within a framework of physical theory or con-
ceptual models. Monitoring data can also validate quantitative
models to increase confidence in their output (although
schemes that generate self-fulfilling prophecies must be
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avoided). However, models should be used with awareness
of their limitations as well as their strengths.

The issue of quantifying uncertainty is becoming more
prominent. Simplified (scenario-based) deterministic models
are exceedingly useful for gaining a good first-order under-
standing of volcanic processes, but are likely to prove inad-
equate when it comes to providing models with utility for
forecasting and prediction. Given the stochastic and nonlin-
ear nature of many volcanic processes and the uncertainties
(which can be large) in the controlling parameters, practical
models are likely to follow the approaches now routinely
adopted in other natural hazards forecasting, such as floods
and extreme weather events. In meteorology, for instance,
the integration of results from an array of prediction models,
with explicit perturbations to model formulations, initial con-
ditions and parameter probability distributions, generate an
ensemble of outcomes that can be treated in a statistical man-
ner and presented as a full probabilistic forecast [see, e.g.,
Palmer, 2000]. This is only just beginning to happen in vol-
canology. A major challenge is to ensure that such ensemble
forecasting encompasses all the key factors involved in the
natural processes. In particular, the existence of epistemic
uncertainty has to be recognised and assimilated into the pro-
cedure, which will entail a suitable suite of alternative mod-
els being interrogated jointly. While, in practical terms, this
would be a non-trivial undertaking, it would provide a proper
rational basis for evaluating the value of such forecasts
[Palmer, 2000].

In volcanology numerical modelling is becoming an impor-
tant aspect of forecasting and risk assessment, and evolving
approaches have largely focused on numerical simulations.
Aided by increasing computer power as well as improving
understanding of the physics involved, such models are becom-
ing increasingly sophisticated [e.g. Neri and Macedonio, 1996;
Papale, 1999; Melnik and Sparks, 1999]. A presumption is
that such models will eventually simulate nature so well that
they can be used for forecasting. These expectations may
prove to be optimistic, not least because experience has demon-
strated with climate modelling that, when uncertainties in
such models are disaggregated and appraised individually,
the spread of overall uncertainty increases [Morgan and Keith,
1995]. Here we discuss the limitations of modelling and con-
sider complementary strategies, while recognizing that numer-
ical models give important insights into volcanic processes.

Most computer modelling of natural phenomena has adopted
a strategy of simplification to make matters tractable: those
details that are thought to matter most are represented as accu-
rately as possible, and other details, not considered impor-
tant, are abridged or omitted. Knowing, however, which details
matter most can be tricky: models are prone to be incomplete,
sometimes leaving out details that could matter under certain
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conditions. Parametric or even structural uncertainties remain
implicit, so that no matter how detailed the model that is cre-
ated, complete confidence cannot be invested in its predic-
tions about the behaviour of the real system.

Typically, numerical models for volcano dynamics involve
several partial differential equations and equations of state that
describe the system behaviour. The number of degrees of free-
dom in the system, and hence number of parameters needed to
characterize it adequately, is typically large (commonly a few
tens). To make the models computationally manageable and
help interpret outputs, simplifications have to be made. For
example, published models of pyroclastic flows only involve
two particle sizes [Neri and Macedonio, 1996]. Certain features
of volcanic flow systems are exceedingly computationally
demanding: vesiculation processes in explosive eruptions may
involve formation of 10'> bubbles per cubic metre. Keeping
track of what every bubble and melt region does cannot be
achieved without making major simplifications that may intro-
duce artificial or unphysical features into the model. As com-
puter codes become more complicated the chances of errors and
numerical artifacts increase, and complex codes need sub-
stantiating. There may be a limit, however: Oreskes et al. [1994]
assert that absolute validation is impossible for numerical mod-
els in the Earth Sciences.

When numerical models are compared to natural data the
issue of uniqueness emerges. It is relatively easy for a skilled
modeller to make a model with large numbers of parameters
fit the data: the process is one of hindcasting, rather than
forecasting. For example, Barmin et al. [2002] investigated
a model of periodic behaviour of lava dome eruptions and
were able to generate simulations similar to the activity of
Mount St Helens and Santiaguito lava domes. Such models
are very good for gaining insight into how Nature has behaved,
but are not unique. There is also inevitably much empiricism
in all such models; for example, in high-speed multiphase
flows assumptions are made about turbulence based on empir-
ical closure models that have yet to be confirmed in particle-
gas mixtures.

It is thus difficult to envisage how deterministic models
can be used successfully in forecasting. Interestingly, most
of the models that have been developed so far as forecasting
tools in volcanology are less physics-based and more overtly
empirical, as exemplified by the tephra fall and pyroclastic
flow run-out models used on Montserrat. One new direction
for numerical models will be to incorporate the quantification
of uncertainty. An obvious approach will be to assign uncer-
tainties to every parameter and run ensemble models in which
sample the uncertainties using Monte Carlo techniques and
repeat calculations a large number of times.

On the topic of uncertainty, an emerging issue for numer-
ical models is the difficult but critical difference between

aleatory and epistemic uncertainty, and how to recognize it.
Any system has aleatory uncertainty that is real and reflects
truly random features like noise and time evolution of magma
system properties. Unfortunately model parameters always
involve a mixture of both kinds of uncertainty. A good exam-
ple is conduit dimensions, which are critically important to
conduit flow models because of the high powers of flow rate
dependence on conduit shape (e.g the fourth power of diam-
eter for a cylindrical conduit). Conduits are non-uniform in
Nature and cannot be measured directly, so their shape and
dimensions are inevitably poorly constrained with large epis-
temic uncertainty. Notwithstanding this, conduits are com-
monly assumed to have a fixed simple geometry (e.g. cylinders
of constant diameter). In reality, conduit dimensions might
have small aleatory uncertainty (sensu stricto), if they could
be accessed, but they can evolve with time and be hard to
define spatially if there are property gradients between the
magma and the wall-rock. So it is unlikely that conduit mod-
els can ever be very accurate.

On top of that, many volcanic processes are also highly
non-linear. Modelling research in simplified volcanic sys-
tems has identified multiple solutions, such that a system can
jump suddenly from one state to another [Jaupart and Allegreé,
1991; Melnik and Sparks, 1999; Slezin, 2002]. Where sys-
tems are close to thresholds for instability, technically known
as cusps in catastrophe theory, they can become inherently
unpredictable. Worryingly, complex numerical models are
unlikely to capture this kind of behaviour easily because of the
large epistemic uncertainties in some critical parameters.

Greater use of statistical models and methods should provide
an alternative and complementary approach to multivariate,
multiparameter forward numerical models. Here we have illus-
trated how statistical analyses can lead to insights into processes.
Statistical models should be given considerable weight in haz-
ards assessments as they are data-based, reflecting how the
system actually behaves rather than how it might behave. Such
models are effectively free of epistemic uncertainty, except
with respect to the measurements themselves. This point has
been made strongly by Young et al. [2002] in the context of
modelling stochastic systems, in particular the climate.

We suggest that the future direction of modelling research
for volcanology will involve combining statistical and numer-
ical modeling techniques in a common strategy, with inter-
play between both. For example, a good test of the validity of
a numerical model is that is can reproduce the statistical fea-
tures of natural data.

THE STATE OF A VOLCANIC PLANET

Over the coming century there are likely to be several major
volcanic eruptions (defined as those exceeding 1 km?), which



will affect large numbers of people. With the increasing global
population, the dramatic growth of megacities close to active
volcanoes, and stresses related to rapid environmental change
and globalisation, there is the potential for much larger and
more serious volcanic crises and disasters than in the twenti-
eth century. It is certainly plausible that the casualties in a
large eruption near an area of dense population could greatly
exceed the largest death toll of the last century (30,000 peo-
ple at Mont Pelée), and might create sufficient destruction to
imperil the economies of individual countries and perhaps
even continental regions. Human beings are, without doubt,
much more vulnerable to volcanic hazards as a consequence
of rapid environmental change and globalisation. On the other
hand, the advances in understanding of volcanic processes
combined with the huge advances in science and technology
mean that the scientific community is in a much better posi-
tion to anticipate volcanic eruptions and, in some circum-
stances, predict their occurrence, estimate their impact and
take steps to protect populations and mitigate the effects.

Many of the scientific tools for dealing with volcanic crises
are already available and will continue to improve. The next
few decades are bound to produce an increasing number of vol-
canoes that are adequately monitored. As computer power
increases and cheap data storage moves from gigabytes to
terabytes there will be huge improvements in the analysis of
data from monitoring networks and in the modeling of volcanic
processes. There are also likely to be major advances in tech-
nology (e.g. satellites, nanotechnology instruments and detec-
tors), which will have significant impact on the ability to
analyse signals and monitor volcanoes: remote measurements
from space, in particular, offer great promise for enhancing
operational forecast models [ Wadge, 2003].

The approaches to hazards analysis and prediction are
likely to move towards probabilistic assessments and,
inevitably, to increased use of statistical models. In the latter
case, numerical simulations of volcanic processes will be
developed in ensemble style, incorporating elements of epis-
temic and aleatory uncertainty, with comparison of statisti-
cal properties of model outputs with real data. A
transformation is taking place in the scientific expertise that
will be needed to develop these vital quantitative forecasting
and prediction tools, and much needs to be done to provide
volcanologists with the appropriate knowledge and skills to
meet the challenges.

Despite reasons for optimism only a small number of active
volcanoes are adequately monitored, and many of these are vol-
canoes within the Developed World. Most of the world’s active
volcanoes and a large proportion of the 500 million people liv-
ing close to volcanic threats are in less developed regions
where such volcanoes are either not monitored at all or, at
best, have only rudimentary observational or instrumental
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networks. The challenge is therefore to provide these regions
with working access to the technological and scientific
advances that can mitigate disaster and assist sustainable
development.

Acknowledgements. RSJS acknowledges a Royal Society-Wolf-
son Award and support from research grants including the EC (MUL-
TIMO EVG1-2000-00574) and NERC. WPA acknowledges a
Benjamin Meaker Visiting Fellowship at IAS, Bristol, and support
from EC projects MULTIMO EVG1-2000-00574 and EXPLORIS
EVR1-CT-2002-40026. The authors acknowledge the tremendous
help of staff of the Montserrat Volcano Observatory and many col-
leagues involved in the hazards and risk assessments on Montserrat.
The authors thank Gordon Woo for stimulating discussions, and
Colin Wilson, Chris Newhall and Chris Hawkesworth for careful
and helpful reviews. Table 1 follows a suggestion from Colin Wilson.

REFERENCES

Barmin, A., Melnik, O and Sparks, R. S. J. Periodic behaviour in
lava dome eruptions. Earth and Planetary Science Letters, 199,
173-184, 2002.

Baxter, P.J. Medical effects of volcanic eruptions. I. Main causes of
death and injury. Bulletin of Volcanology, 52, 532-544, 1990.

Baxter, P. J., Bonadonna, C., Dupree, R., Hards, V. L., Kohn, S. C.,
Murphy, M. D., Nichols, A., Nicholson, R. A., Norton, G., Searl,
A., Sparks, R. S. J. and Vickers, B. P. Cristobalite in volcanic ash
of the Soufriere Hills Volcano, Montserrat: Hazards implications.
Science, 283, 1142-1145, 1999.

Blong, R. Volcanic Hazards: a sourcebook on the effects of erup-
tions. Academic Press, Sydney, 424pp, 1984.

Bonadonna, C., Macedonio, G. and Sparks, R. S. J. Numerical mod-
elling of tephra fallout associated with dome collapses and Vul-
canian explosions: application to hazard assessment on Montserrat.
In: Druitt, T. H. and Kokelaar, B. P. (eds) The eruption of the
Soufriere Hills Volcano, Montserrat 1995 to 1999. Geological
Society, London. Memoir 21, 517-538, 2002.

Calder, E. S., Cole, P. D., Dade, W. B., Druitt, T. H., Hoblitt, R. P,, Hup-
pert, H. E., Ritchie, L., Sparks, R. S. J. and Young, S. R. Mobil-
ity of pyroclastic flows and surges at the Soufriere Hills Volcano,
Montserrat. Geophysical Research Letters, 26, 537-540, 1999.

Calder, E. S., Luckett, R., Sparks, R. S. J. and Voight, B. Mecha-
nisms of lava dome instability and generation of rockfalls and
pyroclastic flows at Soufriére Hills Volcano, Montserrat. In: Druitt,
T. H. & Kokelaar, B. P. (eds) The eruption of Soufriere Hills Vol-
cano, Montserrat, from 1995 to 1999. Geological Society, Lon-
don, Memoir 21, 173190, 2002.

Chatfield, C. Confessions of a pragmatic statistician. The Statistician,
Journal of the Royal Statistical Society, Series D, 51, 1-20, 2002.

Chouet, B. A. Long-period volcano seismicity: its source and use
in eruption forecasting. Nature, 380, 309-316, 1996.

Cole, P. D, Calder, E. S., Sparks, R. S. J., Clarke, A. B., Druitt, T. H.,
Young, S. R., Herd, R. A., Harford, C. L. and Norton, G. E. Deposits
from dome-collapse and fountain-collapse pyroclastic flows at
Soufriere Hills Volcano, Montserrat. In: Druitt, T. H. & Kokelaar,



372 VOLCANIC ACTIVITY: FORECASTING, PREDICTION AND RISK ASSESSMENT

B.P. (eds) The eruption of Soufiiere Hills Volcano, Montserrat,
from 1995 to 1999. Geological Society, London, Memoir 21,
231-262, 2002.

Connor, C. B., Sparks, R. S. J., Mason, R. M. Bonadonna, C., and
Young S. R. A “log logistic” volcano: The Souftiére Hills, Montser-
rat. Geophysical Research Letters, 30, 1701 doi:10.1029GL017384,
2003.

Cooke, R. M. Experts in Uncertainty. Oxford University Press Oxford,
1991.

Druitt, T. H., Young, S. R., Baptie, B., Bonadonna, C., Calder, E. S.,
Clarke, A. B., Cole, P. D., Harford, C. L., Herd, R. A., Luckett,
R., Ryan, G. and Voight, B. Episodes of repetitive Vulcanian explo-
sions and fountain collapse at Soufriere Hills Volcano, Montser-
rat. In: Druitt, T. H. & Kokelaar, B. P. (eds) The eruption of
Soufriere Hills Volcano, Montserrat, from 1995 to 1999. Geolog-
ical Society, London, Memoir 21, 281-306, (2002a).

Druitt, T. H., Calder. E. S., Cole, P. D., Ritchie, L. J., Sparks, R. S.
J., and Voight, B. Small-volume, highly mobile pyroclastic flows
formed by rapid sedimentation from pyroclastic surges at Souftiere
Hills Volcano, Montserrat: an important volcanic hazard. In: Druitt,
T. H. and Kokelaar, B. P. (eds) The eruption of the Soufriere Hills
Volcano, Montserrat 1995 to 1999. Geological Society, London,
Memoir 21, 263-280, 2002b.

Dzurisin, D. Volcano geodesy: challenges and opportunities for the
21st century. Philosophical Transactions of the Royal Society A,
358, 1547-1566, 2000.

Endo, E. T., Malone, S. D., Noson, L. L. and Weaver, C. S. Locations,
magnitudes and statistics of the March 20-May 18 earthquake
sequence. In: Lipman, P. W. and Mullineaux, B. R. (eds) The 1980
eruptions of Mount St.Helens, Washington. US Geological Sur-
vey Professional Paper 1250, 93-108, 1981.

Feuillard, M., Allegré, C. J., Brandeis, G., Gaulon, R., Le Mouel, J.
L., Mercier, J. C., Pozzi., J. P. and Semet, M. P. The 1975-1977 cri-
sis of La Soufriere de Guadeloupe (F.W.L.): a still-born magmatic
eruption. Journal of Volcanology and Geothermal Research, 16,
317-334, 1983.

Fiske, R. S. Volcanologists, journalists, and the concerned local pub-
lic: a tale of two crises in the Eastern Caribbean. In: F. R. Boyd,
(ed): Explosive Volcanism: Inception, Evolution and Hazards.
National Academic Press, Washington, DC, 170-176, 1984.

Hill, D. P, Pollitz, F. and Newhall, C. Earthquake—volcano interac-
tions. Physics Today, 55 (4), 41-47, 2002.

Jaupart, C. and Allegré, C. Gas content, eruption rate and instabili-
ties of eruption in silicic volcanoes. Earth and Planetary Science
Letters, 102, 413-429, 1991.

Jupp, T., Pyle, D., Mason, B. and Dade, B. A statistical model for the
timing of earthquakes and volcanic eruptions influenced by peri-
odic processes. Journal of Geophysical Research, 109, B02206
10.1029/2003 JB002584, 2004.

Linde, A. T. and Sacks, I. S. Triggering of volcanic eruptions. Nature,
395, 888-890, 1998.

Linde, A. T., Agustsson, K., Sacks, I. S. and Stefansson, R. Mecha-
nism of the 1991 eruption of Hekla from continuous borehole
strain monitoring. Nature, 365, 737-740, 1993.

Loughlin, S. C., Calder, E. S., Clarke, A. B., Cole, P. D., Luckett,
R., Mangan, M. T., Pyle, D. M., Sparks, R. S. J., Voight, B. and

Watts, R. B. Pyroclastic flows generated by the 25 June 1997
dome collapse, Soufriere Hills Volcano, Montserrat. In: Druitt, T.
H. & Kokelaar, B. P. (eds) The eruption of Soufriere Hills Vol-
cano, Montserrat, from 1995 to 1999. Geological Society, Lon-
don, Memoir 21, 211-230, 2002.

Mason, B. G., Pyle, D. M. and Oppenheimer, C. The size and fre-
quency of the largest explosive eruptions on Earth. Bulletin of
Volcanology (in press).

Matthews, A., Barclay, J., Carn, S., Thompson, G., Alexander, J.,
Herd, R. and Williams, C. Rainfall-induced volcanic activity on
Montserrat.  Geophysical  Research  Letters, 29,
10.1029/2002GL014863, 2002.

Melnik, O. and Sparks, R. S. J. Nonlinear dynamics of lava extrusion.
Nature, 402, 37-41, 1999.

Melnik, O. and Sparks, R. S. J. Modelling of conduit flow dynamics
during explosive activity at Soufriére Hills Volcano, Montserrat.
In: Druitt, T. H. and Kokelaar, B. P. (eds) The eruption of the
Soufriere Hills Volcano, Montserrat 1995 to 1999. Geological
Society, London, Memoir 21, 307-318, 2002.

Montserrat Volcano Observatory. Dome collapse and explosive activ-
ity, 12—15 July 2003. MVO Open File Report 04/01, 16 pp; 2004.

Morgan, M. G. and Keith, K. W. Subjective judgments by climate
experts. Environmental Science & Technology, 29, 468—476, 1995.

Neri, A. and Macedonio, G. Numerical simulation of collapsing
columns with particles of two sizes. Journal of Geophysical
Research, 101, 8153-8174, 1996.

Neuberg, J. Characteristics and causes of shallow seismicity in
andesite volcanoes, Philosophical Transactions of the Royal Soci-
ety Series A, 358, 1533—1546, 2000.

Newhall, C. G. Volcano Warnings, In: Encyclopaedia of Volcanoes
(Chief Editor H. Sigurdsson) Academic Press, San Diego,
1185-1197, 2000.

Newhall, C. G. and Hoblitt, R. P. Constructing event trees for volcanic
crises. Bulletin of Volcanology, 64, 3-20, 2002.

O’Hagan, A., Kennedy, M. and Oakley, J. E. Uncertainty analysis
and other inference tools for complex computer codes (with dis-
cussion). In: Bayesian Statistics 6 (eds J. M. Bernardo, J. O. Berger,
A. P. Dawid and A. F. M. Smith), pp. 503-524. Oxford: Oxford
University Press, 1999.

Oreskes, N., Schrader-Frechette, K. and Belitz, K. Verification, val-
idation, and confirmation of numerical models in the Earth Sci-
ences. Science, 263, 641-646, 1994.

Palmer, T. N. Predicting uncertainty in forecasts of weather and cli-
mate. Reports on Progress in Physics, 63, 71-116, 2000.

Papale,P. Strain-induced magma fragmentation in explosive erup-
tions. Nature, 397, 425-428, 1999.

Pyle, D. M. Forecasting sizes and repose times of future extreme
volcanic events. Geology, 26, 367-370, 1998.

Punongbayan, R. S., Newhall, C. G., Bautista, M. L. P, Garcia, D.,
Harlow, D. H., Hoblitt, R. P, Sabit, J. P. and Solidum, R. U. Erup-
tion hazard assessments and warnings, In: Fire and Mud.: eruptions
and lahars of Mount Pinatubo, Phillipines, C. G. Newhall, R. S.
Punongbayan, PHILVOLCS, Quezon City and University of Wash-
ington Press, Seattle, 67-85, 1996.

Rampino, M. R. Supereruptions as a threat to civilisations on Earth-
like planets. Icarus, 156, 562—-569, 2002.



Rubin, A. Propagation of magma-filled cracks. Annual Reviews of
Earth and Planetary Sciences, 23, 287-336, 1995.

Simkin, T. and Siebert, L. Volcanoes of the World: a Regional Direc-
tory, Gazetteer, and Chronology of Volcanism During the Last
10,000 Years. (Second edition). Geoscience Press, Tucson: 368
pp, 1994.

Slezin, Y. The mechanism of volcanic eruptions (a steady state
approach). Journal of Volcanology and Geothermal Research,
122, 7-50, 2003.

Sparks, R. S. J. Forecasting volcanic eruptions. Earth and Plane-
tary Science Letters, 210, 1-15, 2003.

Sparks, R. S. J. and Young, S. R. The eruption of Soufri¢re Hills Vol-
cano, Montserrat: overview of scientific results. In: Druitt, TH. &
Kokelaar, B. P. (eds) The eruption of Soufriere Hills Volcano,
Montserrat, from 1995 to 1999. Geological Society London Mem-
oir, 21, 45-69, 2002.

Sparks, R. S. J., Bursik, M. 1., Carey, S. N., Gilbert, J. S., Glaze, L.,
Sigurdsson, H. and Woods, A. W. Jolcanic Plumes. Chichester,
UK, John Wiley and Sons, 557 pp., 1997.

Swanson, D. A., Casadeall, T. J., Dzurisin, D., Malone, S. D., and
Weaver C. S. Predicting eruptions at Mount St. Helens, June 1980
through December 1982. Science, 221, 1369-1376, 1983.

Voight, B. and Cornelius, R. R. Prospects for eruption prediction in
near-real-time, Nature, 350, 695-698, 1991.

Voight, B. and Elsworth D. Instability and collapse of lava domes.
Geophysical Research Letters, 27, 1-4, 2000.

Voight, B., Sparks, R. S. J., Miller, A. D., Stewart, R. C., Hoblitt, R.
P, Clarke, A., Ewart, J., Aspinall, W., Baptie, B., Druitt, T. H., Herd,

SPARKS AND ASPINALL 373

R., Jackson, P, Lockhart, A. B., Loughlin, S. C., Lynch, L., McMa-
hon, J., Norton, G. E., Robertson, R., Watson, I. M. and Young S.
R. Magma flow instability and cyclic activity at Soufriere Hills
Volcano, Montserrat, B. W. 1. Science, 283, 1138-1142, 1999.

Wadge, G. A strategy for the observation of volcanism on Earth
from space. Philosophical Transactions of the Royal Society, Lon-
don, Series A, 361, 145-156, 2003.

Wadge, G., Jackson, P, Bower, S. M., Woods, A. W. and Calder, E.
S. Computer simulations of pyroclastic flows from dome collapse.
Geophysical Research Letters, 25, 3677-3680, 1998.

Watts, R. B, Herd, R. A., Sparks, R. S. J. and Young, S. R. Growth
patterns and emplacement of the andesite lava dome at the Soufriere
Hills Volcano, Montserrat. In: Druitt, T. H. and Kokelaar, B. P.
(eds) The eruption of the Soufriere Hills Volcano, Montserrat 1995
to 1999. Geological Society, London, Memoir 21, 115-152, 2002.

Weisenfeld, K. and F. Moss. Stochastic resonance and the benefits of
noise: from ice ages to crayfish and SQUIDS. Nature, 373, 33-36,
1995.

Woo, G. The Mathematics of Natural Catastrophes. Imperial College
Press, London, 292 pp., 1999.

Young, P. C., Parkinson, S. and M. J. Lees. Simplicity out of com-
plexity: Occam’s razor revisited. Journal of Applied Statistics, 23,
165-210, 2002.

R. S.J. Sparks, Department of Earth Sciences, University of Bris-
tol, Bristol BS8 1RJ, United Kingdom (Steve.Sparks@bristol.ac.uk)
W.P. Aspinall, Aspinall & Associates, 5, Woodside, Beaconsfield,
Buckinghamshire, United Kingdom (willy@aspinall.demon.co.uk)






