
Duality for Markov processes:
a Lie algebraic approach

Cristian Giardinà, Frank Redig
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Introduction

This book is about a systematic Lie algebraic approach to duality for Markov processes. In
this introduction, we explain in words what is duality, what are the fundamental concepts
in the algebraic approach to duality, and how they can help in building a solid basis to
find new dualities, and to apply duality in various contexts.

Duality

Duality in the theory of Markov processes refers to a way by which one can connect two
Markov processes X = {X(t) : t ≥ 0} (the process under study) on a state space Ω and a

process Y = {Y (t) : t ≥ 0} on a state space Ω̂ (the dual process) via a so-called duality

function D : Ω̂× Ω → R. The connection is expressed via expectations

Êy
(
D(Y (t), x)

)
= Ex

(
D(y,X(t))

)
which in words means the following: evolving the dual process and fixing the variable of
the original process has the same effect as evolving the original process and fixing the
variable of the dual process. This connection between the two processes becomes very
useful if the dual process is simpler and the functions D(y, ·) provide full information
about the process under study. We write the connection symbolically as

Y D−−→ X (1)

and think of it as a relation between two processes, parametrized by the duality function
D.

This notation immediately suggests natural questions such as: for a given D, which

processes can be connected to each other via D, i.e., which Y and X satisfy Y D−−→ X? Or,

for two given processes which are in a duality relation, Y D−−→ X, which are the possible
D that connect these processes? Finally, how does the duality relation compare to other
ways of connecting processes, such as intertwining, stochastic flows and coupling?

The use of duality

The main reason for looking for duality, i.e. a dual process and a duality function, is
simplification. There are many ways in which duality induces simplification. Let us
mention a few.

1. From continuous to discrete. We can connect a process X on a continuous state
space such as Rd to a much simpler “pure jump process” Y on a countable state

i
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space such as N. Sometimes the converse: from discrete to continuous can also be
a simplification, for instance the discrete system is stochastic and the continuous
process is a simple system of ODEs.

2. From many to few. In the context of interacting particle systems this is one of
the most important simplifications induced by duality. Well-chosen time-dependent
multivariate moments of order n in a system of many, possibly infinitely many
particles can be reduced to studying the motion of n dual particles. An example
of this is the fact the expected number of particles at time t > 0 in a system
of interacting particles can be computed from the initial configuration of particles
together with a single random walker. This has as a further consequence that one can
infer in a very simple manner the scaling limit of the particle system, via the scaling
limit of a single dual particle. E.g. if the single particle scales to Brownian motion,
then the macroscopic scaling limit of the particle system is the heat equation.

3. From non-equilibrium reservoirs to absorbing boundary sites. Interacting
particle systems are often used to model systems from non-equilibrium statistical
physics. In this setting, one uses systems which at the boundaries allow input and
output of particles with specific rates, which physically corresponds to putting the
system in contact with boundary reservoirs. When these reservoirs have different
parameters (such as temperature, chemical potential, etc.) then the system reaches
in the course of time a so-called “non-equilibrium steady state”. Steady state,
because it is a long time limit. Non-equilibrium because currents will flow from
one reservoir to another, and this means that the system is not invariant under
time-reversal, i.e., is not in equilibrium. In the study of such systems, duality has
been a very successful technique, because it allows to connect the non-equilibrium
system under study to a much simpler system where the reservoirs are replaced
by absorbing sites. As a consequence, moments of order n in the non-equilibrium
steady state can be expressed in terms of absorption probabilities of n dual walkers.
In some cases, for so-called “integrable systems” these absorption probabilities can
be computed in closed form. Even without closed form formulas for the absorption
probabilities of dual walkers, still the duality with the absorbing system gives a lot
of information on the structure of the non-equilibrium steady state.

4. From micro to macro. In statistical physics one wants to understand how macro-
scopic behavior arises from microscopic constituents. In interacting particle sys-
tems, the large scale behavior is often described by a partial differential equation
for macroscopic quantities such as the particle density. The rigorous derivation of
such macrosopic equations from microscopic dynamics became an area of research
called “hydrodynamic limits” (see e.g. [69], [146], [211]). Duality is useful in the
understanding of the macroscopic equation (or “hydrodynamic limit”), which can
be inferred from the scaling limit of a single dual particle. Duality is also useful in
the understanding of the fluctuations around the macroscopic equation, and in the
proof of the emergence and propagation of local equilibrium via the scaling limit
of a finite number of dual particles. If one can show duality with orthogonal dual-
ity functions, one can go further and study a hierarchy of fluctuation fields which
are microscopic analogues of “Wick powers” of the fluctuation field (see e.g. [7]).
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The approach of hydrodynamic limits via duality was pioneered in [66], and further
refined in [69].

5. Structure of invariant measures of infinite interacting systems. For inter-
acting particle systems, it is rarely the case that one can have a complete characteri-
zation of the set of invariant measures for an infinite system. Duality allows to study
the infinite system via a finite number of dual particles, and invariant measures can
be related to bounded harmonic functions of the dual process. If one can show that
all bounded harmonic functions are constants, e.g. via a successful coupling, then
one has control on the full structure of the set of invariant measures. This road
was followed in [167] for the symmetric exclusion process, and as we will see can be
followed for many other systems with duality.

6. Showing existence of processes. Duality can also be used to prove the existence
of interacting particle systems in infinite volume, see e.g. the martingale problem
approach of Holley and Stroock [130], or the construction of particle systems via
graphical representations [78]. The idea is that the dual process which exists be-
cause it is a finite or countable state space Markov process can be used to define
expectations of moments in the to-be-constructed process, which then can be de-
fined via these moments, see e.g. [69] for an illustration of this approach, and [70]
for a recent result showing existence via duality.

Besides the above listed applications of duality, which are the most relevant ones for the
context of our monograph, there are many applications in stochastic models of population
genetics [176], where one relates forward population models to backwards coalescents via
duality , superprocesses [81], where one uses duality to solve the basic martingale problem
showing the existence of the process, and stochastic partial differential equations [178]
where asymptotic behavior can be derived via the study of a finite dimensional dual.
In this book we focus application-wise on the context of statistical mechanics, i.e., non-
equilibrium steady states and hydrodynamic limits (in Chapters X, XI and XII).

Duality in the literature

We mention three important areas where duality plays a crucial role.

1. Interacting particle systems. Duality is one of the crucial techniques in the area
of interacting particle systems. It was already present in the foundational paper
of Spitzer [208], and pursued by Holley and Stroock [129]. Then it became one of
the main ingredients used in Liggett’s book [167]. In the context of hydrodynamic
limits duality was of fundamental importance in the approach outlined in the books
[66], [69], where coupling and duality are the crucial tools of the so-called correlation
functions approach (also called v-function approach) to hydrodynamic limits. For
recent reviews and developments of duality, including the pathwise approach, see
[214,215,217] and more analytic overview paper [136].

2. Mathematical population genetics. As mentioned already, duality also plays a
crucial role in models of mathematical population genetics (see [144], [143] for an
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introduction into this vast area), such as Wright-Fisher diffusion, Moran model, step-
ping stone model, and many extensions and generalizations of such models [82], [62].
In the literature related to mathematical population genetics, one usually studies
the duality between the forward process, describing genetic traits (alleles) forward in
time, and backwards coalescents. In this literature, this form of duality and various
refinements of coalescents (such as Λ-coalescents, Beta-coalescents) and ancestral
graphs have been developed to go beyond the classical Kingman’s coalescent and
describe the influence of mutation and selection.

3. Quantum spin chains, exactly solvable models. In the context of what is at
present referred to as “integrable probability” [212], i.e., the analysis of stochastic
models which are exactly solvable by matrix ansatz [73, 74], Bethe ansatz [32, 58,
63, 135], quantum inverse scattering or other methods such as the Yang-Baxter
equation [60], duality usually accompanies such models and plays an important role
in their solvability. Recognizing the generator of a model as the (transposed) of the
Hamiltonian of a quantum spin chain is often useful to implement methods from
integrable quantum spin chains.

The original work of [203] exploits the connection between the symmetric exclusion
process and the XXX quantum spin chain. The first paper showing a connection
between duality and “non-abelian symmetries” is in fact [203]. This approach also
leads to dualities in the context of ASEP [204], using quantum deformation of
su(2) Lie algebra. This approach was mostly based on recognizing the connection
between the Markov generator and the Hamiltonian of a quantum spin system.
Studying then the operators commuting with this Hamiltonian (the “non-abelian
symmetries”) leads naturally to the identification of duality and duality functions.
Papers in the physics literature relating Markov processes to quantum Hamiltonians,
and then subsequently studying these Hamiltonians with physics methods (such as
path integrals) are multiple. In particular, the Doi-Peliti formalism of creation and
annihilation operators associated to reaction-diffusion system is well developed, see
e.g. [1, 186].

After the appearance of [203], there were a few mathematical papers further ex-
ploring this line of thought in the context of models associated to su(2) in spin 1/2
representation [216].

Summary of the Lie algebraic approach

Here we provide an informal summary of the main ideas in this book.

The relation Y D−−→ X introduced in (1) can be replaced by a similar relation between

the Markov generators of the two processes, here denoted L̂Y and L. In the finite or
countable state space setting the generators as well as the duality function simply become
matrices, and the duality relation reads

L̂D = DLT (2)

where T denotes transposition. Indeed, the Markov generator fully encodes the Markov
process, and therefore, a duality relation in most cases is derived from a similar relation
between the generators.
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The relation (2) is a linear relation between two matrices (in the finite state space
setting), and can also be rewritten as

(L̂⊗ I)D = (I ⊗ L)D

In this form, the relation can be formulated in a very general setting, i.e., beyond matrices
and even beyond duality “functions”. It is now important to realize that besides relating
L̂ to L, the duality function D will relate many more operators to other operators. More
precisely, there is a family of operators Â, and a family of operators A such that

(Â⊗ I)D = (I ⊗ A)D (3)

and this family automatically forms an algebra, i.e., is closed under addition and multi-
plication. Moreover, one immediately sees from (3) that for a given pair Â, A such that

Â
D−−→ A one can generate new duality functions D from operators Ŝ commuting with Â

or from operators S commuting with A. These simple but very useful properties of the

relation
D−−→, and their applications, will be explained in much detail in Chapter I.

In other words, instead of only relating two Markov generators, the duality function D
relates actually two algebras of operators, and from commuting operators (“symmetries”)
new duality functions can be generated from a given one.

In many cases of relevance in interacting particle systems, these operator algebras in
turn are nothing but two intertwined representations of a Lie algebra, and in a sense to
be described precisely in later chapters, the duality function is a kernel of the intertwiner
between the two representations. In other words, the duality of Markov processes is
nothing but a manifestation of, and a corollary of two intertwined representations of a
given Lie algebra.

Moreover, having identified the Markov generator and its dual as two representations
of an element of a Lie algebra (or more precisely of the universal enveloping algebra of a
Lie algebra) immediately gives operators with which the generator (or the dual generator)
commutes. With these commuting operators, from a given duality function new duality
functions can be generated. In this way, for two given processes with duality we can
also find several new duality functions, including e.g. orthogonal polynomials. To have
a duality to “start from” is usually straightforward in the case of self-duality, where a
simple D to start with is the matrix with elements the inverse of the reversible measure,
as can be seen via detailed balance. In this sense, duality can be viewed as a non-diagonal
generalization of detailed balance.

Realizing these facts goes far beyond a mathematically esthetic consideration. It
means that in the search for dualities between Markov processes, or more generally in the
search for processes which are related by duality, it is natural to start from Lie algebraic
considerations and construct Markov generators from Lie algebra elements in a given
representation. We will see that often the Markov generator is naturally connected to the
Casimir element of a Lie algebra. The prototype examples will be the (partial) exclusion
process which is related to the Lie algebra su(2) corresponding to the compact Lie group
SU(2), and the inclusion process which in related to the Lie algebra su(1, 1) corresponding
to the non-compact Lie group SU(1, 1). However, the property of being Markov generator
is dependent on the representation. Indeed, in the matrix setting it means non-negative
off-diagonal elements and zero row sums, which is clearly dependent on the chosen basis.
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Using the Lie algebraic approach

The insights discussed in the previous paragraph lead naturally to the following.

1. Families of processes and their duals. Markov processes and their duals come
in families, associated to Lie algebras and their representations. This leads often to
a unification of various a priori unrelated dualities, but also to many new dualities,
related to varying a parameter labeling a representation (such as the spin value).

2. Identification of symmetries of the generator. Identifying the Markov genera-
tor as an element of the universal enveloping algebra of a Lie algebra naturally leads
to the identification of symmetries, i.e., operators that commute with the generator.
This is simply because Lie algebra generators come with commutation properties.

3. Finding new duality functions via symmetries. Symmetries applied to a
duality function lead to new duality functions. In this way starting from a simple
duality function, one can construct more useful (e.g. orthogonal) duality functions
by acting with symmetries.

4. Construction of new processes. The approach of item 2 can also be used con-
structively, i.e., one can construct Markov processes from Lie algebra elements and
then built in the construction are symmetries and associated dualities. In the setting
of particle systems where particles hop over edges, one usually starts from a central
element (such as the Casimir element) and then makes this into a generator acting
on the two variable associated to an edge by using a co-product and a well-chosen
representation (see e.g. [49], [48] for such constructions).

An overview of the dualities and the “families” of Markov processes associated with Lie
algebras which we infer via this method can be found in the Appendix C. The method also
links processes which at first sight are unrelated, such as the symmetric inclusion process
to the Kipnis-Marchiori-Presutti (KMP) process, and independent random walks to the
Ginzburg Landau process with a quadratic potential. Once this link is provided via the
Lie algebraic approach, i.e., by identifying the Lie algebraic form of the Markov generator,
usually one obtains as a byproduct a whole one parameter family of processes related by
duality, where the parameter labels the representation. E.g. the original KMP model
( [145]) is based on a uniform redistribution of mass along edges of a graph. Once one
realizes its underlying Lie algebraic form, one recognizes that it is related to the symmetric
inclusion process, which carries a parameter α, and then one obtains automatically that
mass redistribution models based on the Beta distribution with parameters (α, α) share
all the duality properties of the original KMP model.

Choices made in this book

As already pointed out, duality is a broad subject and has a broad range of applications.
We have chosen to limit the area which we cover in the book in the following way.

1. We treat only dualities related to classical Lie algebras, i.e., we do not go into the
very exciting field of the processes associated to the q-deformed univeral enveloping
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algebras (quantum Lie algebras). This would require another monograph. The du-
alities which come from classical Lie algebras are related to systems which satisfy
detailed balance, and in the construction one can start from construction of the
“singe edge” dynamics, which is then copied along the edges of a graph. I.e., these
systems satisfy dualities in arbitrary graphs, whereas the dualities in their asym-
metric q-deformed counterparts are necessarily limited to one-dimensional chains
with nearest neighbor jumps.

2. We restrict to single-type particle systems, i.e., we do not consider higher rank Lie
algebras that are associated to multi-type particle systems (e.g. su(n) is associated
to n− 1 types of particles with (partial) exclusion) [17,150].

3. We focus on simplicity, especially in the chapters on macroscopic fields, where we
illustrate the use of duality in the setting of hydrodynamic limits. Here in principle,
at the cost of more technicalities one can go much further (as already illustrated in
the monograph [69]), but this would go beyond our aim of exposing the method, so
we restrict to simple applications but providing enough ideas to convince the reader
that there is also much beyond this.

4. We focus on interacting particle systems, in view of applications in non-equilibrium
statistical physics. This means that we do not go into the very deep and well-
developed field of dualities in mathematical population genetics. We do from time to
time use the simplest examples from this area to illustrate duality via the Heisenberg
algebra. One of the consequences is also that we will have dual processes conserving
the number of particles. Many interesting systems, e.g. modelling reaction-diffusion
systems can in principle be treated along the same paths.

5. We limit the use of Lie theory to what is strictly needed, i.e., we choose not to
treat very interesting aspects of Lie representation theory such as Schur duality,
root systems, Dynkin diagrams. This shows that to become familiar and use the
method presented in this book in the context of interacting particle systems, it is
not at all necessary to become a specialist in Lie theory. In particular we do not
assume any prior knowledge of Lie theory of the reader. Appendix B is devoted to
the basic background in Lie theory needed for the book.

Intended audience

The book is written mainly for graduate students and researchers interested in the theory
of Markov processes. The specific areas that we focus on are interacting particle systems
and non-equilibrium statistical physics. People with an interest in those areas will directly
find in the book several model and systems of immediate interest and application. How-
ever, the scope of the theory of duality that is developed in the book is larger and aimed
to be used by mathematicians, physicists and biologists dealing with Markov processes in
several other contexts (e.g. integrable systems theory, representation theory, stochastic
partial differential equations, branching processes, coalescence, population dynamics, ...).

The target audience is thus first of all researchers (from beginners to experienced ones)
who want to learn duality for Markov processes and use it in their own area. On the other
hand, chapter I (which is an introduction to the concept of duality and the Lie algebraic
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approach) and a selection of later chapters (e.g. chapter II and III that describe several
dualities for independent random walkers) can very well be used to teach a course at late
undergraduate or graduate level.

Content outline

We close this introduction by giving a panoramic view of the structure of the book and
providing a succinct description of the content of each chapter. This allows the reader
to construct its own reading path, we suggest two possibilities at the very end (one for
researchers and one for graduate students). The reader may select the chapters he is
interested in, it is not necessary to read all the chapters sequentially.

1. The material is organized into twelve Chapters and three Appendices. Appendices
on Markov process theory (Appendix A) and Lie theory (Appendix B) aim at making
the book as self-contained as possible. Some acquaintance with the theory of Markov
processes, semigroups and generators in the spirit of [167] is desirable. On the
contrary, acquaintance with Lie theory is not required. All the Lie algebraic concepts
used are contained in the book and are gradually introduced when needed, whereas
the necessary background is contained in Appendix B. The reader who wants to
apply some of the new dualities can find a systematic overview in Appendix C.

2. Each chapter has an Abstract which describes the essential content of the chapter,
and a closing section of Additional notes pointing to related literature and pointing
to open research problems. Each chapter is as much self-contained as possible. The
reader can e.g. choose to go straight to the chapters about particle system, i.e., he
may skip at first reading the general material of Chapter I.

3. As for the content, a road map is the following. We introduce and develop the alge-
braic approach to duality theory considering three basic examples from the theory
of interacting particle systems: independent random walkers, the symmetric exclu-
sion process and the symmetric inclusion process. We have chosen these three basic
examples because they are associated to three classical Lie algebras: the Heisenberg
algebra, the su(2) algebra and the su(1, 1) algebra. We also provide applications
in non-equilibrium statistical physics such as the study of non-equilibrium steady
states via duality and the study of hydrodynamic limits and fluctuation fields via
duality.

4. More specifically, the content of each chapter is coincisely described as follows.

• Chapter I provides the basics of the algebraic approach to duality. It starts
with two historical examples and then it introduces the definition of semigroup
duality and of generator duality. The key principles of the algebraic approach
(i.e. change of representation, symmetries, intertwining) are discussed by con-
sidering several contexts of increasing generality: Markov chains with finite
state space, bounded operators in an Hilbert space, bounded operators in a
Banach space.
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• Chapter II and Chapter III develop the first main example process, that is
the duality for independent random walkers. We spend quite some space and
time on independent random walkers and related processes of independent
particles. This material serves as the simplest context in which our approach
can be explained. This includes both the Lie algebraic structure of the Markov
generator, the various (self)-duality functions, the generating function method
and intertwining. Some elements of ergodic theory, in particular the structure
of invariant measures, are discussed as a first application of duality.

• Chapter IV and Chapter V introduce a second important example, which is
then much studied in later chapters. They deal, respectively, with the duality
properties of the inclusion process and with the duality properties of the Brow-
nian energy process. These two processes share the same algebraic structure,
as both are related to the Casimir element of the su(1, 1) Lie algebra. The first
(inclusion process) arises when looking at this element in a discrete represen-
tation in terms of matrices, the second (Brownian energy process) arises in a
continuous representation in terms of differential operators.

• Chapter VI treats the duality of the third example, namely the symmetric
partial exclusion process. The process generator is now in direct relation with
the Casimir of the su(2) Lie algebra. As this process, especially the version
with at most one particle per site, has been discussed in several textbooks,
here we focus mostly on the aspects which are directly related to the algebraic
description, such as the additive structure on ladders and the intertwining
between different partial exclusion processes.

• Chapter VII contains the dualities of several other models. Via the Lie al-
gebraic approach, we show that there is a large class of processes naturally
connected to the three basic examples of previous chapters. This class includes
interacting Markov diffusion processes such as the Ginzburg-Landau model
with quadratic interaction potential, models of mass redistribution such as the
Kipnis-Marchioro-Presutti (KMP) process, models from kinetic theory such as
the Kac model, models from population genetics such as the Wright-Fisher
diffusion and the Moran model.

• Chapter VIII extends the previous duality results in the direction of orthogonal
polynomials. Using the Lie algebraic structure and considering unitary equiv-
alent representations, orthogonal polynomials arise as novel duality functions,
also useful for several applications. In fact, it is shown how the orthogonal du-
alities are produced via a Gram-Schmidt orthogonalization procedure acting
on the triangular dualities.

• Chapter IX highlights the link between the self-duality property of the particle
processes and the property of consistency. This link emerges from a symmetry
(the so-called annihilation operator) which easily follows from the algebraic
perspective. A combinatorial interpretation and several applications of consis-
tency are discussed.

• Chapter X illustrates the use and application of duality for non-equilibrium
systems. This is first explained in the simple case of independent random
walkers with reservoirs and then developed for the other main processes.



x INTRODUCTION

• Chapter XI is focused on the use of duality to study macroscopic fields. We
discuss how the dynamics of one dual particle is related to the hydrodynamic
limit, the dynamics of two dual particles is related to the density fluctuation
field, and the dynamics of n dual particles is related to the propagation of local
equilibrium. Higher-order hydrodynamic fields are also introduced and appli-
cations to the Boltzmann Gibbs principle via orthogonal polynomial duality
are also given.

• Chapter XII studies the interplay between duality and integrability in a con-
crete family of integrable processes with su(1, 1) symmetry. These are the
harmonic processes related to integrable spin chains. It shows how the com-
bination of duality and integrability allows to establish properties which are
rarely available, such as a full explicit description of the non-equilibrium steady
state arising in the boundary-driven set-up.

5. In view of the description of the material given above, we suggest as a reading
path for graduate students the chapters from I to VI, which are rather introductory
and should be readable for everyone with a basic background on Markov processes.
Researchers may proceed with the remaining chapters from VII to XII, which offer
a perspective on the more recent advances of duality and its many applications
to several problems in interacting particle systems and non-equilibrium statistical
physics.



Chapter I

Basics of the algebraic approach

Abstract: In this chapter, after recalling two historical examples, we introduce
the notion of duality between two Markov processes. We define both semigroup
duality and generator duality, followed by a discussion on their reciprocal rela-
tion. We then consider the notion of duality between two algebras of operators
in a more general context, i.e. beyond Markov processes. We proceed by in-
creasing level of generality: first we treat algebras of matrices, then algebras of
bounded operator on a Hilbert space. Finally we give the abstract formulation
of duality between two algebras which arises by considering two intertwined
representations. The added value of this abstract formulation is that duali-
ties of Markov processes can be understood from algebra representation theory.
As an example, we show how this works for the duality between the Wright-
Fisher diffusion and the Kingman’s coalescent block counting process, which is
explained using two representations of the Heisenberg Lie algebra.

I.1 Two starting examples

We start with two historical and important examples of duality between Markov processes,
namely Siegmund duality between reflected and absorbed Brownian motion and moment
duality between the Wright-Fisher diffusion and the Kingman’s coalescent block counting
process.

Reflected and absorbed Brownian motion

This first example of duality goes back to Lévy [163], and in nowadays terminology is called
“Siegmund duality between reflected and absorbed Brownian motion”. Let {X(t) : t ≥ 0}
denote Brownian motion on [0,∞), reflected at the origin, and {Y (t) : t ≥ 0} denote
Brownian motion on [0,∞) absorbed at the origin. The transition densities of these
processes are explicit and given by

pRt (x, y) =
1

2
√
2πt

(
e

(x−y)2

2t + e
(x+y)2

2t

)
pAt (x, y) =

1

2
√
2πt

(
e

(x−y)2

2t − e
(x+y)2

2t

)
(I.1)

1
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for x, y ≥ 0, t ≥ 0. Let us denote by Px the distribution of trajectories of {X(t) : t ≥ 0}
starting from X(0) = x and P̂y the distribution of trajectories of {Y (t) : t ≥ 0} starting
from Y (0) = y. One then has the following relation between these two processes which
follows from explicit computations, using (I.1),

Px(X(t) ≥ y) = P̂y(Y (t) ≤ x) (I.2)

for all x, y ≥ 0, t ≥ 0. Denote Ex expectation in the process {X(t) : t ≥ 0} starting from

X(0) = x, Êy expectation in the process {Y (t) : t ≥ 0} starting from Y (0) = y, and
D(y, x) = 1l{y≤x} where 1lA denotes the indicator of the set A. Then we can rewrite (I.2)
as follows. For all x, y ≥ 0 and for all t ≥ 0 we have

Ex (D(y,X(t)) = Êy (D(Y (t), x)) (I.3)

Such a relation between two Markov processes is called “duality with duality function
D”. Equivalently, we say that the processes {X(t) : t ≥ 0} and {Y (t) : t ≥ 0} are dual to
each other, with duality function

D(y, x) = 1l{y≤x}. (I.4)

The duality function D(y, x) = 1l{y≤x} is called Siegmund duality [206]. This function
appears often in the context of monotone processes, i.e., processes for which

Px(X(t) ≥ y)

is non-decreasing as a function of x, for all y. E.g., Siegmund duality appears in birth
and death processes, as well as in interacting particle systems and is always related to the
preservation of some (partial) order.

Wright-Fisher diffusion and Kingman’s coalescent

A second well-known historical example is “moment duality” between the Wright-Fisher
diffusion and the Kingman’s coalescent block counting process. Let {X(t) : t ≥ 0} denote
the diffusion process on [0, 1] which solves the stochastic differential equation

dX(t) =
√
X(t)(1−X(t))dW (t) (I.5)

where {W (t) : t ≥ 0} denotes standard Brownian motion. This process is one of the
classical processes appearing in mathematical population genetics. In that area it models
the fraction of individuals of type 1 in a population of two (allelic) types which is subject
to random genetic drift, in the limit of large total population size (see [82] for more
background). With probability 1 this process is eventually absorbed either at 0 or at 1,
which corresponds to fixation of the allelic type.

To introduce the corresponding dual process, let {Y (t) : t ≥ 0} denote the Markov
jump process on the natural numbers (including zero, denoted N), which jumps between
y and y − 1 at rate 1

2
y(y − 1). In this process the states 0 and 1 are absorbing, and from

any initial state y > 1, the process only jumps down. This jump process is called the
Kingman’s coalescent block counting process. Let us denote by Ex expectation in the



I.1. TWO STARTING EXAMPLES 3

Wright-Fisher diffusion starting at x, and Êy denote expectation in the process {Y (t) :
t ≥ 0} starting at y ∈ N. Then we have the relation

Ex(X(t)y) = Êy(xY (t)) (I.6)

which can also be rewritten as

Ex (D(y,X(t))) = Êy (D(Y (t), x)) (I.7)

where now
D(y, x) = xy. (I.8)

The relation (I.7) is called duality between the Kingman’s coalescent block counting pro-
cess and the Wright-Fisher diffusion, and the duality function (I.8) is called the “moment
duality function”. We will come back to this example as a natural illustration of dual-
ity via a change of representation of an underlying algebra (in this case the Heisenberg
algebra, see Section I.5). The duality (I.7) provides full information about X(t), i.e., all
moments of X(t) can be obtained via the study of the much simpler discrete process Y (t).

The infinitesimal generator of the process {X(t) : t ≥ 0} on C2[0, 1] functions equals

LXf(x) =
1

2
x(1− x)

d2f

dx2
(x)

whereas the infinitesimal generator of the jump process {Y (t) : t ≥ 0} reads, for f : N → R

LY f(y) =
1

2
y(y − 1)(f(y − 1)− f(y))

The duality relation for expectations (I.7) is then a consequence of the “generator duality”

(LXD(y, ·))(x) = (LYD(·, x))(y) (I.9)

that can be easily verified. I.e., the action of LX on the x-variable is the same as the
action of LY on the y-variable:

1

2
x(1− x)

(
d2(xy)

dx2

)
(x) =

1

2
y(y − 1)

(
xy−1 − xy

)
.

Let us give two simple applications of this duality, computing the fixation probabilities
and the heterozygosity. First, because in the Kingman’s coalescent block counting process
1 is an absorbing state, we have:

Ex(X(t)) = ExD(1, X(t)) = Ê1D(Y (t), x) = D(1, x) = x

which implies also that the fixation probabilities are given by limt→∞ Px(Xt = 1) = x =
1− limt→∞ Px(Xt = 0). Similarly, for the second moment:

Ex(X(t)2) = ExD(2, X(t)) = Ê2D(Y (t), x)

= e−tD(2, x) + (1− e−2t)D(1, x)

= e−tx2 + (1− e−t)x

where the third equality follows from the fact that in the dual process Y (t), starting from
intial state 2, the rate to move down to one is equal to 1, and 1 is an absorbing state. As
a consequence, we obtain the heterozygosity at time t ≥ 0

Ex
(
X(t)(1−X(t))

)
= x(1− x)e−t
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I.2 Semigroup duality and generator duality

We now define the notion of duality and provide some basic properties. Let {X(t) : t ≥ 0}
and {Y (t) : t ≥ 0} denote two Markov processes on state spaces Ω, resp. Ω̂. We think of
{X(t) : t ≥ 0} as “the process under study”, and {Y (t) : t ≥ 0} as “the dual process”.
Usually, the existence of the dual process is useful because it is “a simpler process” yielding
relevant (ideally full) information on the process {X(t) : t ≥ 0}. Of course, the distinction
between the process and the dual process is not relevant for the mathematical definition,
which is completely symmetric in both processes.

We denote Px the path space measure of {X(t) : t ≥ 0}, starting at x ∈ Ω, with

corresponding expectation Ex, and P̂y the path space measure of {Y (t) : t ≥ 0}, starting
at y ∈ Ω̂, with corresponding expectation Êy.

DEFINITION I.1 (Semigroup duality). Let D : Ω̂× Ω → R denote a measurable function.
We say that D is a duality function for duality between the processes {X(t) : t ≥ 0} and

{Y (t) : t ≥ 0} if for all x ∈ Ω, y ∈ Ω̂ and t ≥ 0, we have

Ex(D(y,X(t))) = Êy(D(Y (t), x)) (I.10)

where it is implicitly assumed that the expectations are well-defined, i.e., the functions of
which we take expectations in (I.10) are integrable. If the processes {X(t) : t ≥ 0} and
{Y (t) : t ≥ 0} are the same in distribution, then we call (I.10) self-duality.

In case the duality functions are in the domain of the infinitesimal generator, we have
the notion of “generator duality”, which is defined as follows.

DEFINITION I.2 (Generator duality). Let LX denote the generator of the process {X(t) :
t ≥ 0} and LY the generator of the process {Y (t) : t ≥ 0}. Let D : Ω × Ω̂ → R be
a measurable function, such that D(y, ·) is in the domain of LX and D(·, x) is in the
domain of LY . We then say that D is a duality function for generator duality between the
processes {X(t) : t ≥ 0} and {Y (t) : t ≥ 0} if for all x ∈ Ω, y ∈ Ω̂, we have

(LYD(·, x)) (y) = (LXD(y, ·)) (x) (I.11)

In case the state spaces of the process and its dual are finite, the generators are
matrices, and also the duality function is a matrix, and the defining equality for generator
duality can then be rewritten in matrix form as

LYD = DLTX (I.12)

where the superscript T denotes the transposed. Indeed, in that case we can rewrite (I.11)
in terms of matrix elements of the generators LY , LX as follows∑

y′∈Ω̂

LY (y, y
′)D(y′, x) =

∑
x′∈Ω

LX(x, x
′)D(y, x′)

which is exactly the element-wise version of (I.12). Starting from (I.12), one can iterate,
and obtain

(LY )
nD = D(LTX)

n
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for all n ∈ N, and because the semigroups are simply the matrix exponentials SX(t) =∑∞
n=0

tn

n!
LnX (and similarly for SY (t)), we obtain

SY (t)D = DSX(t)
T (I.13)

which is exactly (I.10)
In the following theorem we give implications between generator duality and semi-

group duality in a broader context. The subtleties start to arise when the generators are
unbounded operators. In order to explain the problem, and formulate a general theorem,
we need some additional notation. We denote the semigroup of the process {X(t) : t ≥ 0}
by

(SX(t)f)(x) = Exf(X(t))

and similarly (SY (t)f)(y) = Êyf(Y (t)). The Banach space BX on which this semigroup is
acting as a contraction semigroup differs from case to case. In the compact metric space
setting, this space is typically the set of continuous functions. In the locally compact set-
ting, it can be the space of continuous functions vanishing at infinity, bounded continuous
functions, or an Lp space w.r.t. an invariant measure.

We recall that the dense domain DX ⊂ BX of the generator LX is the set of functions
such that the limit

lim
t→0

Exf(X(t))− f(x)

t
= LXf(x) (I.14)

exists in the norm of BX .
We can then introduce the contraction semigroups on the tensor product space BY⊗BX

equipped with a suitable norm

SY (t)⊗ I and I ⊗ SX(t) (I.15)

where I denotes the identity operator. Here we remind the notation of tensor product
of operators. If A : BY → BY is a linear operator and B : BX → BX is another linear
operator, then A⊗B : BY ⊗ BX → BY ⊗ BX is a linear operator defined via

(A⊗B)(u⊗ v) = Au⊗Bv, u ∈ BY , v ∈ BX

and extended to linear combinations of tensors by linearity.
The choice of the norm on the tensor product space should be such that the two

semigroups in (I.15) are contraction semigroups. In the case BX and BY are Hilbert
spaces, this norm is unique but in the Banach space case there are several choices [196].
We further denote by DY , resp. DX , the domains of their generators, which are dense
subsets of BY ⊗ BX . In order not to overload notation, we agree that if not strictly
needed, we replace SY (t) ⊗ I by the simpler SY (t), implicitly assuming that it works on
the y-variable only. Notice that when f ∈ DX , then ψ(x, y) = f(x) is in the domain DX

but other elements not of tensor form will be in DX as well. Also notice that the action
of the generator of I ⊗ SX(t), resp. SY (t)⊗ I is always I ⊗ LX , resp. LY ⊗ I.

THEOREM I.3. Let LX denote the generator of the process {X(t) : t ≥ 0} and LY the

generator of the process {Y (t) : t ≥ 0}. We assume that D : Ω̂× Ω → R is such that for
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all x ∈ Ω we have D(·, x) ∈ DY and for all y ∈ Ω̂ we have D(y, ·) ∈ DX . Then we have
that semigroup duality implies generator duality, i.e., if for all x, y

(SX(t)D(y, ·)) (x) = (SY (t)D(·, x)) (y) (I.16)

then we have (I.11).
In the other direction, if we assume that for all t ≥ 0

(SY (t)⊗ I)D ∈ DX and (I ⊗ SX(t))D ∈ DY (I.17)

then we have that generator duality implies semigroup duality, i.e., (I.11) implies (I.16).

PROOF. If (I.16) holds then we have for all t > 0, x ∈ Ω, y ∈ Ω̂

SX(t)− I

t
D(y, x) =

SY (t)− I

t
D(y, x) .

Taking the limit t → 0 and using the assumption D(·, x) ∈ DY and D(y, ·) ∈ DX for all
x, y, we arrive at (I.11).

To prove the second statement of the theorem, we start from the obvious identity
(which is a consequence of Fubini’s theorem)

(SY (t)⊗ I)(I ⊗ SX(s))D(y, x) = ((I ⊗ SX(s))(SY (t)⊗ I)D(y, x)

If the assumption (I.17) holds, we can now take the derivative at s = 0 of this identity,
and obtain

SY (t)LXD = LXSY (t)D (I.18)

Notice that we can interchange (SY (t)⊗ I) with the derivative d/ds because (SY (t)⊗ I)
is a contraction semigroup on the tensored space (and hence continuous). Indeed, by
assumption

(I ⊗ SX(s))− I ⊗ I

s
D

converges, as s→ 0, in the norm of the tensored space, to

(I ⊗ LX)D

and as (SY (t)⊗I) is a bounded operator, the limit s→ 0 and SY (t)⊗I can be exchanged:

(SY (t)⊗ I)

(
lim
s→0

(I ⊗ SX(s))− I ⊗ I

s
D

)
= lim

s→0
(SY (t)⊗ I)

(
(I ⊗ SX(s))− I ⊗ I

s

)
D

On the other hand, by assumption (I.17), (SY (t)⊗ I)D is in DX , hence(
(I ⊗ SX(s))− I ⊗ I

s

)
(SY (t)⊗ I)D

converges in the norm of the tensored space to (I ⊗ LX)((SY (t) ⊗ I)D). From (I.18) we
will now prove semigroup duality. Define u(x, y, t) = (SY (t) ⊗ I)D(y, x) and v(x, y, t) =
((I ⊗ SX(t))D)(y, x). We have, by the domain assumptions, and generator duality

d

dt
u(x, y, t) = SY (t)LYD(y, x) = SY (t)LXD(y, x) = LXSY (t)D(y, x) = LXu(x, y, t)

(I.19)
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and, by the definition of the generator

d

dt
v(x, y, t) = LXv(x, y, t) (I.20)

Now, fixing y, we have that both u(x, y, t) and v(x, y, t) in (I.19), resp. (I.20) are solutions
of the differential equation

d

dt
ψ(x, t) = LXψ(x, t) (I.21)

Given the initial condition, the solution of (I.21) is unique and given by ψ(x, t) =
SX(t)ψ(x, 0), for ψ(x, 0) ∈ DX . Since we have u(x, y, 0) = v(x, y, 0), we conclude
u(x, y, t) = v(x, y, t) for all t ≥ 0.

In the following proposition we collect a number of cases in which generator duality
implies semigroup duality.

PROPOSITION I.4. Generator duality implies semigroup duality in the following cases

1. The dual process or the original process has a finite state space.

2. The generators of the original and dual processes are both bounded operators.

PROOF. The second item is an immediate extension of the case where both processes have
finite state space, i.e. the argument that (I.12) is equivalent to (I.13) via matrix exponen-
tiation extends to bounded operators. For the first item, let us consider the case where the
process Y is a finite state space Markov chain. Then LYD(y, ·) is a finite sum, and there-
fore it can always be interchanged with SX(t) (by linearity), i.e., SX(t)LYD = LY SX(t)D.
From here we can then further proceed as in the proof of Theorem I.3.

I.3 Dualities, symmetries and intertwinings for finite

Markov chains

In this section, we assume that the Markov process X := {X(t) : t ≥ 0} as well as
Y := {Y (t) : t ≥ 0} both have finite state spaces. As we saw before, we then automatically
have the equivalence between generator and semigroup duality. We can then (without
technicalities related to e.g. domains of unbounded operators) explain the basic principles
relating dualities and symmetries, as well as dualities and intertwinings. In words, these
principles are formulated as follows.

1. Self-duality and Symmetry. Reversibility of a Markov process and the associated
detailed balance relation is the simplest instance of self-duality: we call this “cheap”
self-duality. Non-trivial self-duality can be generated if the process has a symmetry,
i.e. an operator commuting with the Markov generator. We obtain the new self-
duality from the cheap one by acting on it with the symmetry. If the symmetry is
in kernel operator form w.r.t. the reversible measure, then the corresponding kernel
is a self-duality. Finally to every self-duality function corresponds a symmetry by
considering the corresponding kernel operator.
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2. Duality and Symmetry. Stationarity of a Markov process is the simplest instance of
duality: from a stationary measure one can construct a cheap duality between the
process and its reversed process. Similarly to item 1, acting with a symmetry one
obtains a non-trivial duality between the process and its time-reversed process.

3. Duality and Intertwining. This is a generalization of the symmetry principle stated
in the previous items. Suppose one has an intertwiner Λ1,2 linking two Markov
processes X1 and X2. Assume moreover that the process X2 is dual to a Markov
process X3 with duality function D2,3. Then it is possible to produce a new duality
relation between the processes X1 and X3. The duality function is obtained as
D1,3 = Λ1,2D2,3.

We now explain each of these principles.

Self-duality and symmetry

We start with self-duality. We remind the reader that in the whole of this section we
assume that the Markov processes considered are continuous-time Markov chains with a
finite state space, and as a consequence generators (and also duality functions) are finite
matrices indexed by the finite state space Ω. For a generator matrix L indexed by the
finite state space Ω, we denote its matrix elements by L(x, x′), x, x′ ∈ Ω. We first define
the notion of reversible measure.

DEFINITION I.5 (Reversible Measure). Let {X(t) : t ≥ 0} be a finite state space Markov
process with generator L. A reversible measure (or detailed balance measure) is a map
M : Ω → (0,∞) such that the detailed balance relation

M(x)L(x, x′) =M(x′)L(x′, x) (I.22)

holds for all x, x′ ∈ Ω.

As the reader might notice, we assume that M(x) > 0 for all x ∈ Ω which in the finite
case amounts to irreducibility of the Markov chain, and therefore is not a substantial loss
of generality. Moreover, remark that we do not assume that M is a probability measure.
This is in view of later chapters, where we will consider countable infinite settings where
we need a reversible σ-finite measure such as the counting measure.

As we will see below, the existence of a reversible measure implies self-duality. Next
we define the notion of symmetry.

DEFINITION I.6 (Symmetry). Let {X(t) : t ≥ 0} be a finite state space Markov process
with generator L. A matrix S indexed by the finite state space Ω is a symmetry of L if it
commutes with L, i.e.,

[S, L] = SL− LS = 0 (I.23)

More generally, for a matrix A indexed by the finite state space Ω (non necessarily
a Markov generator), we define S to be a symmetry of A if it commutes with A. For a
given matrix the set of symmetries is closed under matrix addition and multiplication.

In the following theorem we explain the relation between self-duality and symmetry.
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THEOREM I.7 (Self-duality and symmetry). Let {X(t) : t ≥ 0} be a finite state space
Markov process with generator L. Then we have the following

1. Existence of a “cheap self-duality” made from the reversible measure. If M is a
reversible measure then

D(x, x′) =
1

M(x)
δx,x′ (I.24)

is a self-duality function. Here δx,x′ denotes the Kronecker delta.

2. Symmetries produce new self-duality functions from a given one. If D is a self-
duality function then we have the following. If S is a symmetry of L, then SD and
DST are self-duality functions as well.

PROOF. For item 1:

(LD)(x, x′) =
∑
z∈Ω

L(x, z)D(z, x′) = L(x, x′)
1

M(x′)
(I.25)

and

(DLT )(x, x′) =
∑
z∈Ω

D(x, z)LT (z, x′) =
∑
z∈Ω

D(x, z)L(x′, z) =
1

M(x)
L(x′, x) (I.26)

Therefore, by (I.22) we have LD = DLT , i.e., D is a self-duality function. For items 2: if
D satisfies LD = DLT and S commutes with L, then

L(SD) = S(LD) = S(DLT ) = (SD)LT

and

L(DST ) = (LD)ST = (DLT )ST = D(LTST ) = D(STLT ) = (DST )LT

REMARK I.8. In the setting of Theorem I.7, SD can be viewed as the result of S working
on the left (y)-variable of D, whereas DST can be viewed as the result of S working on
the right (x)-variable of D.

The previous theorem shows that in the reversible setting, we can start from a cheap
self-duality and produce non-trivial self-dualities by acting with symmetries on it. Con-
versely, as we will see in the next theorem, in the reversible setting every symmetry is
associated to a self-duality function, namely the corresponding kernel of the symmetry in
the L2-space of the reversible measure. In other to introduce this, we need some more
notation.

Let M be a measure. We then define the inner product in L2(Ω,M) as usual: for any
two function f : Ω → R and g : Ω → R we put

⟨f, g⟩ =
∑
x∈Ω

f(x)g(x)M(x).
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Reversibility of M in the sense (I.22) is then equivalent with self-adjointness of L, i.e.,
L = L∗:

⟨Lf, g⟩ =
∑
x,x′∈Ω

L(x, x′)f(x′)g(x)M(x) =
∑
x,x′∈Ω

L(x′, x)g(x)M(x′)f(x′) = ⟨f, Lg⟩

We say that an operator S working on functions f : Ω → R is in kernel operator form
w.r.t. M , with kernel D : Ω× Ω → R if

Sf(x) =
∑
y∈Ω

D(x, y)f(y)M(y) (I.27)

We then have the following connection between symmetries and self-duality

THEOREM I.9 (From symmetries to self-duality functions). Assume that M is a reversible
measure, i.e., (I.22) holds and S is in kernel operator form w.r.t. M in the sense of (I.27).
Then S is a symmetry if and only if the associated kernel D is a self-duality function.

PROOF. The symmetry property means that for all f : Ω → R

LSf = SLf

Writing out this gives for all x ∈ Ω

LSf(x) =
∑
x′

L(x, x′)(Sf)(x′) =
∑
x′,y

L(x, x′)D(x′, y)f(y)M(y) =
∑
y

(LD)(x, y)f(y)M(y)

whereas, using the fact that L = L∗ in the inner product ⟨·, ·⟩

SLf(x) =
∑
y

D(x, y)Lf(y)M(y) = ⟨D(x, ·), Lf⟩

= ⟨LD(x, ·), f⟩ =
∑
y′,y

L(y, y′)D(x, y′)f(y)M(y)

=
∑
y

(DLT )(x, y)f(y)M(y)

As a consequence, LS = SL if and only if for all x ∈ Ω and for all f : Ω → R∑
y

LD(x, y)f(y)M(y) =
∑
y

(DLT )(x, y)f(y)M(y) (I.28)

This is in turn equivalent with
LD = DLT (I.29)

because (I.28) holds for all f and we assumed M > 0.

Theorem I.9 identifies self-duality functions as kernels of symmetries in the L2 space
associated to a reversible measure. Notice that the proof can be repeated when sums are
replaced by integrals, under the assumption that L = L∗ in the L2 space associated to a
reversible measure, i.e., this fact to go from symmetries in kernel operator form back to
dualities is not limited to the finite state space case.
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Example: symmetric exclusion process on two sites

As a well-know and also historical example, let us consider the symmetric exclusion process
on two vertices. The state space of the process is {00, 01, 10, 11} where 0 codes for “the
vertex has no particle” and 1 for “the vertex has a particle”. A particle present on one
vertex can hop at rate 1 to the other vertex if there is no particle. The generator matrix
is then given by

L =


0 0 0 0
0 −1 1 0
0 1 −1 0
0 0 0 0

 (I.30)

Since this is a symmetric matrix,it follows that a “cheap” self-duality function is given by
the identity matrix

D(y, x) = δy,x

Notice that this diagonal self-duality function is associated to a reversible measure M
in the sense of (I.24). More precisely it is associated to the Bernoulli measure with
density 1/2, for which all 4 configurations have the same probability 1/4. The following
“symmetry” S(y, x) = 1l{y1≤x1}1l{y2≤x2} is a matrix commuting with the generator, as can
be verified by direct computation

S =


1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

 (I.31)

Therefore, we have self-duality with self-duality function D′ = SD = S. Notice that with
the point-wise ordering of configurations this is another example of Siegmund duality, i.e.,
duality with the duality function D′(y, x) = 1l{y≤x} = 1l{y1≤x1}1l{y2≤x2}.

Duality and symmetry

In the setting where there is no reversible measure, the “cheap” self-duality given by the
inverse of the reversible measure is replaced by a “cheap” duality between the forward
and backward process. This cheap duality can then be turned into a non-trivial duality
by acting with symmetries.

DEFINITION I.10 (Stationary measure). Let {X(t) : t ≥ 0} be a finite state space Markov
process with generator L. A measure M : Ω → (0,∞) is called stationary if for all x′ ∈ Ω∑

x∈Ω

M(x)L(x, x′) = 0 (I.32)

or, equivalently for all x′ ∈ Ω∑
x

(
M(x)L(x, x′)−M(x′)L(x′, x)

)
= 0 (I.33)
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From (I.33) we see that reversibility implies stationarity. When M is a stationary

measure then we define the generator L̃ of the time-reversed process via

L̃(x, x′) =
M(x′)L(x′, x)

M(x)
(I.34)

It is immediate to see from stationarity of M that L̃ is the generator of a Markov process
on Ω, i.e.,

∑
x′∈Ω L̃(x, x

′) = 0 for all x ∈ Ω, and that M is a stationary measure of L̃.
We can then formulate the analogue of Theorem I.7.

THEOREM I.11 (Duality and Symmetry). Let {X1(t) : t ≥ 0} be a finite state space
Markov process with generator L1 on the state space Ω1, with stationary measure M1. Let
{X2(t) : t ≥ 0} be another finite state space Markov process with generator L2 on the state
space Ω2. Then we have the following

1. Existence of a “cheap duality” made from the stationary measure. If M1 is a
stationary measure of {X(t) : t ≥ 0} then

D(x, x′) =
1

M1(x)
δx,x′ (I.35)

is a duality function between the process and its time-reversed, i.e.:

L̃1D = DLT1 (I.36)

2. Symmetries produce new duality functions from a given one. If D12 is a duality
function between L1 and L2, i.e.,

L1D12 = D12L
T
2

then we have the following.

(i) If S1 is a symmetry of L1, then S1D12 is a duality function between L1 and L2

as well.

(ii) If S2 is a symmetry of L2 then D12S
T
2 is duality function between L1 and L2

as well.

PROOF. The proof is completely analogous to the proof of Theorem I.7.

For an example of duality between a process and its time-reversed we refer to Section
III.7 where the case of asymmetric random walkers is considered.

THEOREM I.12 (From symmetry to duality). If S1 is a symmetry of L1 in kernel operator

form w.r.t. M1, then the associated kernel D is a duality function between L1 and L̃1.

PROOF. The proof follows from the fact that L∗
1 = L̃1 where ∗ is adjoint w.r.t. L2(M1),

i.e., w.r.t. to the inner product

⟨f, g⟩ =
∑
x∈Ω1

f(x)g(x)M1(x)

After realizing this, the proof is analogous to the one of Theorem I.9.
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Duality and intertwining

In this section we introduce intertwining, which is a natural extension of the notion of
symmetry. Let be given three (finite state space) continuous-time Markov processes with
generators L1, L2, L3 on finite state spaces Ω1,Ω2,Ω3.

DEFINITION I.13 (Intertwiner). An intertwiner between L1 and L2 is a matrix Λ12 with
elements Λ12(x1, x2) indexed by x1 ∈ Ω1 (row index) and x2 ∈ Ω2 (column index), such
that

L1Λ12 = Λ12L2 (I.37)

Intertwinings compose naturally in the following sense: if Λ12 is an intertwiner between
L1 and L2 and Λ23 is an intertwiner between L2 and L3 then Λ13 := Λ12Λ23 is an intertwiner
between L1 and L3.

THEOREM I.14 (Duality and intertwining). Let the generators L1, L2, L3 be given as
above. Assume there exist an intertwiner Λ12 between L1 and L2, i.e., such that

L1Λ12 = Λ12L2 (I.38)

Assume furthermore that D23 is a duality function for duality between L2 and L3, i.e.,

L2D23 = D23L
T
3 (I.39)

Then D13 = Λ12D23 is a duality function for duality between L1 and L3, i.e.,

L1D13 = L3D
T
13 (I.40)

PROOF. We have
L1(Λ12D23) = Λ12L2D23 = (Λ12D23)L

T
3

Here in the first step we used that Λ12 is an intertwiner between L1 and L2, and in the
second step that D23 is a duality function between L2 and L3.

Looking back at the case of self-duality in the previous subsection, we see that sym-
metry is an instance of intertwining of a generator with itself, i.e., Theorem I.14 includes
the theorems of previous subsection.

The next theorem is the analogue of Theorem I.12: an intertwiner in kernel operator
form w.r.t. the reversible measure (of the second generator) leads to a duality.

THEOREM I.15 (From intertwining to duality). If M2 is a reversible measure for L2 and
Λ12 is and intertwiner between L1 and L2 which is in kernel operator form i.e.,

(Λ12f) (x1) =
∑
x2

D12(x1, x2)M2(x2)f(x2) (I.41)

then D12 is a duality function between L1 and L2, i.e.,

L1D12 = D12L
T
2 (I.42)

More generally if M2 is a stationary measure, then (I.41) implies duality between L1 and

the time reversal of L2 (denoted L̃2).
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PROOF. Denote ⟨·, ·⟩M2 the L2(M2) inner product. Start from

L1Λ12f(x1) =
∑

x′1∈Ω1,x2∈Ω2

L1(x1, x
′
1)D12(x

′
1, x2)f(x2)M2(x2)

Next, using reversibility of M2, we write

Λ12L2f(x1) = ⟨D12(x1, ·), L2f⟩M2 = ⟨L2D12(x1, ·), f⟩M2

=
∑

x′2,x2∈Ω2

L2(x2, x
′
2)D12(x1, x

′
2)f(x2)M2(x2)

Because this holds for all f we conclude∑
x′1∈Ω1

L1(x1, x
′
1)D12(x

′
1, x2) =

∑
x′2∈Ω2

L2(x2, x
′
2)D12(x1, x

′
2)

for all x1 ∈ Ω1, x2 ∈ Ω2. To see the second statement, use

⟨L2D12(x1, ·), f⟩M2 =
∑

x′2,x2∈Ω2

L∗
2(x2, x

′
2)D12(x1, x

′
2)f(x2)M2(x2)

where L∗
2 is the adjoint of L2 in L2(M2) which is precisely the time reversal of L2.

I.4 Duality and intertwining of bounded operators

In this section we extend the notion of duality beyond Markov generators by introducing
the notion of duality between two algebras. As we will see later, it turns out that in
most cases behind a duality of two Markov generators lies a duality relation between two
algebras (or more precisely a duality between two representations of an algebra). Realizing
this is very useful for two reasons. First, for two Markov generators related by duality it
leads to a larger class of duality functions. Second, by considering other elements of the
algebra it leads to many more dualities between Markov generators associated to a given
algebra. Indeed if one has a duality relation between two algebras, then automatically all
elements of one algebra are in a duality relation with corresponding elements of the other
algebra.

The content of the next section is organized as follows. In this Section I.4 we explain
duality of algebras by considering first the case of algebras of matrices and then generaliz-
ing to algebras of bounded operators on a Hilbert space. Here we can explain the concept
of intertwined representations without technicalities related for instance to domains of
unbounded operators. In Section I.5 we explain duality on the algebra level for the exam-
ple of the Heisenberg algebra, which already goes beyond the case of bounded operators
and which provides several dualities between diffusion processes and jump processes, the
simplest instance being the earlier example of duality between Wright-Fisher diffusion and
the block-counting process of the Kingman’s coalescence. Many more examples of these
Heisenberg algebra dualities will follow in Chapters II, III and VII. Finally in Section I.6
we formulate dualities of algebras in the most general setting.
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Duality and intertwining of matrices

The first step is to define duality for general square matrices, where we continue to think
of matrices as indexed by finite sets, and identify matrices with linear maps as usual. I.e.,
a matrix with elements A(x, x′) with x, x′ ∈ Ω is at the same time thought of as a linear
map from functions f : Ω → R to functions Af : Ω → R via Af(x) =

∑
x′∈ΩA(x, x

′)f(x′).
In other words, we think of functions as column vectors.

In what follows we will consider matrices “with a hat” (such as Â1, Â2, . . .) indexed by

elements y, y′ ∈ Ω̂ and matrices “without hat” A1, A2, . . . indexed by elements x, x′ ∈ Ω.
Here Ω̂ and Ω are two fixed finite sets.

DEFINITION I.16 (Duality for matrices). We say that two matrices A, Â are dual to each

other with duality function D (which is a matrix with elements D(y, x) with y ∈ Ω̂, x ∈ Ω)
if

ÂD = DAT (I.43)

We denote the duality between two matrices by

Â
D−−→ A

REMARK I.17. (I.43) is the generalization of (I.12) to matrices which are not necessarily

Markov generators. The notation Â
D−−→ A suggests to think of dulaity as a relation

between two matrices A, Â parametrized by the duality function D. The element-wise
version of (I.43) says that for all y ∈ Ω̂, x ∈ Ω∑

y′∈Ω̂

Â(y, y′)D(y′, x) =
∑
x′∈Ω

A(x, x′)D(y, x′) .

This means that the action of Â on the y-variable is the same as the action of A on the
x-variable

(ÂD(·, x))(y) = (AD(y, ·))(x) (I.44)

DEFINITION I.18 (Matrix algebra). A set of matrices is called an algebra A if it is
closed under linear combinations and multiplication of matrices. A matrix algebra A is
generated by the matrices A1, . . . , An if every element in the algebra is a linear combination
of products of the form Ai1Ai2 . . . Aik with k ∈ N and i1, . . . , ik ∈ {1, . . . , n}. We then call
A1, . . . , An algebra generators of A.

The next theorem shows how to combine dualities with addition and multiplication of
matrices. In particular it leads to a natural notion of duality between two matrix algebras.

THEOREM I.19 (Combining dualities: the matrix case). We have the following properties

of the “
D−−→-relation”.

1. Linear combinations: if Â1
D−−→ A1, Â2

D−−→ A2 then for a, b ∈ R:

aÂ1 + bÂ2
D−−→ aA1 + bA2
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2. Products: if Â1
D−−→ A1, Â2

D−−→ A2 then

Â1Â2
D−−→ A2A1

3. Duality of algebras from duality of algebra generators: If Âi
D−−→ Ai for all i ∈

{1, . . . , n} then for every Â in the algebra Â generated by Âi, i ∈ {1, . . . , n} there
exists a corresponding element A in the algebra A generated by Ai, i ∈ {1, . . . , n}
such that Â

D−−→ A.

PROOF. The first two items are straightforward from the definition of duality and the fact
that (A1A2)

T = AT2A
T
1 . To see the last item consider an element in the algebra generated

by Âi, i ∈ {1, . . . , n} of the form

Âi1Âi2 . . . Âik (I.45)

for i1, . . . , ik ∈ {1, . . . , n}. Then, by iteratively applying the property in item 2, we see
that this element is dual to the element

AikAik−1
. . . Ai1

Then we can apply the property of item 1 to extend to linear combinations of elements
of the type (I.45).

The last item of the proposition above indicates that a duality function translates
elements of an matrix algebra to elements of a “conjugate algebra” obtained by removing
hats from the Âi and multiplying the elements in the reversed order. The source of
this “reversed order of multiplication” is the fact that in the relation (I.43) there is a
transposition involved.

Next, we also want to understand the relation between duality and intertwining for
general matrices, i.e. beyond Markov generator matrices.

DEFINITION I.20 (Intertwining of matrices). Two matrices Â and A are intertwined with
intertwining matrix Λ if

ÂΛ = ΛA (I.46)

The following proposition is then a generalization of Theorem I.15 which identifies the
kernels of intertwiners as duality functions.

THEOREM I.21 (From intertwining to duality: the matrix case). Let (I.46) hold and
assume that the intertwiner is of kernel operator form, i.e., that

Λf(y) =
∑
x

D(y, x)f(x)µ(x) (I.47)

for some positive measure µ with µ(x) > 0 for all x ∈ Ω. Then we have

Â
D−−→ A∗ (I.48)

with A∗ the adjoint of A in L2(µ).
Conversely, if (I.48) holds, then defining Λ via (I.47), (I.46) holds.
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PROOF. Start from

ÂΛf(y) =
∑
y′

Â(y, y′)Λf(y′)

=
∑
y′,x

Â(y, y′)D(y′, x)f(x)µ(x) (I.49)

On the other hand

ΛAf(y) =
∑
x

D(y, x)Af(x)µ(x)

=
∑
x′,x

A∗(x, x′)D(y, x′)f(x)µ(x) (I.50)

where in the last step we moved A to A∗ working on the x-variable of D. As a consequence
of (I.46) we obtain that for all y ∈ Ω̂∑

y′,x

Â(y, y′)D(y′, x)f(x)µ(x) =
∑
x′,x

A∗(x, x′)D(y, x′)f(x)µ(x)

Because this holds for all f : Ω → R and because µ is positive, then we obtain that for
all y ∈ Ω̂ and for all x ∈ Ω one has∑

y′

Â(y, y′)D(y′, x) =
∑
x′

A∗(x, x′)D(y, x′)

which is
Â

D−−→ A∗

The converse implication, i.e. from duality to intertwiner, follows from (I.49) and (I.50)
combined with the fact that (A∗)∗ = A.

In view of the extension beyond finite matrices (e.g. differential operators), we face
the problem that the notion of “transposition” is not available anymore. Instead, we will
replace it by “moving in a tensor product from the left to the right.”

In order to make this clear, notice that in the matrix setting, the relation Â
D−−→ A

can be rewritten element-wise as∑
y′,x′

Â(y, y′)δx,x′D(y′, x′) =
∑
y′,x′

δy,y′A(x, x
′)D(y′, x′)

for all y ∈ Ω̂ and x ∈ Ω, which can be further written as

(Â⊗ I)D = (I ⊗ A)D (I.51)

This corresponds to moving Â from the left to the right in the tensor product, and
replacing it by A. This operation which generalizes transposition can be sustained in a
more general context, and reads

ÂD(·, x)(y) = AD(x, ·)(y)
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Duality and intertwining in the L2-space setting

Let us consider here the case of bounded operators on L2-spaces, where there is still a
natural notion of the adjoint of an operator, as well as a natural notion of kernel operator.
This will in particular give us the analogue of Theorem I.21 in this context.

We start from two measure spaces (Ω̂, F̂, ν) and (Ω,F, µ) with σ-finite measures ν,
resp. µ. In the sequel, for simplicity of notation, we will omit the σ-algebras and write
L2(Ω̂, ν) = L2(Ω̂, F̂, ν). Then Ĥ = L2(Ω̂, ν), H = L2(Ω, µ) are two Hilbert spaces, and

their tensor product Hilbert space is Ĥ⊗H = L2(Ω̂× Ω, ν ⊗ µ).

We say that a bounded operator Λ : H → Ĥ is a kernel operator if there exists a
function D ∈ L2(Ω̂× Ω, ν ⊗ µ) such that for all f ∈ H

Λf(y) =

∫
Ω

D(y, x)f(x)dµ(x) (I.52)

where the equality has to be understood in Ĥ, i.e., ν a.s..

DEFINITION I.22 (Intertwining of bounded operators). Let Â and A denote bounded

operators on Ĥ, resp. H, and Λ a bounded operator from H to Ĥ. We say that Â and A
are intertwined with intertwiner Λ if

ÂΛ = ΛA (I.53)

DEFINITION I.23 (Duality of bounded operators). Let D ∈ Ĥ ⊗H = L2(Ω̂ × Ω, ν ⊗ µ).

We say that Â and A are in duality with duality function D if

(Â⊗ I)D = (I ⊗ A)D (I.54)

REMARK I.24. Notice that (I.54) is equivalent with

ÂD(·, x)(y) = AD(y, ·)(x), ν ⊗ µ a.s.

which corresponds with the earlier definitions of semigroup duality (I.10) or generator
duality (I.11), but now applied to general (bounded) operators A on H and general

bounded operators Â on Ĥ instead of only to Markov semigroups or Markov generators.

As before we denote this by Â
D−−→ A, and we think of it as a relation between operators,

indexed by the duality function. Notice that in this setting, we have automatically that
Â⊗I and I⊗A are bounded operators on Ĥ⊗H, and hence have full domain. Therefore,

all the properties of the relation
D−−→ derived in Theorem I.19 carry over to this setting

of bounded operators on Hilbert spaces. We then have the following result connecting
intertwining with duality.

THEOREM I.25 (From intertwining to duality: the L2-space case). In the L2-space setting
defined above, we have the equivalence between:

1. Λ is an intertwiner between Â and A, and is a kernel operator with kernel D, i.e.,
(I.52) and (I.53) hold.
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2. Â and A∗ are in duality with duality function D, where ∗ denotes adjoint in H, i.e.,

(Â⊗ I)D = (I ⊗ A∗)D

PROOF. To prove item 1 =⇒ item 2, we write out ÂΛ = ΛA. Let f ∈ H, using linearity
and boundedness of Â:

ÂΛf(y) =

(
Â

∫
Ω

D(·, x)f(x)dµ(x)
)
(y) =

∫
Ω

(Â⊗ I)D(y, x)f(x)dµ(x) (I.55)

Next

ΛAf(y) =

∫
Ω

D(y, x)Af(x)dµ(x) =

∫
Ω

(I ⊗ A∗)D(y, x)f(x)dµ(x) (I.56)

Combination of (I.55) and (I.56) gives (I.54). For the implication item 2 =⇒ item 1 one
starts from the assumed duality relation, i.e., for all f ∈ H∫

Ω

(Â⊗ I)D(y, x)f(x)dµ(x) =

∫
Ω

(I ⊗ A∗)D(y, x)f(x)dµ(x)

and moves A∗ to f in order to obtain ÂΛ = ΛA.

REMARK I.26. The duality relation (Â⊗ I)D = (I ⊗A)D in this Hilbert-space setting is

an equality of two elements of L2(Ω̂⊗Ω, ν⊗µ), and hence holds (ν⊗µ)-almost surely. In

many examples, the duality holds actually pointwise, i.e., for all y ∈ Ω̂ and x ∈ Ω because
the function D is continuous, and the measures µ, ν have full support.

A particular instance of Theorem I.25 is when H = Ĥ, where we obtain that sym-
metries in kernel operator form lead to self-dualities. This is a more abstract version of
Theorem I.9.

THEOREM I.27 (From symmetry to self-duality: the Hilbert space case). Let A be a
bounded self-adjoint operator on H, and assume that there exists a symmetry of A, i.e., a
bounded operator S : H → H, such that [A, S] = 0. Assume moreover that S is in kernel
operator form, i.e.

Sf(y) =

∫
Ω

D(y, x)f(x)dµ(x) (I.57)

Then D is a self-duality function for A, i.e., (A⊗ I)D = (I ⊗ A)D. Conversely, if D is
a self-duality function, then S defined via (I.57) is a symmetry of A.

Duality and intertwining: general Hilbert space case

We have seen how the equivalence between intertwining and duality extends to the setting
of bounded operators on L2-spaces. The first generalization which we present here is
to abstract Hilbert space setting, i.e., not using the specific structure of the L2 space.
The main point is that we consider then an abstract form of duality where the duality
“function” is replaced by an abstract element of the tensor product of two Hilbert spaces.
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To prepare this, let us consider two Hilbert spaces Ĥ and H and bounded operators

Â : Ĥ → Ĥ

A : H → H

Λ : H → Ĥ (I.58)

We denote by Ĥ⊗H the tensor product Hilbert space uniquely defined by the scalar
product

⟨f̂ ⊗ f, ĝ ⊗ g⟩
Ĥ⊗H

= ⟨f̂ , ĝ⟩
Ĥ
· ⟨f, g⟩H (I.59)

In this setting we define duality and intertwining as follows.

DEFINITION I.28. Let D ∈ Ĥ⊗H. We say that D is a duality element for duality between
Â and A if

(Â⊗ I)D = (I ⊗ A)D (I.60)

We say that Λ is an intertwiner between Â and A if

ÂΛ = ΛA (I.61)

In order to establish the link between intertwining and duality, we need to construct
an intertwiner from a duality element. If D = d̂ ⊗ d is in tensor form then, inspired by
the L2-case, it is natural to define ΛDf for f ∈ H via

ΛDf = (⟨d, f⟩H)d̂

To extend this definition to general elements of Ĥ ⊗ H, it is convenient to characterize
this element ΛDf in an alternative way. Namely, as the unique element of Ĥ such that
for all ĝ ∈ Ĥ we have

⟨ĝ,ΛDf⟩Ĥ = ⟨d̂, ĝ⟩
Ĥ
⟨d, f⟩H = ⟨ĝ ⊗ f,D⟩

Ĥ⊗H

The fact that this definition makes sense for all D ∈ Ĥ ⊗ H is proved in the following
lemma.

LEMMA I.29. For all D ∈ Ĥ ⊗ H and for all f ∈ H there exists a unique element
ΛDf ∈ Ĥ characterized by the fact that for all ĝ ∈ Ĥ we have

⟨ĝ,ΛDf⟩Ĥ = ⟨ĝ ⊗ f,D⟩
Ĥ⊗H

(I.62)

Moreover the assignment f → ΛDf is a bounded operator from H to Ĥ.

PROOF. Given D ∈ Ĥ⊗H and f ∈ H we define the linear map ψ : Ĥ → R via

ψ(ĝ) = ⟨ĝ ⊗ f,D⟩
Ĥ⊗H

Using the Cauchy Schwarz inequality, together with the fact that ∥ĝ⊗f∥
Ĥ⊗H

= ∥f∥H∥ĝ∥Ĥ,
we obtain the estimate

|ψ(ĝ)| ≤ ∥D∥
Ĥ⊗H

∥f∥H∥ĝ∥Ĥ (I.63)
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and as a consequence ψ is a continuous linear map from Ĥ to R. Therefore, using the
Riesz representation theorem, there exists a unique element ĥ ∈ Ĥ such that

ψ(ĝ) = ⟨ĥ, ĝ⟩
Ĥ
.

Then we define ΛDf = ĥ.
From (I.63) it follows

|⟨ΛDf, ĝ⟩Ĥ| ≤ ∥D∥
Ĥ⊗H

∥f∥H∥ĝ∥Ĥ

Therefore the dependence between D and ΛD is linear and continuous, more precisely

∥ΛD∥B(H,Ĥ) ≤ ∥D∥
Ĥ⊗H

where ∥ · ∥
B(H,Ĥ) denotes the operator norm.

We then have the following equivalence between duality and intertwining.

THEOREM I.30 (Duality and intertwining: Hilbert space case). Let the setting be as in
(I.58) The following two properties are equivalent:

1. Duality between Â and A with duality element D ∈ Ĥ⊗H, in the sense (I.60).

2. Intertwining between Â and A∗ with intertwiner ΛD defined in Lemma I.29.

PROOF. For simplicity of notation, we will omit subindices in inner products, as it will be
clear in every formula in which space the inner product is taken. Duality is characterized
by

⟨(Â⊗ I)D, ĝ ⊗ f⟩ = ⟨(I ⊗ A)D, ĝ ⊗ f⟩

for all ĝ ∈ Ĥ, f ∈ H. This can be rewritten equivalently as

⟨D, (Â)∗ĝ ⊗ f⟩ = ⟨D, ĝ ⊗ A∗f⟩ (I.64)

Intertwining of Â and A∗ with intertwiner ΛD defined in Lemma I.29 is equivalent with
the fact that for all ĝ ∈ Ĥ, f ∈ H, we have

⟨ĝ, ÂΛDf⟩ = ⟨ĝ,ΛDA∗f⟩

which is equivalent with

⟨(Â)∗ĝ,ΛDf⟩ = ⟨ĝ,ΛDA∗f⟩

which by the defining relation (I.62) reads

⟨(Â)∗ĝ ⊗ f,D⟩ = ⟨ĝ ⊗ (A∗f), D⟩ .

This is the same as (I.64) and therefore the equivalence between duality and intertwiner
is proven.
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REMARK I.31. We have extended the definition of duality with a duality function D (ap-
pearing in the context of L2 spaces) to the definition of duality with a duality element
D (appearing in the context of abstract Hilbert space). The advantage of this extension
lies in the fact that we can then consider duality in the context of general representations
of algebras, where the vector spaces on which the operators (representing the algebra
elements) act are not necessarily function spaces. Of course, for finite dimensional repre-
sentations this distinction between functions and elements is not relevant, because a finite
column can always be viewed as a function.

REMARK I.32. If we come back to the L2 case, i.e., Ĥ = L2(Ω̂, ν),H = L2(Ω, µ), then

Ĥ⊗H = L2(Ω̂×Ω, ν ⊗µ), hence for an element D ∈ Ĥ⊗H the characterizing equation
(I.62) for ΛD can be written as∫

ĝ(y)ΛDf(y)dν(y) = ⟨ĝ ⊗ f,D⟩ =
∫
ĝ(y)

(∫
D(y, x)f(x)dµ(x)

)
dν(y)

which implies that

ΛDf(y) =

∫
D(y, x)f(x)dµ(x)

which is the way in which we defined ΛD before.

Intertwined representations in Hilbert spaces

Finally, we show in the Hilbert space context how dualities are related to intertwined
representations of an algebra. This prepares for the later Section I.6, where we will treat
duality and intertwinings in the context of algebras. Let A denote an algebra, and Ĥ, H,
and Ĥ ⊗H denote Hilbert spaces as before. Also denote B(Ĥ, Ĥ), resp. B(H,H), the

algebra of bounded linear operators on Ĥ, resp. on H. Let ρ̂ and ρ be two representations
of A, i.e. two algebra homomorphisms ρ̂ : A → B(Ĥ, Ĥ), resp. ρ : A → B(H,H).

We say that two representations ρ̂, ρ are equivalent if they are related by an intertwiner,
i.e. there exists a bounded linear operator Λ : H → Ĥ such that for all a ∈ A

ρ̂(a)Λ = Λρ(a) (I.65)

If this operator Λ is unitary, i.e., conserves inner products, then we call Λ a unitary
intertwiner and we call the representations unitary equivalent. Unitary intertwiners play
an important role in orthogonal polynomial dualities, as we will see in Chapter VIII.

The following theorem shows that from equivalent representations related by an inter-
twiner in kernel form one gets duality relations.

PROPOSITION I.33 (Equivalent representations and duality). Let A be an algebra and

ρ̂ : A → B(Ĥ, Ĥ) and ρ : A → B(H,H) be two representations. Assume that ρ̂ and

ρ are equivalent with intertwiner Λ ∈ B(H, Ĥ). Assume moreover that Λ is in kernel

operator form with kernel D ∈ Ĥ ⊗ H, i.e., (I.52) holds. Then we have for all a ∈ A,

ρ̂(a)
D−−→ (ρ(a))∗, where ∗ denotes adjoint in H.

PROOF. This is an application of Theorem I.25 with Â = ρ̂(a) and A = ρ(a).
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I.5 Duality as a change of representation

In this section, we return to the example of duality between Wright-Fisher diffusion and
the Kingman’s coalescent block counting process, and show that it is an instance of du-
ality obtained via a change of representation of an algebra. The process duality is then
a consequence of the duality between the two representations. Thus the duality function
does not only link the two Markov generators, but all elements of the algebra in one rep-
resentation to corresponding elements of the conjugate algebra in another representation.
This shows a key principle of the algebraic approach to duality described in this book:
dualities at the level of the algebra (i.e. intertwining between two representations) can be
used to obtain dualities of Markov processes.

In order to introduce this change of representation picture, we need some notation.
In particular we recall the notion of duality between two operators (I.44) and (I.54), and
generalize it to the context of unbounded operators. We say that a function D of two
variables x and y acts as duality function for duality between operators A and B if

(AD(y, ·)) (x) = (BD(·, x)) (y) (I.66)

where we implicitly assume that the relation is well-defined, i.e. D(·, x) ∈ Dom(A) and
D(y, ·) ∈ Dom(B).

To treat the Wright-Fisher/Kingman duality from the algebraic point of view, we will
need the Heisenberg algebra. This is the Lie algebra generated by two elements a, a†

satisfying the canonical commutation relation [a, a†] = I with I the identity. We will
see that the duality of the Wright-Fisher generator and the generator of the Kingman’s
coalescent is a consequence of a much more general duality between two representations
of the Heisenberg algebra, with intertwiner the duality function D(n, x) = xn.

Two representations of the Heisenberg algebra

We introduce the operators

A†f(x) = xf(x)

Af(x) = f ′(x) (I.67)

working on smooth functions of a real variable x. For the Wright-Fisher diffusion example
we may restrict to f : [0, 1] → R which are polynomials. These operators satisfy the
“canonical commutation relation” [A,A†] = I where I denotes the identity:

[A,A†]f(x) = (xf)′(x)− xf ′(x) = f(x) = (If)(x) (I.68)

Next, we introduce the operators working on functions f : N → R

a†f(n) = f(n+ 1)

af(n) = nf(n− 1) (I.69)

where by the last equation for n = 0 we mean af(0) = 0. These operators satisfy the
“dual canonical commutation relations” [a, a†] = −I

[a, a†]f(n) = −f(n) (I.70)
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The operators A,A† and a, a† satisfy a duality relation via the monomials D(n, x) = xn,
i.e., (

AD(n, ·)
)
(x) =

(
aD(·, x)

)
(n),(

A†D(n, ·)
)
(x) =

(
a†D(·, x)

)
(n). (I.71)

The duality Wright-Fisher/Kingman revisited

In terms of these operators the Wright-Fisher diffusion process generator reads

Lf(x) =
1

2
x(1− x)

d2

dx2
f(x) =

1

2
A†(I − A†)A2f(x) (I.72)

whereas the generator of the Kingman’s coalescent block counting process reads

Lf(n) =
1

2
n(n− 1)(f(n− 1)− f(n)) =

1

2

(
a2(I − a†)a†f

)
(n) (I.73)

We now see that we can pass from A†(I −A†)A2 to a2(I − a†)a† by replacing A by a and
writing the products of operators in the order from right to left.

The duality relation between the generators L and L is indeed a consequence of the
more general duality relation (I.71). This implies, in the spirit of Theorem I.19 (see also
Theorem III.5), that for every “word” of the form

W = W1W2 . . .Wn

where Wi ∈ {A,A†} there is a “dual word” which writes

w = wnwn−1 . . . w1

i.e., the symbols of W written from right to left, and “translating” wi = a, resp. wi = a†,
whenever Wi = A resp. Wi = A†. E.g. W = AA†AA†A† is “translated” to a†a†aa†a.

The duality relation between a word W and its dual word w is then simply as in (I.71)

WD(n, x) = wD(n, x)

where W works on the x variable and w works on n variable.
We indeed see that the word forming the Wright-Fisher diffusion generator L =

A†(I−A†)A2 has the dual word L = a2(I−a†)a† which is the generator of the Kingman’s
coalescent block counting process.

Summarizing, the duality Wright-Fisher/Kingman is a single instance of a much more
general duality between a representation of the Heisenberg algebra and the conjugate
Heisenberg algebra.

Heisenberg algebra: further examples of intertwined representations

The Heisenberg algebra admits several intertwined representations which lead to duali-
ties. Here we give a few examples. Later in the book, in the chapters on independent
walkers and associated models in continuous variables, such representations and their
intertwinings will play an important role.

We recall the continuous representation (I.67), and the discrete representation of the
conjugate algebra (I.69) We then have the following dualities



I.5. DUALITY AS A CHANGE OF REPRESENTATION 25

1. Duality function linking the continuous and the discrete representation.

a
D−−→ A, a†

D−−→ A† (I.74)

with

D(n, x) = xn (I.75)

2. Duality function linking the different generators of the discrete representation.

a
D−−→ a†, a†

D−−→ a (I.76)

with

D(k, n) = n!δk,n (I.77)

3. Duality function linking the different generators of the continuous representation.

A
D−−→ A†, A† D−−→ A (I.78)

with

D(y, x) = exy (I.79)

More generally we have the following duality between a representation of the Heisen-
berg algebra and the discrete representation (I.69).

THEOREM I.34. Let A,A† denote any representation of the Heisenberg algebra on a space
of functions f : E → R. Let D(0, ·) : E → R be a function such that

AD(0, ·) = 0 (I.80)

(a so-called ground state). Next define the functions D(n, ·) via

D(n, ·) = (A†)nD(0, ·) (I.81)

Then we have a
D−−→ A, a†

D−−→ A†, where a, a† are the discrete representation (I.69).

PROOF. By the commutation relations we have

A(A†)n = (A†)nA+ n(A†)n−1

Applying this to D(0, ·) yields, using AD(0, ·) = 0

AD(n, ·) = nD(n− 1, ·)

Therefore, A
D−−→ a, and by definition (I.81) we automatically have A† D−−→ a†
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Examples

1. The previously considered example D(n, x) = xn is a special case, when A =
d
dx
, A† = x and so D(0, x) = 1, D(n, x) = (A†)nD(0, ·)(x) = xn.

2. As a more general example consider

A = c1x+ c2
d

dx
, A† = c3x+ c4

d

dx

with c2c3 − c1c4 = 1 and c2 ̸= 0, then we obtain A
D−−→ a,A† D−−→ a†, with

D(n, x) =

(
c4
d

dx
+ c3x

)n
e
− c1

2c2
x2
.

This contains, when c1 = c2 =
1
2
, c3 = −c4 = 1, the case of the Hermite functions

D(n, x) =

(
x− d

dx

)n
e−

x2

2

and, when c1 = 0, c2 = c3 = −c4 = 1, the case of Hermite polynomials

D(n, x) =

(
x− d

dx

)n
1

I.6 Duality and intertwining of algebras

In this section we introduce duality in the abstract sense, i.e., starting from an algebra
and two representations. In the examples of later chapters, this algebra will always be
the universal enveloping algebra of a Lie algebra. This framework will generalize both the
matrix duality introduced before as well as the Hilbert space duality. We start with some
basic definitions.

DEFINITION I.35. Let A be an algebra i.e. a vector space over R (we will always consider
R as the number field) and equipped with a multiplication operation. The conjugate algebra
is the algebra with identical elements as the elements of A and with multiplication ∗
defined via

a ∗ b = ba

where ba denotes the multiplication of b and a in the algebra A.

We will always denote by I the identity in A, i.e., the element such that aI = Ia = a
for all a ∈ A.

DEFINITION I.36. A representation of A is given by an injective homomorphism

ρ : A → Gl(V )

where V is a vector space and Gl(V ) denotes the set of linear maps from V to V . More
precisely ρ is an injection satisfying the additional properties:
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1. ρ is linear: ρ(αa+ βb) = αρ(a) + βρ(b) for all a, b ∈ A, α, β ∈ R.

2. ρ preserves multiplication: ρ(ab) = ρ(a) ρ(b).

If we work in a representation, it means that we identify the elements a ∈ A with
their images ρ(a) ∈ Gl(V ), or, equivalently think of the elements of A as acting on the
vector space V .

We can now define the abstract notion of duality.

DEFINITION I.37. Let A be an algebra and ρ̂ : A → Gl(V̂ ), ρ : A → Gl(V ) be two

representations. Let a, â ∈ A, then an element D of V̂ ⊗ V is called a duality element
between â and a in the representations ρ̂, ρ, if

(ρ̂(â)⊗ IV )D = (IV̂ ⊗ ρ(a))D (I.82)

where IV̂ , resp. IV denote the identity in Gl(V̂ ), resp. Gl(V ).

From now on we will omit the subindices V and V̂ from the identities, to alleviate

notation. Furthermore we denote this property by â
D−−→ a, thereby suppressing the

dependence on the representation. We think of this property as a relation between certain
elements of the algebra A, induced by the two representations ρ̂, ρ, and parametrized by
the duality function D.

There is a natural map i : V̂ ⊗V → V ⊗ V̂ defined on tensors by i(v̂⊗ v) = v⊗ v̂. We

then have the following properties of the relation “
D−−→”. This is the analogue of Theorem

I.19 in the current abstract setting.

THEOREM I.38.

1. Linearity: if â
D−−→ a, b̂

D−−→ b then â+ b̂
D−−→ a+ b, and if λ ∈ R, λâ D−−→ λa.

2. Connecting the algebra to the conjugate algebra: â
D−−→ a, b̂

D−−→ b, then âb̂
D−−→

a ∗ b = ba.

3. Commuting elements generate new duality functions: If â
D−−→ a, and [a, b] = ab −

ba = 0 then, if we define D′ = (I⊗ρ(b))D we have that D′ is also a duality function
linking â and a. Also, if [â, b̂] = 0 then D′′ = (ρ̂(b̂) ⊗ I)D is a duality function
linking a and â.

4. If D is a duality function linking â and a then D∗ = i(D) ∈ V ⊗ V̂ is a duality
function linking a and â.

PROOF. In order to facilitate the notation, we will identify the algebras with their repre-
sentations, i.e., we write â instead of ρ̂(â), and a for ρ(a), i.e., we think of the elements of

A as operators working on the vector spaces V̂ , V . Then we can write e.g. â⊗ a working
on a vector in V̂ ⊗ V where we strictly speaking should write ρ̂(â)⊗ ρ(a). Item 1 follows
from

(â+ b̂)⊗ I = â⊗ I + b̂⊗ I

and
(λâ)⊗ I = λ(â⊗ I)
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For item 2, use that elements of the form â⊗I always commute with elements of the form
I ⊗ a because

(â⊗ I)(I ⊗ a) = â⊗ a = (I ⊗ a)(â⊗ I)

Therefore

(b̂â⊗ I)D = (b̂⊗ I)(â⊗ I)D

= (b̂⊗ I)(I ⊗ a)D

= (I ⊗ a)(b̂⊗ I)D

= (I ⊗ a)(I ⊗ b)D

= (I ⊗ ab)D

For item 3

(I ⊗ a)(I ⊗ b)D = (I ⊗ ab)D

= (I ⊗ ba)D

= (I ⊗ b)(I ⊗ a)D

= (I ⊗ b)(â⊗ I)D

= (â⊗ I)(I ⊗ b)D

= (â⊗ I)D′

The second statement of item 3 follows with similar proof. Finally, item 4 follows from

(a⊗ I)(i(D)) = i((I ⊗ a)D) = i((â⊗ I)D) = (I ⊗ â)(i(D)).

An immediate consequence of this theorem is the following. We define for a given
element D ∈ V̂ × V the set

G(D) = {(â, a) : â D−−→ a}

i. e. the set of all pairs whose components are in duality relation with duality element D.
Then we have that G(D) is an algebra when equipped with multiplication

(â, a) · (b̂, b) = (âb̂, a ∗ b) = (âb̂, ba) (I.83)

In other words G(D) behaves in the first component as the original algebra and in the
second component as the conjugate algebra. As a consequence, the first and second
projections of G(D) provide subalgebras of A, resp. the conjugate algebra of A.

REMARK I.39. The duality of algebras as described here deals with duality elements
D ∈ V̂ ⊗ V . Very often in applications one has to go beyond finite linear combinations
of tensors, i. e. one needs duality elements D in the closure of V̂ ⊗ V with respect to a
suitable norm. For instance, when the vector spaces V̂ , V are Banach spaces of functions,
i.e., V , resp. V̂ , is a set of functions f : Ω → R, resp. f̂ : Ω̂ → R, each equipped with its
norm then the algebraic tensor product V̂ ⊗ V is the set of (finite) linear combinations

of the form
∑n

i,j=1 ci,j f̂ifj. This space has to be equipped with a suitable norm which
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in general is not uniquely determined. Then one has to consider the closure of V̂ ⊗ V
in that norm, this is called the topological tensor product [196]. Duality functions are

then allowed to be more general than elements of V̂ ⊗V , i.e., can be limits of finite linear
combinations of tensors under the chosen norm. This was already implicitly done in the
Hilbert space case where the norm of the tensor product is uniquely determined by the
scalar product on V̂ ⊗ V via ⟨f̂ ⊗ f, ĝ ⊗ g⟩ = ⟨f̂ , ĝ⟩ · ⟨f, g⟩ and bilinearity.

Intertwining and duality: general case

We consider vector spaces V , V̂ and their (algebraic) dual vector spaces V ∗, V̂ ∗, i.e.

V ∗ = {v∗ : V → R, v∗ linear}
V̂ ∗ = {v̂∗ : V̂ → R, v̂∗ linear}

Let us denote ⟨·, ·⟩ both for the pairing between V ∗ and V and for the pairing between

V̂ ∗ and V̂ . I.e., ⟨v∗, v⟩ = v∗(v). We consider two linear maps

A : V → V

Â : V̂ → V̂

then we automatically have two maps

A∗ : V ∗ → V ∗

Â∗ : V̂ ∗ → V̂ ∗

where (A∗v∗)(v) = v∗(Av). We think of A and Â as two representations of two elements of

an algebra A, i.e., in the language of the previous paragraph, A = ρ(a) and Â = ρ̂(â), for

some a, â ∈ A. Assuming that A and Â are in duality with duality element D ∈ V̂ ⊗ V ,
i.e.

(Â⊗ I)D = (I ⊗ A)D (I.84)

we now want to find a corresponding intertwining as in Theorem I.30.

First, we have the following (purely algebraic) analogue of Lemma I.29.

LEMMA I.40. For every D in V̂ ⊗ V there exists a unique ΛD : V ∗ → V̂ ∗∗ such that

⟨ΛDv∗, v̂∗⟩ = ⟨v̂∗ ⊗ v∗, D⟩ (I.85)

for all v̂∗ ∈ V̂ ∗, v∗ ∈ V ∗.

PROOF. Fix v∗ ∈ V ∗. Consider the map ψ : V̂ ∗ → R defined via

ψ(v̂∗) = ⟨v̂∗ ⊗ v∗, D⟩

This is a linear map between V̂ ∗ and R hence ψ ∈ V̂ ∗∗ then define

ψ = ΛDv̂
∗

We then have the analogue of Theorem I.30.
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THEOREM I.41 (Duality and intertwining: general case). Let the setting be as in (I.84),
then the following two properties are equivalent:

1. Duality between Â and A, in the sense (I.84).

2. Intertwining between Â and A∗ with intertwiner ΛD defined in Lemma I.40, i.e.,

ÂΛD = ΛDA
∗

PROOF. The proof is an obvious modification of the Hilbert space case, i.e., the proof of
Theorem I.30, by replacing inner products by pairings between vector spaces and their
dual.

REMARK I.42. In this subsection we went along purely algebraic, i..e, we considered
algebraic duals of vector spaces. The formulation of a result of the type of Theorem I.41
above, as well as its proof, for topological duals would be much more complex as it would
depend on the choice of norm on the considered vector space, and it would pose additional
problems. For instance for a bounded operator A on a Banach space in general it is not
true that A⊗ I is bounded on the corresponding tensor product Banach space.

I.7 Additional notes

The use of duality in the context of interaction particle systems started in [208] which
is also the very first paper that pioneered the area. In the context of spin flip dynamics
(Glauber dynamics, or spin systems in the terminology of [167]), Holley and Stroock used
duality as a form of Fourier transformation [129], i.e., by relating the dynamics of the
Markov process on the state space Ω = {−1, 1}Zd

to the dynamics of the characters of the
compact abelian group Ω. In [167] the concept of duality was systematized and applied
in various interacting particle systems including the voter model, the contact process,
general spin systems and the symmetric exclusion process. In chapter 8 of [167], the
ergodic theory of the symmetric exclusion process is developed, based on duality. Recent
review papers on duality are [136], [215]. Duality arising from graphical representations
is due to Harris [127], see [78] for an approach to interacting particle systems driven by
graphical representations. See also [214] for an approach to duality bases on monotonicity
and graphical representation.

In the context of population dynamics, duality was studied in [176] and is a cornerstone
technique in models of Wright-Fisher type, see e.g. [82] for a recent overview, see the
book [62] for a complete account.

The connection between duality and symmetries was first discovered by Schütz in
[203]. The “quantum formalism” notation introduced in that paper was further developed
in [216] in the context of SU(2) with spin 1/2. In [111] the approach was systematized
and examples from other groups including SU(1, 1) were introduced. In the context of
asymmetric processes, non-abelian symmetries were found in [204] using quantum Lie
algebras, and in [49], [47] processes with self-duality properties were constructed from
the coproduct applied to the Casimir element in the context of quantum Lie algebras.
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At present, many examples of such constructions e.g. in the context of higher rank Lie
algebras have been produced, see e.g. [151].

The connection between duality and intertwining is discussed in [217]. Intertwining
of Markov processes is a well-studied subject see e.g. [174], [173] for recent papers on
intertwining and its applications. Reformulating duality in terms of intertwining is a key
to define duality for processes in the continuum such as interacting Brownian motions,
see [88]. The connection between self-duality and intertwining also leads to a new under-
standing of self-duality properties of the three basic processes studied in this book. Indeed,
in chapter 9 below we will see that consistency, which is a special case of self-intertwining
unifies all the self-dualities for the independent walkers, and symmetric inclusion and
exclusion processes.

The use of intertwining to study spectral properties and related relaxation properties
of Markov generators is the subject of the recent works [172], [175], [185].
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Chapter II

Duality for independent random
walkers: part 1

Abstract: In this chapter we illustrate how the Lie algebraic approach repro-
duces the basic self-duality relation for independent random walkers [69]. After
providing the description of the process generator in terms of the generators of
the Heisenberg algebra, we show how the triangular self-duality function (re-
lated to multi-variate factorial moments) arises in two ways. The first method
is by means of a symmetry acting on the diagonal self-duality function asso-
ciated to reversibility. The symmetry is the total annihilation operator and is
easily deduced form the algebraic description. The second method starts instead
from basic dualities relating the generators of the Heisenberg algebra and then
promotes them to self-duality of the Markov process by composing dualities.
We close the chapter by showing how self-duality is used in the ergodic theory
of the process on the infinite lattice Zd. In particular the infinite-volume pro-
cess has products of Poisson distributions as reversible and ergodic measures.
Under an appropriate moment growth condition, we show that these product
Poisson distributions are the only ergodic distributions.

II.1 The process on a finite set

We start by defining the independent random walkers process on a finite set V . Let
p : V × V → [0,∞) be a non-negative symmetric and irreducible function. By this we
mean that for all x, y ∈ V it holds p(x, y) = p(y, x) ≥ 0 and, furthermore, there exists
n ≥ 2 and a path (x1, x2, . . . , xn) with x1 = x and xn = y such that

∏n−1
i=1 p(xi, xi+1) > 0.

Alternatively we can think of a finite graph G = (V,E) with vertex set V and edge set
E. The edges {x, y} ∈ E are un-oriented and weighted by edge weights p(x, y).

We denote by η : V → NV the initial configuration of particles: at each site x ∈
V we have initially ηx ∈ N particles. Each of these particles perform continuous-time
random walk jumping at rate p(x, y) from site x to site y, and different particles are
independent. More precisely, we consider a collection of such independent random walks
{Xx,i(t)}, labeled by the initial position x ∈ V and by i = 1, . . . , ηx, and define the process

33
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{ηy(t), t ≥ 0} counting the number of walkers at location y ∈ V at time t > 0 by

ηy(t) =
∑
x∈V

ηx∑
i=1

1l{Xx,i(t)=y}. (II.1)

In the above equation empty sums are interpreted as zero. We denote by Ω = N|V | the
state space, that is made of configurations with a finite number of particles since we are
on a finite set V . The process η(t) = (ηx(t))x∈V is a continuous-time Markov chain with
countable state space and therefore is well-defined. Indeed the initial configuration is
forced to have a finite number of particles and the dynamics conserves the number of
particles. Therefore, at every time t ≥ 0, the sum in (II.1) will stay finite.

We denote by Pη the path space measure of {η(t), t ≥ 0} starting from η, and by Eη
the expectation w.r.t. Pη. We denote by δx, the configuration with a single particle at
x ∈ V and no particles anywhere else, i.e.

(δx)y =

{
1 if y ̸= x
0 if y = x.

(II.2)

For a function f : Ω → R we define the semigroup

(Stf)(η) = Eη(f(η(t))) . (II.3)

Then {St, t ≥ 0} defines the generator of the process {η(t), t ≥ 0} via the usual formula

Lf(η) = lim
t→0

Stf(η)− f(η)

t
. (II.4)

Using the explicit (II.1) one obtains the generator of the independent random walkers
process in the form

L =
1

2

∑
x,y∈V

p(x, y)Lx,y (II.5)

=
∑

{x,y}∈E

p({x, y})L{x,y}

where, with a slight abuse of notation p(x, y) = p(y, x) = p({x, y}), and where Lx,y =
Ly,x = L{x,y} is defined as

Lx,yf(η) = ηx(f(η
x,y)− f(η)) + ηy(f(η

y,x)− f(η)) . (II.6)

Here ηx,y is the configuration obtained from η by letting a particle move from x to y, i.e.

ηx,y =

{
η − δx + δy if ηx ≥ 1
η otherwise.

(II.7)

We call Lx,y the single-edge generator. We will see that all the duality properties of the
full generator L on the graph (II.5) follow from the duality properties of the single-edge
generator.
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As we have seen in the first chapter, since we are on a finite set V , the relation between
the generator L and the semigroup St is matrix exponentiation, i.e.,

St = etL =
∞∑
n=0

tnLn

n!
.

In later sections we will also consider the process of independent random walkers on
an infinite set V , such as the lattice Zd. In that setting, when the process is started from
a configuration η ∈ Ω that contains infinitely many particles, at some time t > 0 the sum
in (II.1) might be divergent (i.e., equal to +∞). Thus on an infinite set V one needs
to define a “good” set of initial configurations that guarantees that the process will not
explode. This issue will be further discussed in Section II.5. Furthermore the way to
obtain the semigroup from the generator is also a delicate issue. In our current setting of
independent random walkers, we can however circumvent this issue by taking increasing
limits along sequences of finite configurations, see Section II.5 for more details.

II.2 Symmetries of the generator

In this section we provide the algebraic description of the generator (II.5) in terms of the
Heisenberg algebra (more precisely the conjugate Heisenberg algebra). This will be the
starting point of the algebraic approach to duality, since it will easily yield symmetries of
the generator, that are crucial in the construction of the duality function.

Given a site x ∈ V , we define the particle removal operator ax acting on function
f : NV → R

axf(η) =

{
ηxf(η − δx) if ηx ≥ 1
0 otherwise

(II.8)

and the particle addition operator a†x as

a†xf(η) = f(η + δx) . (II.9)

We also define the commutator of these operators by

[ax, a
†
x] := axa

†
x − a†xax, (II.10)

where the composition rule is understood, i.e.

(axa
†
xf)(η) :=

(
ax(a

†
xf)
)
(η). (II.11)

We denote by I the identity operator

If(η) = f(η). (II.12)

PROPOSITION II.1 (Commutation relations and abstract form of the generator). The
following holds:
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1. The collection of operators (ax)x∈V and (a†x)x∈V defined in (II.8) and (II.9) satisfy
the commutation relations

[ax, a
†
y] = −Iδx,y,

[ax, ay] = 0,

[a†x, a
†
y] = 0, (II.13)

where δx,y is the Kronecker delta.

2. The generator (II.5) of independent random walkers equals

L = −1

2

∑
x,y∈V

p(x, y)(ay − ax)(a
†
y − a†x) (II.14)

or, in other words, the single-edge generator (II.6) equals

Lx,y = −(ay − ax)(a
†
y − a†x) .

We call this the abstract form of the generator, resp. the abstract form of the single-
edge generator.

PROOF. For x ̸= y, (II.13) is immediate. For x = y, the second and third commutators in
(II.13) are also trivial, whereas the first commutator is verified by using the composition
rule (II.11). One has:

(a†xaxf)(η) = (axf)(η + δx) = (ηx + 1)f(η), (II.15)

and

(axa
†
xf)(η) = ηx(a

†
xf)(η − δx) = ηxf(η), (II.16)

and, by taking the difference, the proof of (II.13) is complete.

To prove (II.14) we compute

(aya
†
xf)(η) = ηyf(η + δx − δy) = ηyf(η

y,x), (II.17)

Hence, combining (II.16) and (II.17) and using the the symmetry of p(x, y), one has

−1

2

∑
x,y∈V

p(x, y)(ay − ax)(a
†
y − a†x)f(η) =

1

2

∑
x,y∈V

ηxp(x, y)(f(η
x,y)− f(η))

+
1

2

∑
x,y∈V

ηyp(x, y)(f(η
y,x)− f(η))

= Lf(η). (II.18)
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REMARK II.2 (Tensor product). Notice that a†x, ax are copies (labeled by x ∈ V and
working on the variable ηx) of the operators a†, a defined on functions f : N → R via

a†f(n) = f(n+ 1), af(n) = nf(n− 1) (II.19)

that are represented by infinite dimensional matrices

a† =



0 1 0 0 . . .

0 0 1 0
. . .

0 0 0 1
. . .

0 0 0 0
. . .

...
. . . . . . . . . . . .


a =



0 0 0 0 . . .

1 0 0 0
. . .

0 2 0 0
. . .

0 0 3 0
. . .

...
. . . . . . . . . . . .


(II.20)

In other words, the particle addition operator a†x has to be understood as the tensor
product of identity operators Iy, labeled by y ∈ V , with y ̸= x and a copy of the operator
a†, labeled by x. A similar remark applies to the particle removal operator ax.

REMARK II.3 (Creation and annihilation operators). The particle addition and parti-
cle removal operators are related to so-called creation and annihilation operators of the
physics literature. In physics, the creation and annihilation operators of the canonical
commutation relations are usually defined by their action on the standard orthonormal
basis {en}n≥0 of the space l2(N) by

b†en = en+1,

ben = nen−1. (II.21)

Here en is the vector will all elements equal to zero, except the element at the nth position
which is a 1. The action of the creation and annihilation operators on a general vector
f =

∑
n≥0 f(n)en can be expressed as

b†f =
∑
n≥0

(b†f)(n) en , (II.22)

bf =
∑
n≥0

(bf)(n) en.

On the other hand, using the linearity of operators and (II.21) we have

b†f = b†
∑
k≥0

f(n)en =
∑
n≥0

f(n)b†en =
∑
n≥0

f(n)en+1 =
∑
n≥1

f(n− 1)en , (II.23)

bf = b
∑
n≥0

f(k)en =
∑
n≥0

f(n)ben =
∑
n≥0

f(n)nen−1 =
∑
n≥0

(n+ 1)f(n+ 1)en.

Comparing (II.22) and (II.23) one finds

(b†f)(n) = f(n− 1),

(bf)(n) = (n+ 1)f(n+ 1) (II.24)
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with the convention (b†f)(0) = 0. These operators are represented by infinite dimensional
matrices

b† =



0 0 0 0 . . .

1 0 0 0
. . .

0 1 0 0
. . .

0 0 1 0
. . .

...
. . . . . . . . . . . .


b =



0 1 0 0 . . .

0 0 2 0
. . .

0 0 0 3
. . .

0 0 0 0
. . .

...
. . . . . . . . . . . .


(II.25)

The relation between the addition and removal operators defined in (II.19) and the cre-
ation and addition operators defined in (II.24) reads

a† = (b†)∗, a = b∗, (II.26)

where (b†)∗ (resp. b∗) denotes the adjoint of b† (resp. b) in the space l2(N). Indeed,
comparing the matrices (II.20) and the matrices (II.25) one sees they are related by a
transposition.

REMARK II.4 (Heisenberg algebra and its conjugate). The creation and annihilation op-
erators b†, b in (II.24) form a representation of the Heisenberg algebra, i.e. they satisfy
the canonical commutation relation

[b, b†] = I. (II.27)

As already remarked in Proposition II.1, the particle addition and particle removal oper-
ators form instead a representation of the conjugate Heisenberg algebra, i.e.

[a, a†] = −I.

This is consistent with the content of the previous remark, as “taking the transposed
changes the sign of commutation relations”.

An important consequence of having the generator L in abstract form is that we can
identify operators that commute with L, which we call symmetries. More precisely we
have the following result.

PROPOSITION II.5 (Symmetries of the generator). The generator L in (II.5) commutes
with

S− :=
∑
x∈V

ax, S+ :=
∑
x∈V

a†x. (II.28)

PROOF. To prove that S− commutes with L, use that for all x, y, z ∈ V one has

[(ay − ax)(a
†
y − a†x), az] = (δz,y − δz,x)(ay − ax) ,

which easily follows from the commutation rules (II.13). Therefore, using the expression
(II.14) of the generator L one has

[L, S−] = −1

2

∑
z,x,y∈V

p(x, y)[(ay − ax)(a
†
y − a†x), az] = 0.

The proof for S+ is similar.
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REMARK II.6 (More symmetries and co-product). Notice that the operators that commute
with L naturally form a set which is closed under addition and multiplication. We show
here how we can find more symmetries than S+ and S−. Denote by g the Lie algebra
generated by a†, a, I. If we define

∆(a†) =
a†1 + a†2√

2
, ∆(a) =

a1 + a2√
2

,

then ∆(a†),∆(a) satisfy the same commutation relations as a† and a. Therefore, if we
extend ∆ as an algebra homomorphism to all elements of the universal enveloping algebra
U(g) via

∆(g + h) = ∆(g) + ∆(h) and ∆(gh) = ∆(g)∆(h) ∀ g, h ∈ U(g)

then we obtain a homomorphism ∆ : U(g) → U(g)×U(g) between U(g) and U(g)⊗U(g)
which is called a co-product. It is then the case that the single-edge generator

−(a1 − a2)(a
†
1 − a†2) = L1,2

commutes with all elements ∆(g) with g ∈ U(g). Note however that L1,2 is not of the
form ∆(g) for some g ∈ U(g). This is different from the cases which we will treat in
the next chapters, such as the symmetric exclusion process or the symmetric inclusion
process, where the generator itself is a co-product applied to a central element in U(g).
Indeed, for the Heisenberg algebra, there is no non-trivial central element in U(g).

II.3 Self-duality

Having found symmetries of the generator, we know from the general principles illustrated
in Chapter I that we are one-step away from self-duality. The strategy is that one can
produce useful self-duality relations by acting with symmetries on a trivial self-duality
function, which is in turn provided by reversibility. We show here how the algebraic
approach to duality recovers the basic self-duality relation of independent random walkers
[69].

Notice that, because the configuration space Ω = NV is countable, the generator L
working on functions f : Ω → R corresponds to an infinite matrix with matrix elements

L(η, ξ) = δξ,ηx,y · ηxp(x, y)− δξ,η ·
∑
x,y∈V

ηxp(x, y).

Thus we are in a set-up similar to the one of Section I.3, where we were dealing with
finite state space Markov chains. In particular we can still think of functions f : Ω → R
as column vectors and the action of generator is given by the multiplication of the matrix
L with the vector f , i.e., Lf(η) =

∑
η′∈Ω L(η, η

′)f(η′). The main difference compared to
Section I.3 is that now both the vectors and the matrices are infinite. In order to make
this chapter self-contained we briefly recall the results of Section I.3 by reformulating
them for countable state space Markov chains.
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We recall (cf. Definition I.5) that a measure M on a countable set Ω is said to be
reversible for the Markov process with generator L if we have for all ξ, η ∈ Ω that

M(ξ)L(ξ, η) =M(η)L(η, ξ). (II.29)

The following proposition shows that a family of (un-normalized) Poisson product mea-
sures are reversible measures for independent particles. In what follows we use the con-
vention 0! = 1.

PROPOSITION II.7 (Reversible measure of independent walkers). For all ρ > 0 we have
that the measure

M(ξ) =
∏
x∈V

ρξx

ξx!
(II.30)

is reversible for independent walkers on a finite set V .

PROOF. This follows from the fact that for all n,m ∈ N, n ≥ 1

ρn

n!

ρm

m!
n =

ρn−1

(n− 1)!

ρm+1

(m+ 1)!
(m+ 1),

which implies (II.29).

REMARK II.8 (Invariant measures). As a consequence of the previous proposition, the
homogeneous Poisson product measures are invariant, but of course not ergodic, because
the total number of particles is preserved. In fact, starting the process from a configuration
η ∈ NV with

∑
x∈V ηx = N , the law of the process {η(t) : t ≥ 0} converges as t → ∞ to

the multinomial distribution

ν(N)(η) =
1

ZN,V

N !∏
x∈V ηx!

,

where ZN,V = |V |N is the normalization constant.

We recall (cf. Definition I.2) that a generator L is self-dual with self-duality function
D : Ω× Ω → R if, for all ξ, η ∈ Ω, we have

LD(·, η)(ξ) = LD(ξ, ·)(η). (II.31)

For Markov processes with a countable state space, such as independent random walk-
ers on a finite graph, the duality function D can be viewed as an infinite matrix indexed
by elements of Ω. Then (II.31) reads in matrix notation

LD = DLT , (II.32)

where LT denotes the transposed of L.

The following result, which generalizes and combines Theorem I.7 and Theorem I.9,
shows how to find self-duality functions from reversible measures and symmetries.

THEOREM II.9 (Self-duality via symmetries). Let the generator L be defined on functions
f : Ω → R, where Ω is a countable state space. We have:
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1. Cheap self-duality functions. If M is a positive reversible measure, i.e. M(ξ) > 0
for all ξ ∈ Ω, then

Dcheap(ξ, η) =
1

M(ξ)
δξ,η (II.33)

is a self-duality function.

2. From symmetries to new self-duality functions. If D is a self-duality function and S
is an operator working on functions f : Ω → R which commutes with the generator
L, then also SD and DST are self-duality functions.

3. And back. Conversely, if D is a self-duality function, then there exists an operator
S commuting with L such that D = SDcheap.

PROOF. The proof of item 1. and 2. is analogous to the one of Theorem I.7. Item 3. is
obtained as in the proof of Theorem I.9.

We now use Theorem II.9 to construct the basic self-duality function for independent
random walkers on a finite set V .

THEOREM II.10 (Self-duality of independent random walkers). Define for η, ξ ∈ Ω

D(ξ, η) =
∏
x∈V

d(ξx, ηx), (II.34)

with

d(k, n) =

{
n!

(n−k)! if k ≤ n,

0 otherwise.
(II.35)

Then we have that the independent random walkers generator L in (II.5) is self-dual with
self-duality function D given in (II.34). As a consequence, for all ξ, η ∈ Ω we have

EξD(ξ(t), η) = EηD(ξ, η(t)). (II.36)

PROOF. We apply Theorem II.9. We start from the cheap self-duality function that is
obtained from the reversible measure (II.30) with ρ = 1, i.e.

Dcheap(ξ, η) =
∏
x∈V

dcheap(ξx, ηx) (II.37)

with
dcheap(k, n) = k!δk,n. (II.38)

Since we want to obtain a self-duality function in factorized form, the symmetry we
will choose will also be in factorized form. Therefore, we choose

S = eS
+

=
∏
x∈V

ea
†
x ,

where S+ is defined in (II.28). Then from items 1 and 2 of Theorem II.9 we have that

D := SDcheap
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is again a self-duality. To show that such D is of the form given in (II.34)–(II.35), it
remains to show that

(ea
†
dcheap(·, n))(k) = d(k, n). (II.39)

For a function f : N → R, using a†f(k) = f(k + 1), we find

(ea
†
f)(k) =

∑
ℓ∈N

f(k + ℓ)

ℓ!
(II.40)

Combining together (II.38) and (II.40) we have

(ea
†
dcheap(·, n))(k) =

∑
ℓ∈N

dcheap(k + ℓ, n)

ℓ!
(II.41)

=
∑
ℓ∈N

(k + ℓ)!δk+ℓ,n
ℓ!

(II.42)

=
n!

(n− k)!
1l{n≥k} (II.43)

from which (II.39) follows. We thus have

LD(·, η)(ξ) = LD(ξ, ·)(η).

Since we are working on a countable state space Ω and the particle number is conserved
we can exponentiate this relation and find

StD(·, η)(ξ) = StD(ξ, ·)(η)

for all ξ, η ∈ Ω and for all t ≥ 0. This amounts to (II.36).

The following simple proposition, establishes the relation between the self-duality func-
tion and the homogeneous Poisson product measure νλ with parameter λ > 0.

PROPOSITION II.11 (Expectation of the self-duality function in the Poisson product
measure). Let D be the self-duality function defined in Theorem II.10. For all ξ ∈ Ω and
for all λ > 0, we have∫

D(ξ, η)νλ(dη) = λ|ξ| =

(∫
D(δx, η)νλ(dη)

)|ξ|

for all x ∈ V, (II.44)

where we use the notation |ξ| =
∑

x∈V ξx.

PROOF. This immediately follows from the formula for the factorial moments of the
Poisson distribution: for all k ∈ N

∞∑
n=k

n!

(n− k)!

λn

n!
e−λ = λk. (II.45)
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II.4 Self-duality as a change of representation

It is instructive to see that both the trivial (diagonal) self-duality associated to reversibil-

ity, as well as the triangular self-duality obtained from the symmetry eS
+
=
∏

x∈V e
a†x ,

are consequences of more fundamental dualities relating the generators of the Heisen-
berg algebra. The dualities at the algebra level can in turn can be seen as a change of
representation.

PROPOSITION II.12 (Cheap self-duality as a change of representation). Consider the
representation of the conjugate Heisenberg algebra

af(n) = nf(n− 1)

a†f(n) = f(n+ 1) . (II.46)

Then, as already remarked in (I.76) and (I.77) one has the duality relations

a
dcheap−−−→ a†, a†

dcheap−−−→ a

with
dcheap(k, n) = n!δk,n .

As a consequence independent random walkers with generator L in (II.5) is self-dual with
self-duality function

Dcheap(ξ, η) =
∏
x∈V

dcheap(ξx, ηx) . (II.47)

PROOF. The derivation of the process self-duality with self-duality function (II.47) from
the dualities of the Heisenberg algebra generators follows from the composition rule for
dualities described in Theorem I.19. Indeed the “word”

(ax − ay)(a
†
x − a†y)

is not changed by replacing each element with its dual and inverting the order.

PROPOSITION II.13 (Triangular self-duality as a change of representation). Consider the
operators a, a† defined on functions f : N → R by

af(k) = f(k) + kf(k − 1)

a†f(k) = f(k + 1). (II.48)

They form a representation of the conjugate Heisenberg algebra:

[a, a†] = −I. (II.49)

Furthermore the operators a, a† satisfy a duality relation with the operators a, a† given in
(II.46):

a
d−−→ a†, a†

d−−→ a (II.50)
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with

d(k, n) =
n!

(n− k)!
1l{n≥k}. (II.51)

As a consequence independent random walkers with generator L in (II.5) are self-dual,
with self-duality function

D(ξ, η) =
∏
x∈V

d(ξx, ηx). (II.52)

PROOF. We first verify that the operators a, a† form a representation of the conjugate
Heisenberg algebra. We have

aa†f(k) = a†f(k) + ka†f(k − 1) = f(k + 1) + kf(k)

and
a†af(k) = af(k + 1) = f(k + 1) + (k + 1)f(k)

Taking the difference it gives (II.49).
Next we verify that the operators a, a† satisfy a duality relation with the operators

a†, a. We have

(ad(·, n))(k) = d(k, n) + kd(k − 1, n)

=
n!

(n− k)!
+ k

n!

(n− k + 1)!

=
(n+ 1)!

(n+ 1− k)!

and

(a†d(k, ·))(n) = d(k, n+ 1)

=
(n+ 1)!

(n+ 1− k)!

This shows that a
d−−→ a†. Similarly

(a†d(·, n))(k) = d(k + 1, n)

=
n!

(n− k − 1)!

and

(ad(k, ·))(n) = nd(k, n− 1)

=
n(n− 1)!

(n− 1− k)!

Thus a†
d−−→ a and the proof of (II.50)-(II.51) is concluded.

The derivation of the process self-duality with self-duality function (II.52) from the
dualities of the algebra generators follows from the composition rule for dualities: starting
from the sequence

(ax − ay)(a
†
x − a†y) ,
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replacing each element with its dual and inverting the order, one gets

(ax − ay)(a
†
x − a†y) ,

which is equal (ax − ay)(a
†
x − a†y) because

a = a+ I a† = a† .

II.5 Infinite configurations

The self-duality derived so far for independent random walkers on a finite set extends to
independent random walkers on a countable infinite set V . In particular we will be mostly
interested in the case V = Zd. The extension of self-duality is strictly related to the proof
of existence of the process with infinitely many particles. In this section we first review
the standard process construction by increasing volume limits and then we address the
self-duality with infinitely many particles.

Let p : V × V → [0,∞) be an irreducible transition function, and let ηx particles be
placed initially at each site x ∈ V . The particles evolve independently, and we denote by
ηx(t) the number of particles at time t > 0 defined as in (II.1). In order for the individual
walker to be well-defined we require

sup
x∈V

∑
y∈V

p(x, y) <∞. (II.53)

This guarantees that, with probability 1, the single particle will not escape to infinity in
a finite time. As a consequence, under this condition the process of independent random
walkers on the countable set V initialized with finitely many particles is also well defined.

In order to avoid explosions in finite time when the process of independent particles
on V is initialized with infinitely many particles (explosion meaning that at a certain time
there are infinitely many particles at a given site), one has to select the initial configuration
from a suitable subset of the configuration space. We will call this the “set of allowed
configurations” and we will denote it by Ωalw ⊆ Ω = NV . We first introduce a truncation
argument that will be useful in the process construction.

Process started from a truncated configurations. Let (Vn)n∈N be an approximating
increasing sequence of finite volumes. i.e. Vn ↗ V as n → ∞. For η ∈ Ω and n ∈ N
we denote by ηVn the truncated configuration which coincides with η on Vn and is zero
outside Vn. We denote by {ηVn(t), t ≥ 0} the process of independent random walkers
moving on V starting from ηVn . For every n ∈ N this is a well defined process since the
number of walkers is finite.

Increasing limit. We say that the process {η(t), t ≥ 0} with infinitely many particles is
the increasing limit of the sequence of processes started from truncated configurations if
there exists a coupling such that almost surely in this coupling we have ηVn(t) ≤ ηVn′ (t)
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for all t ≥ 0 and for n ≤ n′ (where η ≤ η′ means ηx ≤ η′x for all x ∈ V ). We denote this
increasing limit by ηVn(t) ↗ η(t) as n→ ∞.

Notice that at this point the limit {η(t) : t ≥ 0} exists but might still be infinite at
certain vertices x ∈ V . In order to prevent this we have to choose initial configurations
from a suitable set.

DEFINITION II.14 (Allowed configurations). Let Ω = NV , we define a set of allowed
configurations Ωalw to be any subset of Ω satisfying the following properties:

i) the process {η(t), t ≥ 0} of independent random walkers starting from η ∈ Ωalw is
well-defined and is the increasing limit of ηVn(t) for a sequence Vn ↗ V ;

ii) if η ∈ Ωalw, then η(t) ∈ Ωalw for all t ≥ 0.

As a consequence of Definition II.14 the existence of the process with infinitely many
particles amounts to showing that Ωalw is a sufficiently rich set. Several choices for the set
of allowed configurations have been proposed in the literature, see for instance [3].

REMARK II.15 (Example: p(x, y) translation invariant.). Following [69], we here give
more details for the case V = Zd and p(x, y) = π(y − x) that is translation invariant and
has finite second moment

∑
x∈Zd ∥x∥2π(x) < ∞. In this case we may choose Ωalw as the

subset of configurations growing at most polynomially

Ωalw = ∪c>0,n∈N{η ∈ Ω : ηx ≤ c(∥x∥n + 1) ∀x ∈ Zd}. (II.54)

REMARK II.16 (Process generator). We do not address here the description of the process
generator and its domain. Intuitively, the “generator” of the process of independent
random walkers with infinitely many particles should be the analogue of the generator
that we defined before in finite volume, i.e.,

Lf(η) =
∑
x,y∈V

p(x, y)ηx(f(η
x,y)− f(η)),

but now acting on local functions f and evaluated in allowed configurations η. The
relation between this informal generator and the semigroup {S(t) : t ≥ 0} of the process
{η(t) : t ≥ 0} is pointwise and restricted to the set of allowed configurations, i.e.

lim
t→0

S(t)f(η)− f(η)

t
= Lf(η)

for all f local bounded functions (i.e., depending only on a finite number of ηx, x ∈ V ) and
η ∈ Ωalw. Moreover, we have the analogue of the usual relation d

dt
S(t) = LS(t), namely:

S(t)f(η)− f(η) =

∫ t

0

LS(s)f(η)ds =

∫ t

0

S(s)Lf(η)ds .

See [3] for a detailed account on these issues.

Duality via truncated configurations. Let Ωfinite := {ξ ∈ Ω :
∑

x∈V ξx < ∞} denote
the set of finite configurations. Then, via truncated configurations, one obtains the self-
duality for the system with infinitely many particles. This is shown in the following
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PROPOSITION II.17 (Infinitely-many particles self-duality). For every ξ ∈ Ωfinite, η ∈ Ωalw

we have the self-duality relation

EηD(ξ, η(t)) = EξD(ξ(t), η). (II.55)

where D is the function defined in (II.34)–(II.35).

PROOF. We will exploit the monotonicity property of the duality function with respect
to the second variable, i.e. D(ξ, η) ≤ D(ξ, η′) for η ≤ η′. Let Ecη denote the expectation
with respect to the entire sequence of approximating processes {ηVn(t), t ≥ 0, n ∈ N}
started from the truncations ηVn of η ∈ Ωalw and coupled in such a way to have monotonic
convergence ηVn(t) ↗ η(t) (i.e. ηVn(t) ≤ ηVn′ (t) for n ≤ n′, t ≥ 0 almost-surely in this
coupling). From monotonicity of D(ξ, ·) and monotonicity of ηVn(t), we have that

D(ξ, ηVn(t)) ≤ D(ξ, ηVn′ (t)), for n ≤ n′ a.s.. (II.56)

Then, by the fact the ηVn(t) ↗ η(t) we have

D(ξ, η(t)) := lim
n→∞

D(ξ, ηVn(t)) a.s.. (II.57)

Hence we have

lim
n→∞

EηVn
[
D(ξ, ηVn(t))

]
= lim

n→∞
Ecη
[
D(ξ, ηVn(t))

]
= Ecη

[
lim
n→∞

D(ξ, ηVn(t))
]

= Ecη [D(ξ, η(t))]

= Eη [D(ξ, η(t))] ,

where the second equality is justified by the monotone convergence theorem. Similarly we
define D(ξ(t), η) as the (monotonic) limit of limn→∞D(ξ(t), ηVn) and thus we can write

lim
n→∞

Eξ
[
D(ξ(t), ηVn)

]
= Eξ

[
lim
n→∞

D(ξ(t), ηVn)
]
= Eξ [D(ξ(t), η)] . (II.58)

Now the duality in infinite volume (II.55) follows from the duality identity for the ap-
proximating processes

EηVnD(ξ, ηVn(t)) = EξD(ξ(t), ηVn) ∀ξ ∈ Ωfinite, η ∈ Ωalw, (II.59)

by taking the limit n→ ∞.

REMARK II.18 (Finiteness). Proposition II.17 does not exclude the possibility that both
expectations in (II.55) are infinite. The finiteness of expectations can be verified in the
setting of translation invariant transition rates of [69] with Ωalw as in (II.54). In such
setting, additionally to the statement (II.55), we have that the r.h.s. satisfies

EξD(ξ(t), η) =
∑
ξ′

D(ξ′, η)pt(ξ, ξ
′) <∞, (II.60)

and hence also the l.h.s. EηD(ξ, η(t)) <∞.



48 CHAPTER II. DUALITY FOR INDEPENDENT RANDOM WALKERS: PART 1

REMARK II.19 (Process construction via duality.). In view of Proposition II.17, one can
construct the process with infinitely many particles via duality. More precisely, we can
define the expectations EηD(ξ, η(t)) for an infinite configuration η ∈ Ω via

EηD(ξ, η(t)) := EξD(ξ(t), η) =
∑

ξ′∈Ωfinite

pt(ξ, ξ
′)D(ξ′, η), (II.61)

where pt(ξ, ξ
′) denotes the transition probabilities in the finite process. Of course the

definition (II.61) only makes sense when∑
ξ′∈Ωfinite

pt(ξ, ξ
′)D(ξ′, η) <∞ (II.62)

This condition, that only depends on the initial configuration η and the countable state
space Markov process {ξ(t), t ≥ 0}, suggests to define a new set of allowed configurations
that are the ones for which (II.62) holds for all t ≥ 0 and ξ ∈ Ωfinite. Hence, in this way we
can construct the infinite volume process from the process with only finitely many particles
by means of the self-duality relation. The expectations EηD(ξ, η(t)), ξ ∈ Ωfinite fix indeed
all the moments of the process {η(t), t ≥ 0}, and this in turn defines uniquely the process
provided that these moments do not grow too fast (e.g. they satisfy the Carleman’s
condition). This is particularly useful when the existence of the process {η(t), t ≥ 0}
cannot be obtained from general methods such as the construction of the semigroup via
the Hille-Yosida theorem or monotonicity process.

We can use now the self-duality relation (II.55) to analyze the properties of the infinite-
volume process {η(t), t ≥ 0} with infinitely many particles via the process {ξ(t), t ≥ 0}
with finitely many particles. In particular, in the next section, we establish the following
properties:

1. the infinite-volume process {η(t), t ≥ 0} has homogeneous products of Poisson
distributions as reversible and ergodic measures;

2. these product Poisson distributions are the only ergodic distributions within a class
of so-called tempered measures (see below for a precise definition). Intuitively the
condition of temperedness means that all moments are finite and do not grow too
fast as a function of the number of dual particles. The growth condition is needed
in order to ensure that the moments uniquely determine the measure.

The restriction to finite moments distributions arises from the fact that we have to consider
starting measures for which expectations of the self-duality functions are well-defined.
We will extend this result in Section III.6 by using duality of independent walkers with a
deterministic system. There it will be shown that Poisson product measures are the only
ergodic distributions.

II.6 The set of ergodic tempered measures in Zd

Our aim in this section is to show – using self-duality – that for the infinite system of
independent random walkers on the lattice Zd with a translation invariant p(x, y) having
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a finite second moment, the homogeneous Poisson product measure νλ with parameter
λ > 0 and marginals

νλ(ηx = k) =
λk

k!
e−λ, x ∈ Zd, k ∈ N , (II.63)

are the only measures that are invariant and ergodic, at least within a proper set of
tempered measures.

We start with the following analogue of the Proposition II.11 in the infinite volume
setting, whose proof is identical to the finite volume case.

PROPOSITION II.20 (Expectation of the self-duality function in the Poisson product
measure). Let D be the self-duality function defined in Theorem II.10. For all ξ ∈ Ωfinite

and for all λ > 0, we have∫
D(ξ, η)νλ(dη) = λ|ξ| =

(∫
D(δ0, η)νλ(dη)

)|ξ|

, (II.64)

where we use the notation |ξ| =
∑

x∈Zd ξx.

As a consequence we obtain the following:

THEOREM II.21 (Invariance and ergodicity of product Poisson measures). The homoge-
neous Poisson product measures νλ with parameter λ > 0 are invariant and ergodic for
the independent random walkers process on Zd.

PROOF. To prove invariance, we start from the self-duality integrated against Poisson
product measures∫

EηD(ξ, η(t))νλ(dη) =

∫
EξD(ξ(t), η)νλ(dη) for ξ ∈ Ωfinite.

Using Fubini theorem in the r.h.s. and applying Proposition II.20 we have∫
EηD(ξ, η(t))νλ(dη) = Eξλ|ξ(t)| = λ|ξ|, (II.65)

where the last equality follows from conservation of the number of particles in the process
{ξ(t), t ≥ 0}. Another application of the Proposition II.20 yields λ|ξ| =

∫
D(ξ, η)νλ(dη).

which, together with (II.65) gives∫
EηD(ξ, η(t))νλ(dη) =

∫
D(ξ, η)νλ(dη). (II.66)

Because the functions D(ξ, ·) in Theorem II.10 are measure determining, we conclude
from (II.66) the invariance of the Poisson product measure νλ.

In what follows we prove mixing which implies ergodicity. To prove mixing, by density
of the vector space spanned by linear combinations of the functions D(ξ, ·) in L2(νλ), it
suffices to show that for all ξ, ξ′ finite configurations, we have

lim
t→∞

∫
EηD(ξ, η(t))D(ξ′, η)νλ(dη) =

∫
D(ξ, η) νλ(dη)

∫
D(ξ′, η) νλ(dη).
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By Proposition II.20 this is equivalent to proving

lim
t→∞

∫
EηD(ξ, η(t))D(ξ′, η)νλ(dη) = λ|ξ|+|ξ′| (II.67)

for all ξ, ξ′ ∈ Ωfinite. Now, using self-duality and Fubini, we have∫
EηD(ξ, η(t))D(ξ′, η)νλ(dη) = Eξ

∫
D(ξ(t), η)D(ξ′, η)νλ(dη).

Denote ξ(t) ⊥ ξ′ the event that the supports of ξ(t) and ξ′ are disjoint. If this event
occurs then we have

D(ξ(t), η)D(ξ′, η) = D(ξ(t) + ξ′, η),

and |ξ(t) + ξ′| = |ξ(t)|+ |ξ′| = |ξ|+ |ξ′|. Hence if ξ(t) ⊥ ξ′ then Proposition II.20 implies

1l{ξ(t)⊥ξ′}

∫
D(ξ(t), η)D(ξ′, η)νλ(dη) = 1l{ξ(t)⊥ξ′}λ

|ξ|+|ξ′| Pξ − a.s..

Thus, the proof of (II.67) would follow if we could prove that the probability that the
event ξ(t) ⊥ ξ′ does not occur goes to zero in the limit of large times. By translation
invariance, this will be a consequence of the fact that the continuous-time random walkers
eventually spread out all over the lattice. Denoting by pt(x, y) the transition probability
of one continuous-time random walk, we have the estimate

Pξ(ξ(t) ̸⊥ ξ′) ≤
∑
x,y

ξxξ
′
ypt(x, y),

and the r.h.s. of this inequality tends to zero because pt(x, y) tends to zero for all x, y
and the sum over x, y is a finite sum because ξ and ξ′ are finite configurations. Hence we
have Pξ(ξ(t) ̸⊥ ξ′) → 0 as t→ ∞. Therefore∣∣∣∣∫ EηD(ξ, η(t))D(ξ′, η)νλ(dη)− λ|ξ|+|ξ′|

∣∣∣∣
≤ Eξ

(
1l{ξ(t)̸⊥ξ′}

∫
D(ξ(t), η)D(ξ′, η)νλ(dη)

)
+Pξ(ξ(t) ̸⊥ ξ′)λ|ξ|+|ξ′|. (II.68)

Now we use the uniform estimate

sup
|ξ|=n
|ξ′|=m

∫
D2(ξ, η)D2(ξ′, η)νλ(dη) ≤ Kn,m,

for some constant Kn,m. This estimate is easily obtained by noting that D2(ξ, η)D2(ξ′, η)
is a polynomial of degree at most 2n + 2m, and d(i, k) ≤ ki for all i ≤ k. Then, using
Cauchy-Schwarz we find

Eξ
(
1l{ξ(t)̸⊥ξ′}

∫
D(ξ(t), η)D(ξ′, η)νλ(dη)

)
≤
√
K|ξ|,|ξ′|

√
Pξ(ξ(t) ̸⊥ ξ′).



II.6. THE SET OF ERGODIC TEMPERED MEASURES IN Zd 51

Hence, we conclude

lim
t→∞

∣∣∣∣∫ EηD(ξ, η(t))D(ξ′, η)νλ(dη)− λ|ξ|+|ξ′|
∣∣∣∣ = 0,

which proves (II.67).

To further characterize the invariant measures of the process {η(t) : t ≥ 0}, we define
a class of so-called tempered measures.

DEFINITION II.22 (Tempered measures). We call a probability measure ν on Ω tempered if
all the moments

∫
D(ξ, η)ν(dη) exist and moreover we have the Carleman growth condition

ensuring the fact that ν is determined by these moments. More precisely we require that
for all n

cn := sup
|ξ|=n

∫
D(ξ, η)ν(dη) <∞, (II.69)

and we have the growth condition ∑
n≥1

(cn)
−1/n = ∞. (II.70)

We denote by P the class of all tempered probability measures on Ω.

Notice that by self-duality and conservation of the number of particles, this condition
is preserved in time, i.e., if the process is started from a measure ν with constants cn
then, for all t > 0, the evolved measure νt has the same constants. The condition (II.70)
ensures that if ν, ν ′ ∈ P have the same expectations for all functions D(ξ, ·), then they
are equal. This means that on P the D-transform defined via

ν̂(ξ) =

∫
D(ξ, η)ν(dη), ξ ∈ Ωfinite (II.71)

is well-defined and determines the measure, i.e., ν, ν ′ ∈ P and ν̂ = ν̂ ′ implies that ν = ν ′.
The following theorem shows that invariance of a measure in P is equivalent with the

measure having harmonic D-transform.

THEOREM II.23 (Invariant measures and D-transform). Let ν ∈ P. The following two
statements are equivalent

i) ν is an invariant measure.

ii) ν̂ is harmonic, i.e., for all ξ ∈ Ωfinite we have

Eξν̂(ξ(t)) = ν̂(ξ).

PROOF. If ν is invariant then for all t ≥ 0

ν̂(ξ) =

∫
EηD(ξ, η(t))ν(dη) = Eξν̂(ξ(t)), (II.72)
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where in the first equality we used invariance and in the second equality we used self-
duality and Fubini. Conversely if ν̂ is harmonic then, by self-duality

ν̂(ξ) = Eξν̂(ξ(t)) =
∫

EηD(ξ, η(t))ν(dη),

which implies that ν and νt, that are both in P, have the same D-transform, and are
therefore equal.

DEFINITION II.24 (Successful coupling). We say that there exists a successful coupling
if for all ξ, ξ′ with |ξ| = |ξ′|, there exists a coupling of the path space measures (i.e., a
measure Pξ,ξ′ on trajectories {(ξ(1)(t), ξ(2)(t)) : t ≥ 0} with marginals Pξ, and Pξ′) such
that the coupling time

τ := inf{T > 0 : ξ(1)(t) = ξ(2)(t) ∀t > T}

is Pξ,ξ′ almost surely finite.

The following lemma shows that the existence of a successful coupling implies that
the D-transform ν̂ is a function of the number |ξ| of dual particles.

LEMMA II.25 (Successful coupling and invariant measure). If there exists a successful
coupling, and ν is a tempered invariant measure, then ν̂(ξ) = ν̂(ξ′) if |ξ| = |ξ′|.

PROOF. Assume that ν is invariant and let ξ, ξ′ be such that |ξ| = |ξ′|. Then

ν̂(ξ) = Eξν̂(ξ(t))
= Eξ,ξ′ ν̂(ξ(1)(t))
= Eξ,ξ′

(
ν̂(ξ(2)(t))1l{ξ(1)(t)=ξ(2)(t)}

)
+ Eξ,ξ′

(
ν̂(ξ(1)(t))1l{ξ(1)(t)̸=ξ(2)(t)}

)
. (II.73)

By (II.69) we may bound

Eξ,ξ′
(
ν̂(ξ(i)(t))1l{ξ(1)(t)̸=ξ(2)(t)}

)
≤ c|ξ|Pξ,ξ′

(
ξ(1)(t) ̸= ξ(2)(t)

)
i = 1, 2.

Therefore, since the coupling is successful, by dominated convergence, (II.73) implies

ν̂(ξ) = Eξ,ξ′
(
ν̂(ξ(2)(t))

)
+ o(1)

= Eξ′ ν̂(ξ(t)) + o(1)

= ν̂(ξ′) + o(1). (II.74)

The result follows by taking the limit t→ ∞.

The successful coupling in the case of independent random walks moving on Zd is
very simple. If ξ =

∑n
i=1 δxi and ξ′ =

∑n
i=1 δx′i , we couple the dn dimensional random

walks starting at (x1, . . . , xn) and (x′1, . . . , x
′
n) by the so-called Ornstein coupling. This

coupling, denoted by (X1(t), . . . , Xk(t);Y1(t), . . . , Yk(t)), is described as follows. Initially
(X1(0), . . . , Xk(0)) = (i1, . . . , ik), (Y1(0), . . . , Yk(0)) = (i′1, . . . , i

′
k) with k = nd. Then the

processes run independently until the coordinates X1(t) and Y1(t) are equal for the first
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time. This will happen with probability one because the difference |X1(t) − Y1(t)| is a
one-dimensional continuous-time nearest neighbor random walk, which is recurrent. From
that moment on, we let X1(t) and Y1(t) perform identical jumps, and wait now for the
first moment until X2(t) and Y2(t) are equal, etc., until eventually Xi(t) = Yi(t) for all
i = 1, . . . , nd.

The following theorem shows that the only ergodic invariant measures, within the set
of tempered measures, are the Poisson product measures.

THEOREM II.26 (Uniqueness of tempered ergodic invariant measure). If ν is tempered,
invariant and ergodic then ν = νλ for some λ > 0.

PROOF. If ν is tempered and invariant, by the existence of a successful coupling we
conclude that ν̂(ξ) = f(|ξ|) for some function f : N → R. We will show that f(n +
m) = f(n)f(m). This implies f(n) = λn and hence by uniqueness of the D-transform
we deduce via (II.64) that ν is the Poisson product measure νλ. Let ξ ∈ Ωfinite with
|ξ| = n and ξ′ ∈ Ωfinite with |ξ′| = m. Denote by Stφ(η) = Eη(φ(η(t)) the semigroup and

STφ = 1
T

∫ T
0
Stφdt the ergodic average. Then by the ergodic theorem

STD(ξ, ·) → f(n) as T → ∞, ν − a.s.

Hence by dominated convergence, using (II.69),∫
D(ξ′, η)STD(ξ, ·)(η)ν(dη) → f(m)f(n) as T → ∞. (II.75)

On the other hand, using duality we have

∫
D(ξ′, η)STD(ξ, ·)(η)ν(dη) = 1

T

∫ T

0

Eξ
∫
D(ξ′, η)D(ξ(s), η)ν(dη)ds. (II.76)

On the event ξ(s) ⊥ ξ′ we have D(ξ′, η)D(ξ(s), η) = D(ξ′ + ξ(s), η) and hence because
then also |ξ′ + ξ(s)| = n +m we have

∫
D(ξ′, η)D(ξ(s), η)ν(dη) = f(n +m). Therefore,

using that Pξ(ξ(s) ⊥ ξ′) → 1 as s→ ∞, and dominated convergence we conclude

1

T

∫ T

0

Eξ
∫
D(ξ′, η)D(ξ(s), η)ν(dη)ds→ f(n+m), (II.77)

as T → ∞. Combining (II.75), (II.76), (II.77) then yields

f(n+m) = f(n)f(m),

and hence f(n) = λn.

REMARK II.27 (Beyond tempered measures). Because we use self-duality we restrict nec-
essarily to measures in P. At this point, whether there exist invariant measures not in P

is still an open problem. It is related to the problem of the possible limit points (in time)
of the time-evolved distribution when started from a distribution for which e.g. only a
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finite number of moments exist, such as a distribution with power law tails (e.g. a discrete
Pareto distribution). In that case, the limiting distribution cannot be characterized via
self-duality. We shall solve this problem in Section III.6 where we show that Poisson
product measure are the only ergodic invariant measure in Zd. In other words we can
remove the assumption of temperedness by switching from the use of self-duality to the
use of duality with uniformly bounded duality functions.

Invariant measures ergodic under translations. We have shown that for all tem-
pered measures ν which are invariant and ergodic there is the relation∫

D(ξ, η)ν(dη) = λ|ξ| =

(∫
D(δ0, η)ν(dη)

)|ξ|

(II.78)

and as consequence ν is a homogeneous product Poisson measure: ν = νλ. Now we
show that the same holds for the invariant tempered measures that are ergodic under
translations. Hence every such measure is a homogeneous product Poisson measur, and
thus also automatically ergodic under the time evolution of the independent walkers.

THEOREM II.28 (Stationary measure ergodic under translations). Let ν be an invariant
measure which is ergodic under translations and tempered. Then we have (II.78). Hence
ν is the Poisson product measure νλ with λ =

∫
D(δ0, η)ν(dη) and, as a consequence, ν is

also ergodic for the process {η(t) : t ≥ 0}.

PROOF. Since ν is invariant, we have that its D-transform ν̂ is harmonic. Because for
independent random walkers we have a successful coupling and ν is tempered, we conclude
ν̂(ξ) = f(|ξ|) for some function f : N → R. But this implies that for all x1, . . . , xn and
y1, . . . , yn ∈ Zd we have∫

D

(
n∑
i=1

δxi , η

)
ν(dη) =

∫
D

(
n∑
i=1

δyi , η

)
ν(dη). (II.79)

Put ΛN = [−N,N ]d ∩ Zd, and λ =
∫
D(δ0, η)ν(dη). By the Birkhoff ergodic theorem we

have, ν a.s.,
1

|ΛN |
∑
y∈ΛN

D(δy, η) → λ as N → ∞. (II.80)

As a consequence of (II.79), for all N ∈ N, we have∫
D

(
n∑
i=1

δxi , η

)
ν(dη)

=
1∣∣{y1, . . . , yn ∈ ΛN : y1 ̸= . . . ̸= yn}

∣∣ · ∑
y1,...,yn∈ΛN
y1 ̸=... ̸=yn

∫ n∏
i=1

D(δyi , η)ν(dη).

Since for all n ∈ N it holds

lim
N→∞

∣∣{y1, . . . , yn ∈ ΛN}
∣∣∣∣{y1, . . . , yn ∈ ΛN : y1 ̸= . . . ̸= yn}

∣∣ = 1,



II.7. ADDITIONAL NOTES 55

then we obtain∫
D

(
n∑
i=1

δxi , η

)
ν(dη)

= lim
N→∞

1∣∣{y1, . . . , yn ∈ ΛN : y1 ̸= . . . ̸= yn}
∣∣ · ∑

y1,...,yn∈ΛN
y1 ̸=... ̸=yn

∫ n∏
i=1

D(δyi , η)ν(dη)

= lim
N→∞

(
1

|ΛN |

)n ∑
y1,...,yn∈ΛN

∫ n∏
i=1

D(δyi , η)ν(dη)

= λn. (II.81)

where, in the last identity we used the ergodic theorem (II.80), dominated convergence
and the fact that ν is tempered.

II.7 Additional notes

The reformulation of reaction diffusion systems in terms of creation and annihilation op-
erators stems originally from Doi and Peliti see [186], [76], [1]. In the physics literature
this formalism is known under names such as Doi-Peliti field theory, path integral ap-
proach to reaction diffusion systems. The symmetries of the random walk generator and
corresponding dualities have been introduced in [111]. In [69] self-duality for independent
random walkers is proved, using direct computations with the generator. In [69] a proof
of existence of the infinite systems of independent random walkers starting from appro-
priate initial configurations (growing at most polynomially at infinity) is given. In [69]
duality is also used to prove macroscopic properties of reaction-diffusion systems including
hydrodynamic limits, fluctuations around the hydrodynamic limit.

The use of duality combined with coupling to prove properties of the set of invariant
measures, via a characterization of bounded harmonic functions of the dual process, was
used in [167], Chapter 8, for the symmetric exclusion process. In the setting of independent
random walkers, [3] uses monotonicity and coupling to characterize invariant measures of
monotone zero range processes, which include independent random walkers. In the context
of more general particle systems with duality, recently in [194] a general characterization
of ergodic tempered measures is given, using the methodology of this chapter.



56 CHAPTER II. DUALITY FOR INDEPENDENT RANDOM WALKERS: PART 1



Chapter III

Duality for independent random
walkers: part 2

Abstract: In this chapter, we continue the exploration of dualities for inde-
pendent random walkers. By taking the “many particle” limit, a deterministic
process (a system of ODEs) arises as a dual process, with a duality func-
tion which is also obtained by a proper rescaling of the self-duality function of
Chapter II. This deterministic process is in turn self-dual with a very simple
duality function. From the algebraic perspective, we show that behind all these
dualities there is always the same abstract object, which is written in terms
of the Heisenberg algebra generators. The dualities then arise by consider-
ing several representations of the algebra. From the analytic perspective we
introduce generating functions to show the equivalence of all these dualities.
When interpreted as Poisson averaging, the generating function serves also as
intertwining operator. Furthermore, the use of generating functions gives a
full classification of all product self-dualities for independent random walkers,
which can essentially be of two types: either the triangular single-site self-
dualities of Chapter II or self-dualities involving Charlier polynomials. We
close the chapter with two applications. First, by using the duality with the
deterministic system, we complete the ergodic theory of independent random
walkers on the infinite lattice Zd, removing the restrictive assumption of an ap-
propriate moment growth condition that was necessary in Chapter II. Second,
for asymmetric random walkers, we state duality with the reversed process and
use this to compute the joint moment generating function of currents along
edges.

III.1 Many particle limit and new dualities

Consider the independent random walk process {η(t), t ≥ 0} on a finite vertex set V
driven by an irreducible and symmetric transition function p(x, y) where x, y ∈ V . We
define a sequence of initial configurations η(N), N ∈ N with a total number of particles of
order N , i.e. for all x ∈ V and N ∈ N,

η(N)
x = ⌊Nζx⌋,

57
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for some configuration ζ : V → [0,+∞)V . This implies that η
(N)
x /N → ζx as N → ∞.

We then have the following result.

THEOREM III.1 (Scaling limit and duality of independent random walkers). As N →
∞, the process {η(N)(t)/N : t ≥ 0} weakly converges (in the Skorohod topology) to a
deterministic process {ζ(t) : t ≥ 0} on [0,∞)V which is the solution of the following
system of linear ODE’s:

dζx(t)

dt
=
∑
y∈V

p(x, y)(ζy(t)− ζx(t)). (III.1)

This deterministic process {ζ(t) : t ≥ 0} is dual to the independent random walk process
{ξ(t) : t ≥ 0} with duality function

D(ξ, ζ) =
∏
x∈V

ζξxx . (III.2)

PROOF. The proof of the scaling limit is a classical application of the Trotter Kurtz
theorem [84], i.e., we show that the generator L(N) of the process ζ(N)(t) := η(N)(t)/N
converges as N → ∞ to the generator of the deterministic system (III.1) which equals

Lf(ζ) =
∑
x,y∈V

p(x, y)(ζy − ζx)
∂f(ζ)

∂ζx

or, using the symmetry p(x, y) = p(y, x),

Lf(ζ) = −1

2

∑
x,y∈V

p(x, y)(ζx − ζy)

(
∂f(ζ)

∂ζx
− ∂f(ζ)

∂ζy

)
. (III.3)

For N fixed, the generator of {ζ(N)(t), t ≥ 0} reads

L(N)f(ζ) =
N

2

∑
x,y∈V

p(x, y)
(
ζx
(
f
(
ζ − 1

N
δx +

1
N
δy
)
− f(ζ)

)
+ζy

(
f
(
ζ − 1

N
δy +

1
N
δx
)
− f(ζ)

) )
.

Assuming now that f : [0,∞)V → R is smooth, by Taylor expansion, we find

lim
N→∞

L(N)f = Lf,

where the convergence is uniform on compact sets. Because such smooth f are a core of
the generator L, we conclude that {ζ(N)(t) : t ≥ 0} → {ζ(t) : t ≥ 0} as N → ∞, where
the convergence is weak convergence in the Skorohod topology.

The duality relation between the deterministic system {ζ(t) : t ≥ 0} and the inde-
pendent random walk process {η(t) : t ≥ 0} could be proved by a direct computation by
plugging in the duality function (III.2) into the generator (III.3). In this way we would
find the generator duality

LD(·, ζ)(ξ) = LD(ξ, ·)(ζ),
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which, by exponentiating, would give the semigroup duality. Alternatively, we can start
from the self-duality relation of independent random walkers and then use the scaling
limit. Let {ξ(t), t ≥ 0} (starting from ξ ∈ NV at time zero) a copy of the process
{η(t) : t ≥ 0} on V . Then

EηD(ξ, η(t)) = EξD(ξ(t), η) (III.4)

with D given by (see (II.34)-(II.35))

D(ξ, η) =
∏
x∈V

ηx!

(ηx − ξx)!
.

Let n := |ξ| =
∑

x∈V ξx, then D(ξ, ·) is a polynomial of degree n, hence we put η(N) =
⌊Nζ⌋ and η(N)(t) = ⌊Nζ(t)⌋, divide by Nn, take the limit N → ∞ and find, using the
convergence {η(N)(t) : t ≥ 0} → {ζ(t) : t ≥ 0}, that

1

Nn
D(ξ, η(N)(t)) →

∏
x∈V

ζx(t)
ξx as N → ∞,

and
1

Nn
D(ξ(t), η(N)) →

∏
x∈V

ζξx(t)x as N → ∞.

As a consequence, we can take the limit as N → ∞ in the self-duality relation (III.4) and
obtain

EζD(ξ, ζ(t)) = EξD(ξ(t), ζ),

with D given by (III.2).

REMARK III.2 (Many particle limit). Theorem III.1 illustrates a method that will be used
several times in later chapters. Starting from a self-duality relation, and scaling one of the
two processes, one obtains a duality relation between the limiting process and the original
process. In this case the limiting process is deterministic, and so we have a duality relation
between a continuous deterministic system and a discrete stochastic system.

REMARK III.3 (Mass conservation). From the symmetry of p(x, y) it immediately follows
that the deterministic dynamics (III.1) conserves the total “mass” |ζ(t)| :=

∑
x∈V ζx(t).

This conservation law corresponds to the conservation of particle number in the indepen-
dent random walkers process.

REMARK III.4 (The duality on two sites). Consider the system of equations (III.1) for
simplicity in the context of two vertices, V = {1, 2} and p(1, 2) = 1. Then it is clear
that from an initial condition (ζ1, ζ2) this system converges exponentially fast to its stable
fixed point ζ∗ = ( ζ1+ζ2

2
, ζ1+ζ2

2
). Let us see how this is consistent with our duality. The

dual system is a system of independent random walkers on two vertices: starting from the
initial state (ξ1, ξ2), the process (ξ1(t), ξ2(t)) will converge as t → ∞ to (X, ξ1 + ξ2 −X)
whereX is a Binomial random variable BIN(n, p) with parameters n = ξ1+ξ2 and p = 1/2.
Therefore,

lim
t→∞

EζD(ξ, ζ(t)) = lim
t→∞

EξD(ξ(t), ζ)

=

ξ1+ξ2∑
k=0

(
ξ1 + ξ2
k

)
1

2ξ1+ξ2
ζk1 ζ

ξ1+ξ2−k
2 =

(
ζ1 + ζ2

2

)ξ1+ξ2
= D(ξ, ζ∗),
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which indeed shows that ζ(t) → ζ∗ as t→ ∞.

III.2 Duality as a change of representation

We have seen in Section II.4 that the self-duality of independent random walkers arises
a change of representation between the Heisenberg algebra and the conjugate Heisenberg
algebra. More precisely, recalling the representation of the conjugate Heisenberg algebra
[a, a†] = −I given by

af(n) = nf(n− 1) a†f(n) = f(n+ 1),

then the self-duality of

L = −1

2

∑
x,y∈V

p(x, y)(ay − ax)(a
†
y − a†x), (III.5)

follows from the basic dualities a
d−−→ a† and a†

d−−→ a with d(k, n) = n!
(n−k)!1l{n≥k} and

af(k) = f(k) + kf(k − 1) a†f(k) = f(k + 1).

An important observation at this point is that also the generator (III.3) of the deter-
ministic process {ζ(t) : t ≥ 0} can be written in abstract form. Namely,

L = −1

2

∑
x,y∈V

p(x, y)(ζy − ζx)

(
∂

∂ζy
− ∂

∂ζx

)
= −1

2

∑
x,y∈V

p(x, y)(A†
y − A†

x)(Ay − Ax), (III.6)

with now

A†
xf(ζ) = ζxf(ζ),

Axf(ζ) =
∂

∂ζx
f(ζ). (III.7)

Notice that these operators satisfy the commutation relations of the Heisenberg algebra:

[Ax, A
†
y] = Iδx,y.

In fact, we show in this section that the duality between the generators L and L can
be derived from a more elementary duality between the operators of the algebra generated
by ax, a

†
x, x ∈ V and the algebra generated by Ax, A

†
x, x ∈ V . To see this we state in the

next theorem how the relation
D−−→ is compatible with linear combinations and products

of operators. This theorem is the generalized version of Theorem I.19 which was restricted
to square matrices.
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THEOREM III.5 (Combination of dual operators). Let Ô,O be two algebras of operators

working on a common domain of functions f : Ω̂ → R, resp. functions f : Ω → R.
Suppose that the algebra Ô is dual to the algebra O with duality function D : Ω̂×Ω → R,
denoted Ô

D−−→ O, meaning that for all Ô ∈ Ô there exists O ∈ O such that

(ÔD(·, x))(y) = (OD(y, ·))(x) for all y ∈ Ω̂, x ∈ Ω . (III.8)

Then for all Ô1, Ô2 ∈ Ô and O1, O2 ∈ O we have that if

Ôi
D−−→ Oi for i = 1, 2

then

Ô1Ô2
D−−→ O2O1,

Ô1 + Ô2
D−−→ O1 +O2. (III.9)

PROOF. We prove the first relation in (III.9), as the second one follows from a similar
argument. In order not to overload the notation, we abbreviate and agree (in this proof)
that operators with hats work on the first (left) variable of the function D, and operators
without hats work on the second (right) variable of the function D. With this we can
write

(Ô1Ô2)D = Ô1O2D = O2Ô1D = O2O1D, (III.10)

where we used that the operator O2 working on the first variable of D and the operator
Ô1 working on the second variable of D commute.

In words, Theorem III.5 above says that a duality function translates elements of
an algebra of operators Ôi to elements of a “dual” algebra of operators Oi obtained by
removing hats from the Ôi and multiplying the elements in the reversed order. We now
apply this theorem to our operators a, a† and A,A†. We show that the duality between
L and L is an instance of duality of two operator algebras.

THEOREM III.6 (Duality for the Heisenberg algebra). For all x ∈ V we have

ax
D−−→ Ax

and

a†x
D−−→ A†

x

with duality function D given by (III.2). As a consequence for L in (III.5) and L in

(III.6) we have L
D−−→ L, with duality function D given by (III.2).

PROOF. Put a, a† the operators af(n) = nf(n − 1), a†f(n) = f(n + 1) for functions
f : N → R and Af(z) = f ′(z), A†f(z) = zf(z) for smooth functions f : [0,∞) → R.
Then, for d(n, z) = zn, we have that a

D−−→ A and a†
D−−→ A†. Thus, the result easily

follows from Theorem III.5.
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III.3 Generating functions

Connecting dualities and discovering new ones

The use of generating functions turns out to be very useful in the study of dualities. In
particular it allows to deduce equivalence between different dualities. As a consequence,
new dualities can be obtained from known dualities. In this section we discuss the applica-
tion of generating functions to independent random walkers. This will immediately entail
that the duality between independent walkers and the deterministic evolution is equivalent
to the self-duality property of independent walker. Furthermore, via generating function
we shall unveil the following additional dualities:

1. self-duality of independent random walkers with self-duality function which is a
product of Charlier polynomials;

2. self-duality of the deterministic process. The self-duality is in a simple product form
and is described below.

We start by explaining the main idea. Consider a self-duality function D : NV ×NV →
R for independent random walkers on a set V and assume it is in a product form with a
“single-site self-duality function” d, i.e.

D(ξ, η) =
∏
x∈V

d(ξx, ηx) . (III.11)

We define G : NV × RV → R the generating function of D as

G(ξ, ζ) =
∏
x∈V

g(ξx, ζx) with g(k, z) :=
∞∑
n=0

d(k, n)
zn

n!
. (III.12)

In the following theorem we show that a self-duality relation for independent random
walkers is equivalent to a duality relation between independent random walkers and the
deterministic system introduced in Section III.1.

THEOREM III.7 (Duality and generating function, part 1). Let D(ξ, η) and G(ξ, ζ) be the
two functions as in (III.11) and (III.12). Let L be the independent random walk generator
in (II.5) and L be the generator of the deterministic process in (III.3). Then

(LD(ξ, ·))(η) = (LD(·, η))(ξ) for all ξ, η ∈ NV (III.13)

is equivalent to

(LG(ξ, ·))(ζ) = (LG(·, ζ))(ξ) for all ξ ∈ NV , ζ ∈ [0,∞)V . (III.14)

PROOF. Due to the symmetry of p : V ×V → R, the generator L can be rewritten as the
sum

L =
1

2

∑
x,y∈V

p(x, y)Lx,y, (III.15)

where Lx,y is the single-edge generator working on ηx, ηy (and not changing the other ηz’s
for z ̸= x, y). Clearly, because of (III.15) and the product nature of the duality functions
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involved in the theorem, imposing the duality relation on a set V is equivalent to imposing
it for each couple of sites, so, it is enough to prove the statement of the theorem for the
single-edge generators. For functions f : N2 → R, let L1,2 be defined by

L1,2f(n1, n2) = n1(f(n1 − 1, n2 + 1)− f(n1, n2))

+ n2(f(n1 + 1, n2 − 1)− f(n1, n2)) (III.16)

and for smooth functions f : [0,∞)2 → R let L1,2 be defined by

L1,2f(z1, z2) = (z2 − z1)

(
∂

∂z1
− ∂

∂z2

)
f(z1, z2). (III.17)

We prove the “if” part of the theorem. We thus assume that d(k1, n1)d(k2, n2) is a
self-duality function for L1,2, i.e. for all natural numbers k1, k2 and n1, n2,(

L1,2 d(k1, ·)d(k2, ·)
)
(n1, n2) =

(
L1,2 d(·, n1)d(·, n2)

)
(k1, k2) (III.18)

and would like to prove that for all z1, z2 ∈ R and for all k1, k2 ∈ N,(
L1,2 g(·, n1)g(·, n2)

)
(z1, z2) =

(
L1,2 g(·, n1)g(·, n2)

)
(k1, k2). (III.19)

Using the definition of the generating function g given in (III.12) and using the assumed
self-duality (III.18), the right hand side of (III.19) reads(

L1,2 g(·, z1)g(·, z2)
)
(k1, k2) =

∞∑
n1=0

∞∑
n2=0

(
L1,2 d(·, n1)d(·, n2)

)
(k1, k2)

zn1
1

n1!

zn2
2

n2!
=

∞∑
n1=0

∞∑
n2=0

(
L1,2 d(k1, ·)d(k2, ·)

)
(n1, n2)

zn1
1

n1!

zn2
2

n2!
=

∞∑
n1=0

∞∑
n2=0

n1(d(k1, n1 − 1)d(k2, n2 + 1)− d(k1, n1)d(k2, n2))
zn1
1

n1!

zn2
2

n2!

+
∞∑

n1=0

∞∑
n2=0

n2(d(k1, n1 + 1)d(k2, n2 − 1)− d(k1, n1)d(k2, n2))
zn1
1

n1!

zn2
2

n2!
.

For the left hand side of (III.19) we get(
(L1,2 g(k1, ·)g(k2, ·)

)
(z1, z2) =

∞∑
n1=0

∞∑
n2=0

(
z1

∂

∂z2
− z1

∂

∂z1

)
d(k1, n1)d(k2, n2)

zn1
1

n1!

zn2
2

n2!

+
∞∑

n1=0

∞∑
n2=0

(
z2

∂

∂z1
− z2

∂

∂z2

)
d(k1, n1)d(k2, n2)

zn1
1

n1!

zn2
2

n2!
=

∞∑
n1=0

∞∑
n2=0

n1(d(k1, n1 − 1)d(k2, n2 + 1)− d(k1, n1)d(k2, n2))
zn1
1

n1!

zn2
2

n2!

+
∞∑

n1=0

∞∑
n2=0

n2(d(k1, n1 + 1)d(k2, n2 − 1)− d(k1, n1)d(k2, n2))
zn1
1

n1!

zn2
2

n2!
.
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This proves that (III.18) implies (III.19). The implication in the other direction follows
from a similar reasoning.

As a first application of Theorem III.7 we show that the self-duality function of inde-
pendent random walkers found in Chapter II can be obtained from the duality function
of Theorem III.1. Indeed, the single site self-duality function that we found in (II.35) was

d(k, n) =
n!

(n− k)!
1l{k≤n}. (III.20)

The corresponding generating function is

g(k, z) =
∞∑
n=0

d(k, n)
zn

n!
= ezzk. (III.21)

Using Theorem III.7, proving that (III.20) is a single-site self-duality for L1,2 amounts to
prove that (

L1,2 g(·, z1)g(·, z2)
)
(k1, k2) =

(
L1,2 g(k1, ·)g(k2, ·)

)
(z1, z2). (III.22)

This follows easily by using the explicit expression (III.21) of g(k, z). We have indeed(
L1,2 g(·, z1)g(·, z2)

)
(k1, k2) =

(
k1(z

k1−1
1 zk2+1

2 − zk11 z
k2
2 ) + k2(z

k1+1
1 zk2−1

2 − zk11 z
k2
2 )
)
ez1+z2

=
(
L1,2)(g(k1, ·)g(k2, ·)

)
(z1, z2)

where in the last equality it has been used that the total mass is conserved for the process
(z1(t), z2(t)) and thus (L1,2f)(z1, z2) = 0 for any function f that is a function of the sum
of the coordinates, i.e. f(z1, z2) = F (z1 + z2) for some smooth function F : R+ → R.

We thus see that, by the use of generating functions, we have turned a computation
to verify a self-duality relation into a computation to verify a duality relation.

As a further application of Theorem III.7 we show that the product of Charlier poly-
nomials is also a self-duality function for independent random walks (we shall discuss in
Chapter VIII in general terms the relation between duality, orthogonal polynomials and
representation theory of Lie algebras).

DEFINITION III.8 (Charlier polynomial). The k-th order Charlier polynomial is defined
by

C(k, n) =
∂k

∂zk
((1− z)nez)

∣∣∣
z=0

. (III.23)

It is well known (see for instance [147]) that these polynomials are orthogonal with
respect to the Poisson distribution with parameter 1. We then have the following:

COROLLARY III.9 (Charlier polynomials self-duality). The independent random walk gen-
erator on a set V is self-dual with self-duality function

D(ξ, η) =
∏
x∈V

C(ξx, ηx)

where C(k, n) are the Charlier polynomials given in (III.23).
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PROOF. By (III.23) and the Taylor formula we have

g(k, z) =
∞∑
n=0

C(k, n)
zn

n!
= (1− z)kez.

The corollary is then an immediate application of Theorem III.7.

We now proceed, again by using generating function, to find a self-duality of the system
of ODE’s which arises from the scaling limit of the independent random walkers. This will
be the first example of a self-duality of a process with continuous variables. The idea is
simple: discrete self-dualities can be “lifted” to continuous-discrete dualities by applying
once a generating function, and to continuous-continuous self-dualities by applying the
generating function twice.

Let d(k, n) be a single-site self-duality polynomial for the generator of independent
random walkers. Then from Theorem (III.7) we have(

L1,2g(·, z1)g(·, z2)
)
(k1, k2) =

(
L1,2g(k1, ·)g(k2, ·)

)
(z1, z2). (III.24)

If we now define

h(v, z) :=
∞∑
k=0

g(k, z)vk

k!
=

∞∑
k=0

∞∑
n=0

d(k, n)
zn

n!

vk

k!
, (III.25)

then we have, as a consequence of (III.24), that(
L1,2h(·, z1)h(·, z2)

)
(v1, v2) =

(
L1,2h(v1, ·)h(v2, ·)

)
(z1, z2). (III.26)

In other words, h(v1, z1)h(v2, z2) is a self-duality function for the differential operator L1,2

in (III.17). In our concrete case, if we take the d(k, n) as in (III.20), then we have that

h(v1, z1)h(v2, z2) = ev1z1+v2z2ez1+z2 , (III.27)

is a self-duality function of the two-site deterministic process with generator (III.17).
Notice that in (III.27) we can also drop the factor ez1+z2 (since this is a conserved quantity
of the dynamics). From (III.26) we can once more extract a more general statement. If
h(v, z) satisfies (III.26) and is analytic in v, z with series expansion

h(v, z) =
∞∑
k=0

∞∑
n=0

d(k, n)
vkzn

k!n!
, (III.28)

then d(k1, n1)d(k2, n2) is a self-duality function for the independent random walk genera-
tor on two sites. We can thus summarize our findings in the following theorem, relating
self-duality of independent walkers to duality between independent walkers and the de-
terministic system with generator (III.3), and finally to self-duality of this deterministic
system.

THEOREM III.10 (Duality and generating functions, part 2). The following three state-
ments are equivalent:

1. D(ξ, η) =
∏

x∈V d(ξx, ηx) is a self-duality function for independent random walkers
with generator L in (II.5).
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2. G(ξ, ζ) =
∏

x∈V g(ξx, ζx) with g(k, z) =
∑∞

n=0 d(k, n)
zn

n!
is a duality function be-

tween independent random walkers and the deterministic process with generator L

in (III.3).

3. H(υ, ζ) =
∏

x∈V h(υx, ζx) with h(v, z) =
∑∞

k=0

∑∞
n=0 d(k, n)

vkzn

n!k!
is a self-duality

function for the deterministic process with generator L in (III.3).

From reversible measures to self-duality functions

In Proposition II.11 we have proved that if D(ξ, η) is a self-duality function in “simple
factorized form”, i.e., of the form

∏
x∈V d(ξx, ηx) then we have, for the product Poisson

measure νλ with parameter λ,∫
D(ξ, η)νλ(dη) =

(∫
D(δx, η)νλ(dη)

)|ξ|

for all x ∈ V . (III.29)

In this section we show that this relation between the duality functions and the reversible
product measures determines the possible single-site duality self-functions d(k, n) in terms
of their one-particle value d(1, n). This relies once more on the use of generating func-
tions. In particular the result will follow for the fact that Poisson expectation acts like a
generating function, and therefore fixes the coefficients.

Let us first illustrate how this works by showing that choosing d(1, n) = n we may recover
the single-site duality functions defined in (II.35), i.e. d(k, n) = n!

(n−k)! 1l{k≤n}. Indeed,

since d(1, n) = n, (III.29) yields

∞∑
n=0

d(k, n)νλ(n) =

(
∞∑
n=0

nνλ(n)

)k

= λk.

Equivalently
∞∑
n=0

d(k, n)
λn

n!
= λkeλ (III.30)

and then (III.30) determines the function d(k, n) for general k. Indeed Taylor’s theorem
applied to (III.30) gives

d(k, n) =
dn

dλn
(λkeλ)

∣∣∣
λ=0

=
n!

(n− k)!
1l{k≤n}.

This gives a new procedure to obtain the single-site self-duality function from the re-
versible measure and the “first single-site self-duality function” d(1, n). More precisely, if
d(1, n) is given, and we call

θ(λ) :=
∞∑
n=0

d(1, n)νλ(n)

then we have
∞∑
n=0

d(k, n)νλ(n) = θ(λ)k (III.31)
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and, as a consequence, we obtain

d(k, n) =
dn

dλn
(θ(λ)keλ)

∣∣∣
λ=0

.

We summarize these findings in the following theorem.

THEOREM III.11 (From reversible measures to self-duality functions). Let D(ξ, η) =∏
x∈V d(ξx, ηx) be a self-duality function for the system of independent walkers on a set

V . Then

d(k, n) =
dn

dλn
(θ(λ)keλ)

∣∣∣
λ=0

where

θ(λ) :=
∞∑
n=0

d(1, n)νλ(n). (III.32)

As a next step we show that independent symmetric random walkers is the only
symmetric self-dual process (with factorized self-duality function) of zero range type and
the only possible choice for the single-site duality functions is d(1, n) = a + bn for some
a, b ∈ R. This, via Theorem III.11 will then fix all the possible self-duality functions for
the system of independent random walkers.

We recall that a zero range process for a particle system on two sites has a generator
of the form

L1,2f(n1, n2) = c(n1)(f(n1 − 1, n2 + 1)− f(n1, n2))

+ c(n2)(f(n1 + 1, n2 − 1)− f(n1, n2)), (III.33)

where c : N → [0,∞) is such that c(0) = 0. We then have the following

THEOREM III.12 (Self-duality and zero range). Assume that the process with generator
(III.33) is self-dual with self-duality functions of the form

D1,2(k1, k2;n1, n2) = d(k1, n1)d(k2, n2)

where d(k, n) is not constant as a function of n for k ≥ 1. Then c(n) = c(1)n and
hence the corresponding process is a system of independent random walkers. Moreover,
d(1, n) = a+ bn for some a, b ∈ R and b ̸= 0.

PROOF. Without loss of generality we assume d(0, n) = 1. Using the self-duality relation
for k1 = 1, k2 = 0, and using c(0) = 0 we obtain the identity

c(n1)(d(1, n1 − 1)− d(1, n1)) + c(n2)(d(1, n1 + 1)− d(1, n1))

= c(1)(d(1, n2)− d(1, n1)). (III.34)

Putting n1 = n2 = n this yields,

d(1, n+ 1) + d(1, n− 1)− 2d(1, n) = 0, (III.35)

from which we derive d(1, n) = a+ bn. Because d(1, n) is not constant as a function of n,
we have b ̸= 0. Inserting d(1, n) = a+ bn in (III.34) yields

c(n1)(−b) + c(n2)(b) = c(1)(b(n2 − n1)),

from which we derive c(n) = c(1)n.
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Classification of product self-duality functions

As a consequence of Theorem III.11 and Theorem III.12, we obtain the following

THEOREM III.13 (Classification of product self-dualities for independent random walk-
ers). The single-site self-dualities for the system of independent random walkers are given
by

da,b(k, n) =
dn

dλn
((a+ bλ)keλ)

∣∣∣
λ=0

(III.36)

for some a, b ∈ R and b ̸= 0.

PROOF. Via the combination of Theorems III.11, III.12, we conclude that da,b in (III.36)
are the only possible single-site self-duality functions. So the only thing to be proved
is that they are indeed single-site self-duality functions. For this we use the generating
function method, more precisely Theorem III.10. The two-variable generating function is
given by

∞∑
k=0

∞∑
n=0

da,b(k, n)
vk

k!

zn

n!
= e(a+bz)vez

and it is immediate to see that this function is a single-site self-duality function for the
continuous deterministic dynamics. As a consequence of Theorem III.10, we conclude
that da,b is then a single-site self-duality function for independent random walkers.

From Theorem III.13 we can find all self-duality functions da,b. An immediate computation
gives

da,b(k, n) =
n∑
r=0

(
n

r

)
k(k − 1) . . . (k − r + 1)brak−r (III.37)

In particular for a = 0 we recover the triangular duality function d(n, k) defined in (II.35):

d0,b(k, n) =
n!

(n− k)!
bk · 1l{n≥k} (III.38)

while, for a ̸= 0,

da,b(k, n) = ak
min{k,n}∑
r=0

(
n

r

)(
k

r

) (
b

a

)k
r! = ak 2F0

(
−k,−n

−
;
b

a

)
. (III.39)

In particular, for the choice a·b < 0 we recover the Charlier polynomials duality functions:

da,b(k, n) = akC−a
b
(k, n) , (III.40)

{Cρ(k, n), k ∈ N} being the Poisson-Charlier polynomials which are orthogonal w.r.t. the
Poisson distribution with parameter ρ > 0, i.e. they satisfy∫

Cρ(k, n)Cρ(k
′, n)νρ(dn) = 0 for k ̸= k′. (III.41)
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III.4 Intertwining

The generating function approach discussed in the previous section can be turned into a
statement about intertwining of the semigroup of independent random walkers with the
semigroup of the deterministic dual dynamics. Moreover the generating functions that
we used in the previous section can also be interpreted as Poisson averaging.

Let the set V and the symmetric irreducible transition function p : V × V → R be
given, we recall the notation

Lf(η) =
∑
x,y∈V

p(x, y)ηx (f(η
x,y)− f(η)) , (III.42)

Lf(ζ) = −
∑
x,y∈V

p(x, y)(ζx − ζy)

(
∂

∂ζx
− ∂

∂ζy

)
, (III.43)

for the generators of the independent random walkers, and the associated deterministic
dynamics. We will denote the corresponding semigroups by S(t), resp. S(t). For the
deterministic dynamics, we denote by Zζ(t) the flow associated to the generator (III.43)
started from ζ ∈ [0,∞)V . We define, for ζ ∈ [0,∞)V ,

(Λf)(ζ) =
∑
η∈NV

f(η)
∏
x∈V

ζηxx
ηx!

e−ζx . (III.44)

We think of Λ as an operator turning functions on the state space NV of the discrete
process into functions on the state space [0,∞)V of the continuous process. Moreover, Λ
has the probabilistic interpretation of averaging over an inhomogeneous product Poisson
distribution, i.e.,

Λf(ζ) =

∫
f(η)νζ(dη), (III.45)

where νζ is the product Poisson measure on NV with parameters ζx for x ∈ V .

The following lemma shows that the unnormalized Poisson averaging is an intertwiner
between two representations of the Heisenberg algebra, whose definitions we recall

af(n) = nf(n− 1), a†f(n) = f(n+ 1) (III.46)

and
Af(z) = df

dz
(z), A†f(z) = zf(z). (III.47)

With abuse of notation, we still call Λ the operator now turning functions on N of the
discrete representation into functions on [0,∞) of the continuous representation.

LEMMA III.14 (Intertwining between two representations of the Heisenberg algebra).
Define

(Λf)(z) =
∞∑
n=0

f(n)
zn

n!
e−z (III.48)

for f : N → R such that the series is convergent for all z ≥ 0 and defines an analytic
function of z, then

Λaf = A†Λf and Λa†f = (A+ I)Λf. (III.49)
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PROOF. We have

(Λaf)(z) =
∞∑
n=0

nf(n− 1)
zn

n!
e−z = z

∞∑
n=1

f(n− 1)
zn−1

(n− 1)!
e−z = zΛf(z) = A†Λf(z).

On the other hand

(Λa†f)(z) =
∞∑
n=0

f(n+ 1)
zn

n!
e−z =

∞∑
n=1

f(n)
zn−1

(n− 1)!
e−z

=
d

dz

(
∞∑
n=0

f(n)
zn

n!

)
e−z =

d

dz
(ezΛf(z)) e−z = (A+ I)Λf(z).

THEOREM III.15 (Intertwiner between independent walkers and deterministic system).
Consider the independent random walk process with semigroup S(t) and the deterministic
system with semigroup S(t). Then we have the following:

a) Λ is an intertwiner between the semigroups S(t) and S(t), i.e. for all t > 0 and for
all f : NV → R bounded

S(t)(Λf) = Λ(S(t)f). (III.50)

b) As a consequence, we recover Doob’s theorem about propagation of inhomogeneous
Poisson measures: for all ζ ∈ [0,∞)V and f : NV → R bounded∫

S(t)f(η)νζ(dη) =

∫
f(η)νZζ(t)(dη),

with
Zζ
x(t) = ERW

x

(
ζX(t)

)
,

ERW
x denoting expectation of a single random walk X(t) jumping at rate 1 on V and

initialized from x ∈ V .

PROOF. Item a) follows from the corresponding identity on the level of generators:

L(Λf) = Λ(Lf).

To prove this it is enough to prove the intertwining for the single-edge generators defined
in (III.16) and (III.17). In their abstract form they read

L1,2 = −(a1 − a2)(a
†
1 − a†2), (III.51)

L1,2 = −(A†
1 − A†

2)(A1 − A2). (III.52)

Then, calling

(Λ1,2f)(ζ1, ζ2) =
∑
η∈N2

f(η1, η2)
ζη11
η1!

ζη22
η2!

e−(ζ1+ζ2), (III.53)
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from Lemma III.14 it follows that

Λ1,2aif = A†
iΛ1,2f and Λ1,2a

†
if = (Ai + I)Λ1,2f i = 1, 2. (III.54)

As a consequence we have

Λ1,2(a1 − a2)(a
†
1 − a†2) = (A†

1 − A†
2)(A1 − A2)Λ1,2, (III.55)

which implies
Λ1,2L1,2 = L1,2Λ1,2. (III.56)

Item b) follows from item a). Indeed∫
S(t)f(η)νζ(dη) = Λ(S(t)f)(ζ) = S(t)(Λf)(ζ) = Λf(Zζ(t)) =

∫
f(η) νZζ(t)(dη).

It only remains to prove that (Zζ(t))x = ERW
x

(
ζX(t)

)
, but this follows immediately from

the duality relation between the deterministic system and the independent random walk-
ers system initialized with a single particle at site x (see Theorem III.1).

REMARK III.16. We remark that the intertwiner defined in (III.44) is in the form

(Λf)(ζ) = e−
∑

x ζx
∑
η∈NV

D(η, ζ)M(η)f(η), (III.57)

where

M(η) =
∏
x∈V

1

ηx!
(III.58)

and
D(η, ζ) =

∏
x∈V

ζηxx . (III.59)

Notice that by the fact that
∑

x ζx is a conserved quantity we have that Λ being intertwiner

between L and L is equivalent with Λ̃ being an intertwiner between L and L, where

(Λ̃f)(ζ) =
∑
η∈NV

D(η, ζ)M(η)f(η). (III.60)

The fact that Λ̃ is an intertwiner follows from Theorem I.25 and the fact that L∗ = L in
the Hilbert space L2(NV ,M).

REMARK III.17. The intertwining relation (III.50) can be understood probabilistically as
follows: starting independent walkers from νζ and evolving at time t has the same distri-
bution as νZζ(t), i.e., choosing η directly from the Poisson distribution with parameters
Zζ(t). Notice that the fact that the dual dynamics in continuous variables is deterministic
is special for the case of independent random walks, and this is the reason why inhomo-
geneous Poisson distributions are exactly reproduced in the course of the evolution of
independent walkers. Later on, we will encounter similar intertwining results where the
dual dynamics is stochastic, and therefore, the local stationary measures are not exactly
reproduced but are replaced by convex combinations of local stationary measures.
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REMARK III.18. If f is an analytic function of ζ, then we can define

[Λ−1f ](η) =
∂η

∂ζη
f(ζ)

∣∣∣
ζ=0

with
∂η

∂ζη
=

(
∂ηx

∂ζηxx

)
x∈V

(III.61)

i.e.

f(ζ) =
∑
η

[Λ−1f ](η)
ζη

η!
(III.62)

This “operator” Λ−1 acts (formally) as the inverse of the intertwiner Λ and, as a conse-
quence, it intertwines between L and L, i.e.

Λ−1L = LΛ−1 (III.63)

and then
Λ−1S(t) = S(t)Λ−1. (III.64)

In other words, if we Taylor expand the function which maps ζ to [S(t)f ](ζ) = f(Zζ(t)),
then we have

[S(t)f ](ζ) =
∑
η

at(η)
ζη

η!
(III.65)

where

at(η) = [S(t)a0](η) = Eηa0(η(t)) and a0(η) = [Λ−1f ](η) (III.66)

meaning that the multivariate Taylor coefficients of S(t)f evolve as independent random
walk expectations of the Taylor coefficients of f .

III.5 More general independent processes

In this section we give a more direct proof of dualities and intertwinings we have en-
countered before. The advantage is that no generators are used, and hence the results
apply also to general processes (e.g. beyond Markov processes), provided a strong form
of time-inversion symmetry is satisfied.

We denote by V the finite set on which the processes will take place. We call {Xt, t ≥
0} the process of a single particle and denote by {Xx

t , t ≥ 0} the process conditioned on
X0 = x ∈ V , with

pt(x, y) := P(Xt = y|X0 = x) .

Notice that we do not require the process to be Markov, hence pt(x, y) will not necessarily
satisfy the Chapman Kolmogorov equation. We only require the symmetry property:

pt(x, y) = pt(y, x). (III.67)

In particular, if the collection of processes {Xx
t , t ≥ 0}, x ∈ V is generated via a stochastic

flow, then it is sufficient that this flow is time-reversible.
For an initial configuration η ∈ Ω = NV we denote {Xx,i

t , t ≥ 0} with i = 1, . . . , ηx,
the collection of ηx independent copies of the process Xt, starting from site x ∈ V . So
by letting x vary in V we obtain |η| =

∑
x∈V ηx independent copies of the same process
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starting according to the initial configuration η. The random configuration η(t) at time
t > 0 is then defined as in (II.1) via

(η(t))x =
∑
y∈V

ηy∑
i=1

1l{Xy,i
t =x}.

We denote by
S(t)f(η) = E(f(η(t))|η(0) = η)

the time-evolution operator for expectations (which is now not necessarily a semigroup).
We define the analogue of the deterministic process {Zz

t , t ≥ 0} taking values in RV , via

(Zz(t))x :=
∑
y∈V

pt(x, y)zy, (III.68)

where the upper index z refers to the initial condition z ∈ RV . For η ∈ Ω, z ∈ RV , we
denote by

zη :=
∏
x∈V

zηxx , η! :=
∏
x

ηx! .

We call a labeled configuration of M particles a M -tuple x := (x1, . . . , xM) ∈ V M . For x
a labeled configuration we denote by Ξ(x) ∈ Ω the corresponding configuration, i.e, for
y ∈ V ,

(Ξ(x))y :=
M∑
i=1

1l{xi=y} .

The following theorem shows that, under the symmetry assumption (III.67), all the du-
alities and intertwinings derived for the system of independent random walkers still hold.

THEOREM III.19 (Duality for independent particles).

a) The processes {Z(t) : t ≥ 0} and {η(t) : t ≥ 0} are dual with duality function
D(z, η) =

∏
x∈V z

ηx
x , i.e., for all η ∈ Ω, z ∈ RV ,

EηD(z, η(t)) = D(Zz(t), η).

b) The processes {Z(t) : t ≥ 0} and {η(t) : t ≥ 0} are intertwined with intertwining
operator

Λf(z) =
∑
η∈Ω

zη

η!
f(η),

i.e., for all t > 0 and for all f : Ω → R bounded

ΛS(t)f = S(t)Λ(f).

c) The deterministic process {Z(t) : t ≥ 0} is self-dual with self-duality function
D(v, z) =

∏
x∈V d(vx, zx) where the single-site self-duality function is d(vx, zx) =

ezxvx+zx.
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d) The process {η(t), t ≥ 0} is self-dual with single-site self-duality function d(k, n) if
and only if the corresponding generating function

g(v, z) =
∑
k,n

d(k, n)
zkvn

k!n!

is a single-site self-duality function for the deterministic process {Z(t), t ≥ 0}. This
is true, in particular, for d(k, n) = n!

(n−k)! 1l{k≤n}.

PROOF. Item a). Let η ∈ Ω be a configuration with n particles, and let y ∈ V n be
fixed such that Ξ(y) = η. Then, for every permutation invariant f : V n → R, and
corresponding function on configurations g : Ω → R defined via g(Ξ(y)) = f(y), we have

Eyf(yt) =
∑
x∈V n

f(x)
n∏
i=1

pt(yi, xi) = Eηg(η(t)) . (III.69)

Therefore we may write

(Zz
t )
η =

∏
y∈V

(∑
x∈V

pt(y, x)zx

)ηy

=
∏
y∈V

ηy∏
i=1

(∑
xi

pt(y, xi)zxi

)

=
n∏
i=1

(∑
xi

pt(yi, xi)zxi

)
= Eηzη(t),

where we used (III.69) for f(x) =
∏
zxi which is clearly permutation invariant and corre-

sponds to zη on configurations.

Item b). Let us denote by S(t)f(z) = f(Zz(t)) the evolution of a function f under the
deterministic dynamics. Let, for η ∈ Ω with |η| = n, x[η] denote a fixed element of V n

such that Ξ(x[η]) = η. Notice that the set of x ∈ V n such that Ξ(x) = η has cardinality
n!∏
x ηx!

. As a consequence, we compute:

[S(t)(Λf)](z) =
∑
η

zηt
η!
f(η)

=
∞∑
n=0

∑
η:|η|=n

∏n
i=1(Z

z(t))x[η]i∏
x ηx!

f(Ξ(x[η])

=
∞∑
n=0

1

n!

∑
x∈V n

f(Ξ(x))
n∏
i=1

(Zz(t))xi

=
∞∑
n=0

1

n!

∑
x,y∈V n

f(Ξ(x))
n∏
i=1

pt(xi, yi) zyi . (III.70)
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If we now use the assumed symmetry in (III.67) we may continue and write

[S(t)(Λf)](z) =
∞∑
n=0

1

n!

∑
x,y∈V n

f(Ξ(x))
n∏
i=1

pt(yi, xi) zyi

=
∞∑
n=0

1

n!

∑
y∈V n

∏
i

zyi EΞ(y)[f(η(t))]

=
∑
η

zη

η!
E[f(η(t))|η(0) = η]

= [Λ(S(t)f)](z).

Item c). Notice that, by conservation of total mass, the factor ez can be added and
removed without affecting the self-duality. Therefore, the only thing to be proved is the
fact that, for all v, z ∈ RV and t > 0,∑

x

vxZ
z(t)x =

∑
x

zxZ
v(t)x,

which follows via (III.68):∑
x∈V

vxZ
z(t)x =

∑
x,y∈V

vxpt(x, y)zy =
∑
x,y∈V

zypt(y, x)vx =
∑
y∈V

zyZ
v(t)y.

Item d). It follows immediately from items a), b), c).

REMARK III.20. Notice that equation III.70 is an instance of the so-called “random dis-
placement theorem” from point-process theory [155] which states that, starting from
Poisson-point process, and then randomly and independently displacing the points we get
a new Poisson-point process. Translated to our context this means that if we start a config-
uration process from a product poisson measure with parameter zx at site x ∈ V , then, at
time t we have again a product of Poisson measures with parameter zx(t) =

∑
y zypt(y, x)

at site x ∈ V . Only when pt(y, x) is symmetric this can be rewritten as ExzX(t).

III.6 Ergodic measures in Zd

In Section II.6, when we studied invariant and ergodic measures for independent random
walkers on Zd, we had to impose a condition on the moments (i.e. we had to require the
invariant-ergodic measures to be tempered) in order to identify them with homogeneous
Poisson product measures. The main reason for that restriction is that we do not have
a set of bounded self-duality functions, and we need integrability of all the self-duality
functions. In order to circumvent this issue, we will use duality with the dual deterministic
dynamics, where we can use bounded duality functions. More precisely we will show the
following theorem.

THEOREM III.21 (Ergodic measures for independent random walkers). For independent
random walkers on the lattice Zd, let the rates p(x, y) satisfy the following conditions:
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a) translation invariance: p(x, y) = π(y − x);

b) finite second moment:
∑

x∈Zd ∥x∥2π(x) <∞.

Then the set of ergodic invariant measures of the system of independent random walkers
coincides with the set of homogeneous Poisson product measures.

The rest of the section is devoted to the proof of this theorem, which is in the same
spirit as the proof given in Section II.6, but due to the fact that the dual dynamics is in
the continuum and deterministic, some non-trivial new elements have to enter.

We start with some notations. We denote by X the set of finite configurations in RZd
,

bounded between 0 and 1 i.e., configurations u : Zd → [0, 1] such that the support of u,
i.e., the set of i ∈ Zd such that ui ̸= 0, is finite. This set will be the analogue of the
finite particle configurations in Section II.6. For u ∈ X we define M(u) =

∑
x ux to be

its mass (which is the same as its l1-norm). We denote by X1 the set of configurations
u : Zd → [0, 1] with M(u) finite. Define, for ξ ∈ Ω, u ∈ X1

D(ξ, u) =
∏
x

(1− ux)
ξx . (III.71)

Then, D acts as a duality function between the deterministic dynamics with generator

L = −
∑
x,y

p(x, y)(ux − uy)

(
∂

∂ux
− ∂

∂uy

)
and the system of independent random walkers, i.e., we have, for u ∈ X1

EξD(ξ(t), u) = D(ξ, Uu(t)), (III.72)

where Uu
t denotes the flow generated by the deterministic dynamics with generator L

starting from u ∈ X. Notice that we have, as we saw before

(Uu(t))x =
∑
y

pt(x, y)uy,

where pt(x, y) is the continuous-time random walk transition probability associated to the
rates p(x, y). This implies, in particular, that for a configuration u ∈ X1, also U

u(t) ∈ X1,
and M(Uu(t)) =M(u) for all t > 0. Notice that the duality function (III.71) satisfies the
convex factorization property

D(ξ, γu+ (1− γ)v) = D(ξ, γu)D(ξ, (1− γ)v)

for u, v ∈ X1, γ ∈ [0, 1] and such that the supports of u and v are disjoint.
As before, for a probability measure µ on Ω we then define its D-transform

µ̂(u) =

∫
D(ξ, u)µ(dξ). (III.73)

This is well-defined for every µ because the functions D(·, u) are bounded for all u ∈ X.
Notice that, if µ = νρ is a homogeneous Poisson product measure with density ρ, then for
u ∈ X1,

ν̂ρ(u) = e−ρM(u). (III.74)
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This property characterizes the Poisson measures. More precisely, if µ is such that its
D-transform ψ is a function of the mass of u only, and additionally satisfies the convex
factorization property

ψ(γu+ (1− γ)v) = ψ(γu)ψ((1− γ)v),

for all u, v with disjoint supports, then µ is a homogeneous Poisson product measure. We
will use this characterization to show that all ergodic measures for the independent random
walk system are homogoneous Poisson measures. By the assumptions on transition rates
we obtain the following. Define the Fourier transform of the transition probabilities

P (k, t) :=
∑
x

eikxpt(0, x). (III.75)

Then we have the formula
P (k, t) = e−Γ(k)t, (III.76)

for k ∈ (−π, π)d where Γ(k) ≥ 0, Γ(k) ≈ Ck2 for k → 0 and Γ(k) = 0 if and only
if k = 0. Indeed, putting

∑
y π(y) = C we have that the discrete walk which makes

steps from x to x + y with probability π(y)/C and the continuous-time random walk
are connected via Xt = Xdiscr

Nt
where Nt is a rate C Poisson process. As a consequence

Γ(k) = E(eikXdiscr
1 − 1)C.

This, as we will see in Lemma III.23 below, implies that the deterministic dynamics
has the total mass as unique conserved quantity.

LEMMA III.22. Let µ be an invariant measure, then its D-transform µ̂ is invariant under
the flow of the deterministic dynamics generated by L.

PROOF. This follows via duality (III.72) and invariance of µ.

LEMMA III.23. Let F : X1 → R be a function which is invariant under the flow generated
by L. Then F is a function of the total mass, i.e., F (u) = G(M(u)) for some G : R → R.

PROOF. We can consider F to be a function of the Fourier transform of û(k) :=
∑

x e
ikxux

as well, because the Fourier transform determines uniquely u. On the Fourier transform,
the dynamics acts as a multiplication with e−tΓ(k), cf. (III.75), (III.76), i.e.

[Ûu(t)](k) =
∑
x

eikxUu(t)x = P (k, t)
∑
y

uye
iky = P (k, t)û(k).

In that case, the invariance under the dynamics of F means that

F ({û(k), k}) = F
(
{û(k)e−Γ(k)t, k}

)
.

By taking the limit t→ ∞, we get, using Γ(k) = 0 only if k = 0, and Γ(k) > 0 for k ̸= 0

F ({û(k), k}) = F ({1l{k=0}û(0), k}).

Finally, notice that for u ∈ X1, û(0) =M(u). This concludes the proof.
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As a consequence of Lemma III.22 and Lemma III.23, we have that µ invariant implies
that its D-transform is a function of the total mass only. In order to prove that for µ
invariant and ergodic, µ is a homogeneous Poisson measure, it suffices to show that for
u, v with finite support, and γ ∈ [0, 1]

µ̂(γu+ (1− γ)v) = µ̂(γu)µ̂((1− γ)v).

So let us fix u, v ∈ X with disjoint supports. By ergodicity of µ, duality, the Birkhoff
ergodic theory and dominated convergence we have

lim
T→∞

1

T

∫ T

0

∫
D(ξ, Uγu(t))D(ξ, (1− γ)v)µ(dξ) dt

= lim
T→∞

∫
D(ξ, (1− γ)v) · 1

T

∫ T

0

Eξ[D(ξ(t), γu)] dt µ(dξ) (III.77)

= µ̂(γu)µ̂((1− γ)v). (III.78)

So we have to show that the LHS equals µ̂(γu+ (1− γ)v). Define the configuration

V (t, u, v)x =

{
0 if x ∈ supp(v),

Uγu(t)x otherwise.

Then, since pt(x, y) ≤ pt(0, 0) → 0 as t→ ∞ for all x, y ∈ Zd, we have

D(ξ, Uγu(t))−D(ξ, V (t, u, v)) → 0, (III.79)

as t→ ∞, uniformly in ξ. Furthermore,

D(ξ, V (t, u, v))D(ξ, (1− γ)v) = D(ξ, V (t, u, v) + (1− γ)v)

by disjointness of the supports of V (t, u, v) and (1− γ)v. Therefore, using (III.79) twice
we obtain, using that µ̂ depends only on the total mass, which is preserved in the course
of the flow generated by L:

lim
T→∞

1

T

∫ T

0

∫
D(ξ, Uγu(t))D(ξ, (1− γ)v) ν(dξ) dt = lim

T→∞

1

T

∫ T

0

µ̂(V (t, u, v) + (1− γ)v)

= lim
T→∞

1

T

∫ T

0

µ̂(Uγu(t) + (1− γ)v)

= lim
T→∞

1

T

∫ T

0

µ̂(γu+ (1− γ)v)

= µ̂(γu+ (1− γ)v),

which shows the desired property of µ̂, and shows that µ̂ is a homogeneous Poisson
measure, and therefore, concludes the proof of Theorem III.21.
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III.7 Non-symmetric case

In this section we consider independent random walkers with irreducible transition func-
tion p(x, y) ≥ 0 for x, y ∈ V and p(x, y) ̸= p(y, x) for at least one edge {x, y}. Furthermore
we assume that p is doubly stochastic, i.e.,∑

y

p(x, y) =
∑
x

p(x, y) = 1.

What follows will also work when
∑

y p(x, y) =
∑

x p(x, y), i.e., the sum does not nec-
essarily have to be equal to one. We put q(x, y) = p(y, x). We denote by Epη, resp. Eqη
the expectation in the independent random walks process jumping according to p, resp.
q. If necessary we will also provide the associated generators with a upper index p, resp.
q, i.e. L(p) and L(q). Notice that the two processes are one the time-reversed of the
other. The generator of the system of independent random walkers jumping at rate one
according to the transition probability function p(x, y) is still given by (II.5), but, as we
cannot symmetrize it anymore, in terms of creation and annihilation operators in (II.9),
the generator reads

L =
∑
x,y∈V

p(x, y)(axa
†
y − axa

†
x). (III.80)

We then have the following generalization of the self-duality result. It states that the
self-duality function of the symmetric independent random walkers process become, in
the non-symmetric case, a duality function between the process and its time-reversed.

THEOREM III.24 (Duality for non-symmetric independent random walkers). For the poly-
nomials defined in (II.34), (II.35) we have the following duality relation. For all ξ ∈ Ωfinite

and allowed η ∈ Ωalw ⊆ NV ,

EpηD(ξ, η(t)) = EqξD(ξ(t), η). (III.81)

PROOF. The proof, which is in the spirit of Theorem I.11, follows the same steps as the
proof of self-duality in Theorem II.10.

Step 1: Cheap duality function.
First we restrict to the case ξ, η ∈ Ωfinite. We have then a “cheap duality” function between
the generators L(p) and L(q). Define as before M(ξ) =

∏
x∈V ρ

ξx/ξx!, and Dcheap(ξ, η) =
δξ,η
M(ξ)

then we have (
L(p)Dcheap(·, η)

)
(ξ) =

(
L(q)Dcheap(ξ, ·)

)
(η). (III.82)

Indeed, (III.82) follows from the simple “generalized” detailed balance relation

M(ξ)L(p)(ξ, η) =M(η)L(q)(η, ξ),

Note that the case η = ξ requires
∑

y p(x, y) =
∑

x p(x, y).

Step 2: Symmetries of the generators L(p), L(q).
The generators L(p), L(q) commute with S+, S−, the operators defined in (II.28). This
follows by direct computation from (III.80) and the commutation relations in (II.13).
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Step 3: Duality function from cheap duality function and symmetry.
It follows from (III.82) and the fact that both L(p), L(q) commute with S+, S− that for
D = eS

+
Dcheap we have (

L(p)D(·, η)
)
(ξ) =

(
L(q)D(ξ, ·)

)
(η) (III.83)

which implies (III.81) for finite ξ, η.

The generalization to the case ξ ∈ Ωfinite and η ∈ Ωalw is then obtained, as in Section II.5,
by taking finite approximations of η.

As a consequence we obtain – exactly as in the symmetric case – invariance and ergod-
icity of homogeneous Poisson product measures for the translation invariant independent
random walkers on Zd. In the asymmetric case however, also non-translation invariant
ergodic product measures can exist and therefore there is no analogue of the complete
characterization of the ergodic measures via duality as we did in the symmetric case.

III.8 Joint moment generating function of currents

This section is yet another application of duality, where we use twisted creation and
annihilation operators and their duality properties to compute a joint moment generating
function of currents.

We consider asymmetric nearest neighbor independent random walkers moving on the
one dimensional lattice Z, jumping at rate p > 0 to the right and at rate q > 0 to the
left. The generator of this process is given by

[Lp,qf ](η) =
∑
x

{
pηx[f(η

x,x+1)− f(η)] + qηx+1[f(η
x+1,x)− f(η)]

}
(III.84)

or, equivalently,

Lp,q =
∑
x

{
p(axa

†
x+1 − axa

†
x) + q(ax+1a

†
x − ax+1a

†
x+1)

}
, (III.85)

with ax and a
†
x as in (II.9). We are interested in the behavior of the currents over nearest

neighbor edges especially in their large deviations. For this it is essential to gain informa-
tion about the joint moment generating function of multiple currents. Because we are in
a setting of independent walkers, we will show that this joint moment generating function
can be expressed in terms of local times of a single random walk. In this computation,
we will encounter natural twisted creation and annihilation operators. In particular we
will use a duality result for a deformed generator (Theorem III.27 below) that naturally
leads to the joint generating function of currents over different edges.

More specifically, in order to study joint moment generating functions of currents it
is convenient to introduce the following operator.

DEFINITION III.25 (The deformed generator). Let λ : Z → R be a bounded function, and
define its discrete gradient (on edges of nearest neighbouring sites) as

ux,x+1 = (∇λ)x = λx+1 − λx. (III.86)
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Then we define the operator Lλ,p,q by

[Lλ,p,qf ](η) =
∑
x

{
pηx[e

ux,x+1 f(ηx,x+1)− f(η)] + qηx+1[e
−ux,x+1 f(ηx+1,x)− f(η)]

}
,

i.e.

Lλ,p,q =
∑
x

{
p(eux,x+1axa

†
x+1 − axa

†
x) + q(e−ux,x+1ax+1a

†
x − ax+1a

†
x+1)

}
. (III.87)

For λ = 0 this operator reduces to the generator (III.85). In order to explain the
role of the operator defined in (III.87), we introduce the current. For the process with
generator Lp,q we define the current Jx,x+1(t) over the edge (x, x+ 1) in the time interval
[0, t] as the number of jumps of a particle from x to x + 1 minus the number of jumps
of a particle from x + 1 to x that occured in the time interval [0, t]. We then have the
following proposition which explains the role of Lλ,p,q.

PROPOSITION III.26 (The deformed semigroup). For all λ bounded functions we have
the following relation between the operator Lλ,p,q and Lp,q. For f : Ω → R a local function

etLλ,p,qf(η) = Ep,qη
[
e−

∑
x ux,x+1Jx,x+1(t)f(η(t))

]
, (III.88)

where etLλ,p,q denotes the semigroup generated by Lλ,p,q and Ep,qη denotes the expectation
w.r.t. the Markov process generated by Lp,q.

PROOF. First notice that Jt :=
∑

x ux,x+1Jx,x+1(t) is an additive functional of the process
{η(t), t ≥ 0}, i.e., denoting by ω a path of the process {η(t), t ≥ 0} and by θt its
time-shift θt(ω)(s) = ω(s+ t) we have

Jt+s(ω) = Jt(ω) + Js(θtω).

As a consequence, by the Markov property, the r.h.s. of (III.88) defines a semigroup. In
order to prove (III.88) it thus suffices to prove the equality of the corresponding generators,
i.e., to prove that for all f local we have

Lλ,p,qf =
d

dt

{
Ep,qη

[
e−

∑
x ux,x+1Jx,x+1(t)f(η(t))

]} ∣∣∣
t=0
. (III.89)

Use the following identity∑
x

ux,x+1Jx,x+1(t) =
∑
x

λx(ηx(t)− ηx(0)) (III.90)

which follows from the discrete continuity equation,

ηx(t) = ηx(0) + Jx,x+1(t)− Jx−1,x(t)

we obtain that the r.h.s. of (III.89) is, for f̃(η) = e−
∑

x λxηxf(η), equal to

e
∑

x λxηx · [Lp,qf̃ ](η) = [Lλ,p,qf ](η).

In order to understand better the semigroup generated by Lλ,p,q we have to look for
“cheap dualities” and symmetries. This is the content of the following theorem.
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THEOREM III.27 (Duality for the deformed generator). Define Dcheap(ξ, η) =
∏

x ξx!δξx,ηx.
Then we have the following results:

1. Lλ,p,q and L−λ,q,p are dual with duality function Dcheap.

2. Lλ,p,q commutes with
Sλ,+ =

∑
x

eλxa†x. (III.91)

3. Lλ,p,q and L−λ,q,p are dual with duality function

D(ξ, η) =
∏
x

eλx(ηx−ξx)
ηx!

(ηx − ξx)!
. (III.92)

4. For all η and ξ finite we have

Ep,qη
[
e−

∑
x ux,x+1Jx,x+1(t)D(ξ, η(t))

]
= Eq,pξ

[
e
∑

x ux,x+1Jx,x+1(t)D(ξ(t), η)
]
. (III.93)

PROOF.

1. This follows from the fact that, if we put Λ(ξ) =
∏

x
ρξx

ξx!
, then

Λ(ξ)Lλ,p,q(ξ, η) = L−λ,q,p(η, ξ)Λ(η). (III.94)

Putting ρ = 1 we find from (III.94) the cheap duality.

2. Define the modified creation and annihilation operators

ãx = e−λxax,

ã†x = eλxa†x, (III.95)

then we have (by bi-linearity of commutators) that ãx, ã
†
x, x ∈ Z satisfy the same

commutation relations as ax, a
†
x, x ∈ Z. Moreover, the generator Lλ,p,q reads

Lλ,p,q =
∑
x

p(ãxã
†
x+1 − ãxã

†
x) + q(ãx+1ã

†
x − ãx+1ã

†
x+1).

Because this has the same form as (III.85) but with a, a† replaced by the corre-
sponding ã, ã†, we obtain that Lλ,p,q commutes with

∑
x ã

†
x which is (III.91).

3. From item 1 we have that(
Lλ,p,qDcheap(·, η)

)
(ξ) =

(
L−λ,q,pDcheap(ξ, ·)

)
(η).

Because eS
+
commutes with Lλ,p,q we obtain that D(ξ, η) =

(
eS

+
Dcheap(·, η)

)
(ξ) is

also a duality function, i.e.(
Lλ,p,qD(·, η)

)
(ξ) =

(
L−λ,q,pD(ξ, ·)

)
(η).

Computing explicitly this function, we obtain the claimed (III.92).
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4. This follows from the previous item via Proposition III.26.

From (III.90) we have that the duality relation (III.93) reads

Ep,qη
[
e−

∑
x λx(ηx(t)−ηx(0))D(ξ, η(t))

]
= Eq,pξ

[
e
∑

x λx(ηx(t)−ηx(0))D(ξ(t), η)
]
. (III.96)

Unhappily, this does not contain more information than the relation holding for the case
λ = 0. In order to obtain information about exponential moments of currents, we will
exploit the fact that the operator Lλ,p,q is, up to a multiplication operator, equal to the
generator of a system of independent walkers. Indeed we have

Lλ,p,q =
∑
x

peux,x+1(axa
†
x+1 − axa

†
x) +

∑
x

qe−ux,x+1(ax+1a
†
x − ax+1a

†
x+1)

+
∑
x

p(eux,x+1 − 1)axa
†
x + q(e−ux,x+1 − 1)ax+1a

†
x+1

= L̃λ,p,q +Ψ, (III.97)

where L̃λ,p,q is the generator of independent random walkers jumping at rate peux,x+1 from
x to x + 1, and at rate qe−ux,x+1 from x + 1 to x, and where Ψ is the multiplication
operator, Ψf(η) = ψ(η) · f(η) associated to the function

ψ(η) =
∑
x

p(eux,x+1 − 1)ηx + q(e−ux,x+1 − 1)ηx+1 =
∑
x

φ(x)ηx, (III.98)

with
φ(x) := p(eux,x+1 − 1) + q(e−ux−1,x − 1). (III.99)

In order to have well-defined quantities here, we require either that u = (ux,x+1)x has finite

support, or that we are on the torus TN = Z/NZ. Let us denote by Ẽp,q,uη the expectation

in the process with generator L̃λ,p,q. Then, using (III.88), (III.97) and the Feynman-Kac
formula, we obtain

Ep,qη
[
e−

∑
x ux,x+1Jx,x+1(t)f(η(t))

]
= etL

λ,p,q

f(η)

= Ẽp,q,uη

[
e
∫ t
0 ψ(η(s))dsf(η(t))

]
= Ẽp,q,uη

[
exp

{∑
x

φ(x)

∫ t

0

ηx(s)ds
}
f(η(t))

]
. (III.100)

If we are interested in the stationary current fluctuations, then we further want to average
η over the Poisson measure νρ. For this we use the following lemma which is an easy
computation using the moment generating function of the Poisson distribution of which
we therefore do not spell out the proof.

LEMMA III.28 (Generating function independent Poisson random variables). Let η be
distributed according to a product of Poisson measures with E(ηx) = ρx. Let Gy,j, y ∈
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Z, j = 1, . . . , ηy be independent random variables with distribution only depending on y.
Define Fy = logE[eGy,1 ], then we have

E
[
exp

{∑
y

ηy∑
j=1

Gy,j

}]
= exp

{∑
y

ρy(e
Fy − 1)

}
. (III.101)

Let νρ denote the product Poisson distribution with expectation ρx at site x. Then
we continue from (III.100). We compute∫

Ep,qη
[
e−

∑
x ux,x+1Jx,x+1(t)

]
· νρ(dη)

=

∫
Ẽp,q,uη

[
exp

{∑
x

φ(x)

∫ t

0

ηx(s)ds
}]

· νρ(dη)

= Ẽp,q,uνρ

[
exp

{∑
y

ηy∑
j=1

∑
x

φ(x)

∫ t

0

1l{Xy,j(s)=x}ds
}]
, (III.102)

where in the last step we used (II.1), and abbreviated the expectation over both walks

and η by “Ẽp,q,uνρ ”. We are now in the situation of Lemma III.28, with

Gy,1 =
∑
x

φ(x)

∫ t

0

1l{Xy,1(s)=x}ds.

As a consequence we obtain∫
Ep,qη

[
e−

∑
x ux,x+1Jx,x+1(t)

]
· νρ(dη) = e

∑
y ρy(e

Fy−1), (III.103)

with

Fy = logERW,p,q,uy

[
exp

{∑
x

φ(x)

∫ t

0

1l{Xy,1(s)=x}ds
}]
. (III.104)

We then finally obtain the following expression for the joint log moment generating func-
tion of currents:

log

∫
Ep,qη

[
e−

∑
x ux,x+1Jx,x+1(t)

]
· νρ(dη) =

∑
y

ρ(y) ·
(
ERW,p,q,uy

[
e
∑

x φ(x)lt(x)
]
− 1
)

(III.105)

where now ERW,p,q,uy denotes expectation w.r.t a single random walker starting at y and
jumping at rate peux,x+1 (resp. qe−ux,x+1) to the right (resp. left), and lt(x) denotes its
local time at x, i.e., lt(x) =

∫ t
0
1l{x}(X(s))ds. This formula shows that the computation

of the joint log moment generating function of currents reduces, in this case, to a single
random walk computation.

III.9 Additional notes

The duality between the deterministic systems of ODE’s and independent walkers was
proved in [111], the intertwining was discussed in [193]. These properties can also be seen
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as a consequence of Doob’s theorem [69] which states that a product of Poisson measures
is preserved under the evolution of independent particles. This in turn can be seen as
a consequence of the random displacement theorem in point process theory see [155].
The use of duality in the characterization of invariant measures is again in the spirit
of [167], Chapter 8. The use of creation and annihilation operators to compute current
large deviation functions is in the spirit of [159].
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Chapter IV

Duality for the symmetric inclusion
process

Abstract: In this chapter we apply the Lie algebraic approach to the symmet-
ric inclusion processes. This is a process describing particles that move on a
lattice with an attractive interaction. We show that the generator of this pro-
cess can be written in an abstract form in terms of the generators of the Lie
algebra su(1, 1). This allows to easily find symmetries of the generator. Ap-
plying these symmetries to the cheap self duality function related to reversible
measures, we find a non-trivial triangular self-duality function. We then show
how the same result can be obtained via the change-of-representation method.
As an application of this self-duality result we show how the self-duality rela-
tion gives informations about the n-point correlations. In particular we show
that, starting from local-equilibrium measures, the inclusion dynamics evolves
towards positive correlations.

IV.1 Introduction

Just as systems of independent random walkers are related to the Heisenberg algebra, we
shall introduce now a class of models whose underlying algebraic structure is based on
the Lie algebra su(1, 1). This is a rich family whose two most representative models are
the symmetric inclusion process (an interacting particle system) and the Brownian energy
process (an interacting diffusions system). These are be the subjects of Chapter IV and
Chapter V, respectively. Their thermalization limits will produce several redistribution
models with discrete and with continuous variables, including models well-known in the
literature, as well as other novel models, some of which will be treated in Chapter VII.
Finally, we will also discuss families of integrable processes with su(1, 1) symmetry in
Chapter XII.

The symmetric inclusion process with parameter α > 0, denoted SIP(α), is a process
where particles perform symmetric random walks at rate α and, on top of that, each
pair of particles at neighboring positions can have an “inclusion event” after which they
join at the same place. These “inclusion jumps” induce an attractive interaction between
the particles that encourages particles to go to the same place. This is the somehow the

87
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opposite of what happens in the standard exclusion process (with at most one particle
per site) or in the partial exclusion process (allowing more than one particle per site)
where particles are forbidden, or discouraged, to be at the same place. We say therefore
that the symmetric inclusion process is a “bosonic” analogue of the symmetric exclusion
process which is “fermionic”. The use of the word “bosonic” can be further justified by
the fact that the SIP(α) generator can indeed be written in terms of bona-fide bosonic
creation and annihilation operators (so as the symmetric exclusion process generator can
be written using fermions).

Taking the scaling limit of the SIP(α), it leads to a diffusion process known as the
Brownian energy process with parameter α, denoted BEP(α). This process describes
the continuous diffusion over a set of vertices of a positive quantity. We can think of this
quantity as energy and then the model can be viewed as a model of heat conduction [110].
Remarkably, if we specialize to kinetic energies, then also the process describing the
evolution of momenta turn out to evolve as a diffusion process, the so-called Brownian
momentum process BMP(α) model.

A famous process for which duality was a key tool of analysis is the KMP process
(after Kipnis, Marchioro and Presutti) where, at random instances, energy is uniformly
redistributed over the vertices of each edge of a graph. We shall show in Chapter VII
that the KMP process arises as the thermalization limit of the Brownian energy process
with parameter α = 1. Similarly the thermalization of the Brownian momentum process
with parameter α = 1/2 leads to another famous process widely used in kinetic theory,
the Kac model [137]. The redistribution model which emerges as the thermalization limit
of the symmetric inclusion process is related to wealth redistribution models, which are
known in the literature under the name “immediate exchange models”. We refer again to
Chapter VII for a discussion of these and several other discrete redistribution models.

The SIP(α) family has other possible interpretations. For instance, in the context of
population genetics, instead of lattice sites and number of particles located at different
sites, one thinks of a finite graph of “types” and number of individuals of different types.
These individuals can mutate (independent random walk part of the hopping rate) and
can have a random mating event (inclusion part of the hopping rate, interpreted here
as coalescence), while the total population size is constant. Models of this type are
then known under the name of Moran models, and their diffusion limits as Wright-Fisher
diffusions. There exists a huge literature treating this class of models and their duality
properties. See the end of Chapter VII for a discussion of the algebraic perspective on
these dualities.

IV.2 The finite symmetric inclusion process

Let V denote a finite set and p : V ×V → (0,∞) a non-negative symmetric and irreducible
function (as defined at the beginning of Section II.1). For α > 0 we define the SIP(α) as
the process {η(t) : t ≥ 0} on the configuration space Ω = NV with generator

Lf(η) =
∑
x,y∈V

p(x, y)ηx(α + ηy) (f(η
x,y)− f(η)) . (IV.1)
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In what follows we will omit the index p referring to the edge jump rate, and will just
talk about the SIP(α). We can split the generator in two parts

L = αLirw + Lincl.

Here

αLirw =
∑
x,y∈V

αp(x, y)ηx (f(η
x,y)− f(η)) (IV.2)

describes independent random walkers moving at rate αp(x, y) between x and y, and

Lincl =
∑
x,y∈V

p(x, y)ηxηy (f(η
x,y)− f(η))

describes the attractive interaction part which works as follows: each particle at site x
sends an invitation to each particle at site y at rate p(x, y) (different invitations are sent
independently); then, after receiving the invitation, one of the particles at y joins the site
x.

IV.3 Symmetries of the generator

In this section we are going to write the generator of the symmetric inclusion process in
an abstract form, in order to infer commuting operators. The ultimate goal is to construct
a non-trivial self-duality, using symmetries and a cheap self-duality (see Section IV.4), in
the spirit of Theorem I.7.

Two-site system

As we did in Chapter II for independent random walkers, we first consider the two-
site system with lattice vertices that we call 1 and 2. We denote by (η1, η2) ∈ N2 the
corresponding particle numbers and, without loss of generality, we put p(1, 2) = p(2, 1) =
1. Then we have

L1,2f(η1, η2) = η1(α + η2)(f(η1 − 1, η2 + 1)− f(η))

+ η2(α + η1)(f(η1 + 1, η2 − 1)− f(η)). (IV.3)

We introduce the operators K+, K− and K0 working on functions f : N → R as follows:

K+f(n) = (α + n)f(η + 1),

K−f(n) = nf(n− 1),

K0f(n) =
(
α
2
+ n
)
f(n). (IV.4)

The following lemma establishes the commutation relations the operators K+, K− and K0

and show that they form a representation of the Lie algebra su(1, 1)∗, i.e. the conjugate
of the Lie algebra su(1, 1).
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LEMMA IV.1 (Commutation relations). The operators K+, K−, K0 defined in (IX.94)
satisfy

[K±, K0] = ±K±,

[K+, K−] = 2K0. (IV.5)

PROOF. The proof is a simple explicit computation:

K+K−f(n)−K−K+f(n)

= (α + n)(n+ 1)f(n)− n(α + n− 1)f(n)

= (α + 2n)f(n) = 2K0f(n).

Moreover

K+K0f(n)−K0K+f(n)

= (α + n)(α
2
+ n+ 1)f(n+ 1)− (α

2
+ n+ 1)(α + n)f(n+ 1)

= (α + n)f(n) = K+f(n),

and

K−K0f(n)−K0K−f(n)

= n(α
2
+ n− 1)f(n− 1)− (α

2
+ n)nf(n− 1)

= −nf(n− 1) = −K−f(n).

REMARK IV.2. The operators K+, K− and K0 provide a discrete representation of the
conjugate Lie algebra su(1, 1)∗ defined by the commutation rules (IV.5). The commutation
relations of the Lie algebra su(1, 1) are instead obtained from (IV.5) by inverting the signs
i.e. [k0,k±] = ±k±, [k−,k+] = 2k0.

We extend now the definition of the operators (IX.94) to the two-site system. For u ∈
{−, 0,+}, we denote by Ku

1 = Ku ⊗ I, resp. Ku
2 = I ⊗ Ku, the copy of the operator

Ku working on site 1, resp. on site 2. Notice that both Ku
1 and Ku

1 are operators acting
on functions f : N2 → R. The following lemma shows the connection between these
operators and the symmetric inclusion process generator L1,2.

PROPOSITION IV.3 (Abstract form of the generator). The single-edge generator (IV.3)
of the SIP(α) is equal to:

L1,2 = K+
1 K

−
2 +K−

1 K
+
2 − 2K0

1K
0
2 +

α2

2
. (IV.6)

PROOF. The proof is a simple explicit computation following from (IX.94). Let f : N2 →
R, then we have (

K+
1 K

−
2 +K−

1 K
+
2 − 2K0

1K
0
2 +

α2

2

)
f(η1, η2)

= (α + η1)η2f(η1 + 1, η2 − 1) + η1(α + η2)f(η1 − 1, η2 + 1)

−2
(α
2
+ η1

)(α
2
+ η2

)
f(η1, η2) +

α2

2
f(η1, η2)

= L1,2f(η1, η2). (IV.7)
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This concludes the proof.

Finally, we use this abstract form of the generator to infer its symmetries.

LEMMA IV.4 (Symmetries of the generator). The generator L in (IV.6) commutes with

K+
1 +K+

2 , K−
1 +K−

2 , K0
1 +K0

2 , (IV.8)

with Ku
1 = Ku ⊗ I and Ku

2 = I ⊗Ku, for u ∈ {−, 0,+}.

PROOF. We prove the statement for K+
1 + K+

2 , the computations for other cases being
similar. We have

[L1,2, K
+
1 +K+

2 ] = [K+
1 K

−
2 +K−

1 K
+
2 − 2K0

1K
0
2 , K

+
1 +K+

2 ]

= [K−
1 , K

+
1 ]K

+
2 − 2[K0

1 , K
+
1 ]K

0
2

+ K+
1 [K

−
2 , K

+
2 ]− 2K0

1 [K
0
2 , K

+
2 ]

= −2K0
1K

+
2 + 2K+

1 K
0
2 − 2K+

1 K
0
2 + 2K0

1K
+
2 = 0 (IV.9)

where we used the fact that [Ku
1 , K

v
2 ] = 0 for all u, v ∈ {−, 0,+}.

General case

We extend now, the results obtained in the previous paragraph, to a general lattice V .
The generator of the symmetric inclusion process with parameter α defined in (IV.1) can
be written in the form

L =
1

2

∑
x,y∈V

p(x, y)Lx,y =
∑

{x,y}∈E

p({x, y})L{x,y}, (IV.10)

where E is the edge set, p({x, y}) = p(x, y) and L{x,y} = Lx,y is the single-edge generator,
that is given by

Lx,yf(η) = ηx(α + ηy)(f(η − δx + δy)− f(η))

+ ηy(α + ηx)(f(η + δx − δy)− f(η)). (IV.11)

Here δx is as usual the configuration with only one particle at site x ∈ V .

We then define copies of the operators Ku, u ∈ {−, 0,+} labeled by the sites of the
lattice. More explicitly, for all x ∈ V we introduce the operators K+

x , K
−
x and K0

x working
on functions f : NV → R as follows:

K+
x f(η) = (α + ηx)f(η + δx),

K−
x f(η) = ηxf(η − δx),

K0
xf(η) =

(
α
2
+ ηx

)
f(ηx). (IV.12)

In other words, the operator Ku
x , with u ∈ {−, 0,+}, has to be understood as the tensor

product of identity operators Iy, labeled by y ∈ V , with y ̸= x and a copy of the operator
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Ku, labeled by x. Then, as a consequence of Lemma IV.1 we have that the following
commutation relations hold

[K±
x , K

0
y ] = ±K±

x δx,y,

[K+
x , K

−
y ] = 2K0

x δx,y. (IV.13)

The action of the generator L can be decomposed in the action of the single-edge gener-
ators Lx,y working only on the two sites x and y and given, in its abstract form by

Lx,y = K+
x K

−
y +K−

x K
+
y − 2K0

xK
0
y +

α2

2
(IV.14)

as a consequence, we can repeat the argument used in the proof of Lemma IV.4 to find
symmetries of Lx,y, and then generalize to the result to the entire lattice.

PROPOSITION IV.5 (Symmetries of the generator). The generator L in (IV.10) commutes
with

S+ =
∑
x∈V

K+
x , S− =

∑
x∈V

K−
x , S0 =

∑
x∈V

K0
x, (IV.15)

where Ku
x , with u ∈ {−, 0,+}, is given in (IV.12).

PROOF. We prove the statement for S+, the computations for other cases being similar.
Since both Lx,y and K

+
x +K+

y act only on the coordinates x and y, using Lemma IV.4 we
deduce that

[Lx,y, K
+
x +K+

y ] = 0 for all x, y ∈ V. (IV.16)

We first prove that

[L, S+] =
1

2

∑
x,y,z∈V

p(x, y)[Lx,y, K
+
z ] =

1

2

∑
x,y∈V

p(x, y)[Lx,y, K
+
x +K+

y ], (IV.17)

where the last identity follows from the fact that [Lx,y, K
+
z ] = 0 for all z /∈ {x, y}. Then,

using (IV.16), it follows that [L, S+] = 0.

REMARK IV.6. The last of the symmetries in (IV.15) admits a direct interpretation for
the process as it expresses the fact the symmetric inclusion process conserves the number
of particles. The other two symmetries are instead called “hidden symmetries” as they
are found from the algebraic description.

IV.4 Self-duality

In this section we follow the strategy of Theorem II.9 to find a non-trivial self-duality
function for the symmetric inclusion process. In the previous section we found non trivial
symmetries of the generator S± that are of the form of particle addition, resp. particle
removal operators. By taking the exponential matrices eS

±
, we obtain triangular symme-

tries of the generator. The only missing ingredient, in order to implement the procedure
developed in Theorem II.9 is a cheap self-duality function. We will see that this can be
easily obtained because of the reversibility of the symmetric inclusion process.
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We start by identifying the cheap self-duality function via the following lemma. We
denote by Γ(·) the Gamma function, i.e., for t > 0

Γ(t) =

∫ ∞

0

xt−1e−xdx,

and remind the reader the basic recursion Γ(t+ 1) = tΓ(t).

LEMMA IV.7 (Reversible measures and cheap self-duality). For all λ > 0 the measure

M(η) =
∏
x∈V

ληx

ηx!

Γ(ηx + α)

Γ(α)
(IV.18)

is a reversible measure for the SIP(α) on a finite graph V . As a consequence, the function

Dch(ξ, η) =
∏
x∈V

dch(ξx, ηx), with dch(k, n) =
n!Γ(α)

Γ(α + n)
δk,n (IV.19)

is a cheap self-duality function.

PROOF. This follows from the detailed balance relation (I.22), that is itself a consequence
of the fact that

λnΓ(α + n)

n!Γ(α)

λmΓ(α +m)

m!Γ(α)
n(α +m)

=
λn−1Γ(α + n− 1)

(n− 1)!Γ(α)

λm+1Γ(α +m+ 1)

(m+ 1)!Γ(α)
(m+ 1)(α + n− 1), (IV.20)

which holds for all n,m ∈ N. Then (IV.19) follows from item 1 of Theorem I.7.

We can then act with the symmetries found in Section IV.3 in order to construct a
triangular self-duality function for SIP(α).

THEOREM IV.8 (Self-duality of SIP(α)). The symmetric inclusion process with parameter
α > 0 on a finite graph V with generator (IV.1) is self-dual with self-duality function

D(ξ, η) =
∏
x∈V

d(ξx, ηx) with d(k, n) =
n!

(n− k)!

Γ(α)

Γ(α + k)
1l{k≤n}. (IV.21)

PROOF. We first consider the process on two vertices. We use the symmetry eS
+

=
eK

+
1 +K+

2 which commutes with L12 by Proposition (IV.5). As we did in Chapter II for
independent random walkers, also here we choose to start from an exponential symmetry
since we aim at producing a self-duality function in factorized form. In the spirit of item 2
of Theorem I.7, we work with this symmetry on the cheap self-duality function identified
in Lemma IV.7. It thus suffices to show that, for k ≤ n

eK
+

[dch(·, n)](k) = d(k, n). (IV.22)



94 CHAPTER IV. DUALITY FOR THE SYMMETRIC INCLUSION PROCESS

For a function f : N → R, using (K+f)(k) = (α + k)f(k + 1), we have

(eK
+

f)(k) =
∞∑
ℓ=0

Γ(α + k + ℓ)

Γ(α + k)ℓ!
f(k + ℓ).

Then

eK
+

[dch(·, n)](k) =
∞∑
ℓ=0

Γ(α + k + ℓ)

Γ(α + k)ℓ!
dch(k + ℓ, n)

=
∞∑
ℓ=0

Γ(α + k + ℓ)

Γ(α + k)ℓ!
· n!Γ(α)

Γ(α + n)
δℓ,n−k

=
Γ(α + n)

Γ(α + k)(n− k)!
· n!Γ(α)

Γ(α + n)
1l{k≤n}

= d(k, n)

which indeed yields (IV.22). The general case of a finite graph V follows then because
the generator (IV.10) is given by the sum L =

∑
{x,y}∈E p(x, y)Lx,y where Lx,y is the

two-site generator (IV.11) working on ηx, ηy. Hence the two-site self-duality result applies
for each edge {x, y}, and then the general result follows from the symmetry of p(x, y).

REMARK IV.9 (Working with S− instead of S+). Notice that working with eS
−
on the

n-variable of the single-site cheap duality function dch(k, n) yields exactly the same single-
site self-duality polynomial (IV.21).

By properly renormalizing the reversible measures (IV.18), we obtain a one-parameter
family of reversible probability distributions for the symmetric inclusion process. These
are homogeneous product measure whose single-site marginals are discrete-Gamma dis-
tributions (α, λ), i.e. with parameters λ ∈ (0, 1) and α ∈ (0,∞):

νλ,α(n) = (1− λ)α
λn

n!

Γ(α + n)

Γ(α)
, n ∈ N. (IV.23)

Notice that for α ∈ N, νλ,α is a Negative-Binomial (α, λ), and in particular, for α = 1 it is
a Geometric (λ). With a slight abuse we use the same notation νλ,α for the homogeneous
product measure on NV with marginals (IV.23).

REMARK IV.10 (Invariant measures). The symmetric inclusion process preserves the total
number of particles. As a consequence, homogeneous products of discrete-Gamma are
reversible but not ergodic. To find the ergodic measures, consider two independent random
variables X, Y distributed according to (IV.23) and define the random variable UN :=
X|X + Y = N . It is easy to verify that UN is distributed as a Beta-Binomial with
parameters (N,α, α):

P (UN = k) = E
((

N

k

)
Bk(1−B)N−k

)
,
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where the expectation is taken over a random variable B distributed as a Beta(α, α), i.e.,
B takes values in the interval [0, 1] and has probability density

fB(x) =
xα−1(1− x)α−1

B(α, α)
, 0 ≤ x ≤ 1.

Notice that in the particular case α = 1, UN has a discrete-Uniform distribution on the
set {0, . . . , N}. Let now {η(t) = (η1(t), η2(t)), t ≥ 0} be the SIP(α) on two sites. Starting
this process from a configuration η = (η1, η2) ∈ N2 with η1 + η2 = N , we have that
{η(t), t ≥ 0} converges in distribution to (X,N − X) with X distributed as a Beta-
Binomial with parameters (N,α, α). This will be used in Chapter VII when we define the
thermalization of the symmetric inclusion process.

As we did in Proposition II.20 for independent walkers, we prove here a relation
involving the expectations of the self-duality polynomials (IV.21) of SIP(α) with respect
to the reversible probability measures.

PROPOSITION IV.11 (Expectation of the duality function in the reversible distribution).
We have for all k ≤ n, λ ∈ (0, 1) and α ∈ (0,∞)

∞∑
n=0

d(k, n)νλ,α(n) =

(
λ

1− λ

)k
. (IV.24)

where d(k, n) is the single-site SIP(α) self-duality function in the right-hand-side of (IV.21).
As a consequence, for the self-duality function D(ξ, η) defined in (IV.21) we have∫

D(ξ, η)νλ,α(dη) =

(
λ

1− λ

)|ξ|

=

(∫
D(δx, η)νλ,α(dη)

)|ξ|

(IV.25)

for all x ∈ V .

PROOF. The proof is an explicit and elementary computation:
∞∑
n=0

d(k, n)νλ,α(n) =
∞∑
n=k

n!

(n− k)!

Γ(α)

Γ(α + k)

λn

n!

Γ(α + n)

Γ(α)
(1− λ)α

= (1− λ)αλk
∞∑
n=0

λn

n!

Γ(α + n+ k)

Γ(α + k)

= (1− λ)αλk
∫∞
0

∑∞
n=0

λn

n!
xnxα+k−1e−x dx∫∞

0
xα+k−1e−x dx

= (1− λ)αλk
∫∞
0
xα+k−1eλxe−x dx∫∞

0
xα+k−1e−x dx

=
λk

(1− λ)k
.

This proves (IV.24). Then (IV.25) follows from (IV.24) and the fact that

λ

1− λ
=

∫
D(δx, η)νλ,α(dη).

for all x ∈ V .
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REMARK IV.12. Later on in the book we will use a different parametrizations for the
reversible product measure νλ,α defined (IV.23). A possible reparametrization is the one
labeled by the particle density parameter ρ := λ

1−λ , that is, for a discrete-Gamma(α, λ)
random variable, equal to the expected number of particles divided by α (see e.g. Propo-
sition ??). With this reparametrization the duality transform in (IV.24) gives exactly
ρk.

IV.5 Self-duality as a change of representation

The following theorem shows a deeper connection between the K operators in (IX.94)
and the cheap self-duality function, provided by the discrete representation of su(1, 1).

PROPOSITION IV.13 (Cheap self-duality as a change of representation). Let Ku, u ∈
{−, 0,+} be the operators defined in (IX.94), and let dch be the single-site cheap duality
function defined in (IV.19), then we have the following duality relations:

K+ dch−−→ K−

K− dch−−→ K+

K0 dch−−→ K0. (IV.26)

As a consequence, the generator of the symmetric inclusion process L defined in (IV.10)
is self-dual with self-duality function Dch (IV.19).

PROOF. In order to prove (C.90) we have to show that[
K+dch(·, n)

]
(k) =

[
K−dch(k, ·)

]
(n)[

K−dch(·, n)
]
(k) =

[
K+dch(k, ·)

]
(n)[

K0dch(·, n)
]
(k) =

[
K0dch(k, ·)

]
(n) (IV.27)

We have

[K+dch(·, n)](k) = n!
Γ(α)

Γ(α + n)
(α + k) δk+1,n =

n!Γ(α)

Γ(α + n− 1)
δk,n−1 = [K−dch(k, ·)](n)

from which follows the first relation. The second identity can be proved is similar way,
whereas the third one is trivial. We now want to use this to prove the generator duality.
Thanks to the decomposition of the generator (IV.10) in single-edge generators, it is
sufficient to prove the result for the two-site system with V = {1, 2}. Let Ku

x , u ∈
{−, 0,+}, x ∈ V as in (IV.12). Using Theorem III.5 we obtain:

K+
1 K

−
2

Dch

−−→ K−
1 K

+
2

K−
1 K

+
2

Dch

−−→ K+
1 K

−
2

K0
1K

0
2

Dch

−−→ K0
1K

0
2 .

Hence the cheap-duality relation between generators

L12
Dch

−−→ L12,

then follows using the abstract form (IV.14).



IV.5. SELF-DUALITY AS A CHANGE OF REPRESENTATION 97

PROPOSITION IV.14 (Triangular self-duality as a change of representation). Consider
now the operators k+, k− and k0 defined on functions f : N → R by

(k+f) (n) = (α + n)f(n+ 1)− 2(α
2
+ n)f(n) + nf(n− 1)

(k−f) (n) = nf(n− 1)

(k0f) (n) = (n+ α
2
)f(n)− nf(n− 1).

(IV.28)

They form a representation of the conjugate Lie algebra su(1, 1)∗. Moreover the operators
k+, k− and k0 are in duality relation with the operators K+, K− and K0 defined in (IX.94)

K+ d−−→ k−

K− d−−→ k+

K0 d−−→ k0. (IV.29)

where d is the single-site triangular duality relation defined in (IV.21). As a consequence,
the generator of the symmetric inclusion process L defined in (IV.10) is self-dual with
self-duality function D defined in (IV.21).

PROOF. To prove the result we remark that the operators ku can be rewritten in terms
of Kv, u, v ∈ {, 0,+}. We have indeed

k+ = K+ − 2K0 +K−, k− = K−, k0 = K0 −K−

as a consequence

[k−, k+] = [K−, K+]− 2[K−, K0] + [K−, K−] = −2K0 + 2K− = −2k0

whereas

[k+, k0] = [K+, K0]− [K+, K−]− 2[K0, K0] + 2[K0, K−] + [K−, K0]− [K−, K−]

= K+ − 2K0 +K− = k+ (IV.30)

and

[k−, k0] = [K−, K0]− [K−, K−] = −K− = −k−

then k+, k− and k0 satisfy the commutation relations (IV.5) that define the conjugate Lie
algebra su(1, 1)∗. In order to prove (IV.29) we need to show that

[K+d(·, n)](k) = [k−d(k, ·)](n) (IV.31)

We have

[k−d(k, ·)](n) = n · (n− 1)!

(n− 1− k)!
· Γ(α)

Γ(α + k)
1l{k≤n−1}

= (α + k) · n!

(n− 1− k)!
· Γ(α)

Γ(α + k + 1)
1l{k+1≤n} = [K+d(·, n)](k).
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Moreover

[k+d(k, ·)](n) =

{
(α + n)

(n+ 1)!

(n+ 1− k)!
1l{k≤n+1} − (α + 2n)

n!

(n− k)!
1l{k≤n}

+n
(n− 1)!

(n− 1− k)!
1l{k≤n−1}

}
Γ(α)

Γ(α + k)

= k
n!

(n− k + 1)!

Γ(α)

Γ(α + k − 1)
= [K−d(·, n)](k).

In a similar way it can be proved that [K0d(·, n)](k) = [k0d(k, ·)](n). Then, defining
“copies” of the operators (C.95), i.e. kux , u ∈ {−, 0,+}, x ∈ V , using Theorem III.5 we
obtain

K+
1 K

−
2

D−−→ k−1 k
+
2

K−
1 K

+
2

D−−→ k+1 k
−
2

K0
1K

0
2

D−−→ k01k
0
2,

with D the self-duality function defined in (IV.21) for V = {1, 2}. The third statement
can be proved by observing that the two-site generator, rewritten in terms of the operators
k+, k− and k0, has exactly the same abstract form of as in (IV.6):

L1,2 = k+1 k
−
2 + k−1 k

+
2 − 2k01k

0
2 +

α2

2
. (IV.32)

Indeed we have

k+1 k
−
2 + k−1 k

+
2 − 2k01k

0
2

=
(
K+

1 − 2K0
1 +K−

1

)
K−

2 +K−
1

(
K+

2 − 2K0
2 +K−

2

)
− 2

(
K0

1 −K−
1

) (
K0

2 −K−
2

)
= K+

1 K
−
2 − 2K0

1K
−
2 +K−

1 K
−
2 +K−

1 K
+
2 − 2K−

1 K
0
2 +K−

1 K
−
2

− 2K0
1K

0
2 + 2K−

1 K
0
2 + 2K0

1K
−
2 − 2K−

1 K
−
2

= K+
1 K

−
2 +K−

1 K
+
2 − 2K0

1K
0
2 .

Hence the self-duality relation for the two-site generator

L12
D−−→ L12,

follows using again Theorem III.5. Then the generator self-duality immediately follows
from the single-edge decomposition of L given in (IV.10).

IV.6 The abstract generator revisited

Here we show how the abstract generator of the symmetric inclusion process can be
generated naturally from a co-product applied to a non-trivial central element of the
universal enveloping algebra of su(1, 1), the so-called Casimir element.

We remind the reader the commutation relations of su(1, 1).
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DEFINITION IV.15. We denote by su(1, 1)∗ the conjugate Lie algebra generated by the
elements K+, K−, K0 satisfying the commutation relations

[K±, K0] = ±K±, [K+, K−] = 2K0. (IV.33)

In this section we denote by U(su(1, 1)∗) the universal enveloping algebra of su(1, 1)∗.

An element of an algebra is called central if it commutes with the algebra generators,
and, as a consequence, with all the elements of the algebra. We start by identifying a
well-known and relevant central element.

LEMMA IV.16. The so-called Casimir element:

C = (K0)2 − 1

2
(K+K− +K−K+) (IV.34)

is a central element of U(su(1, 1)∗).

PROOF. We start by proving [C,K0] = 0. We have

[C,K0] = −1

2

(
[K+, K0]K− +K+[K−, K0] + [K−, K0]K+ +K−[K+, K0]

)
= −1

2

(
K+K− −K+K− −K−K+ +K−K+

)
= 0,

while, for [C,K−] we have

[C,K−] = K0[K0, K−] + [K0, K−]K0 − 1

2
([K+, K−]K− +K−[K+, K−])

= −K0K− −K−K0 +K0K− +K−K0 = 0.

The computation of [C,K+] is similar and left to the reader.

We now illustrate how the abstract generator of the SIP is naturally connected to the
Casimir element via a co-product. We start with the definition of the co-product.

DEFINITION IV.17 (Coproduct). For u ∈ {+,−, 0}, we define

∆(Ku) = Ku ⊗ I + I ⊗Ku = Ku
1 +Ku

2 , (IV.35)

and extend the definition of ∆ to all elements of U(su(1, 1)∗) by

∆(g + h) = ∆(g) + ∆(h) and ∆(gh) = ∆(g)∆(h) ∀ g, h ∈ U(su(1, 1)∗).

PROPOSITION IV.18. The coproduct ∆ is an algebra homomorphism between U(su(1, 1)∗)
and U(su(1, 1)∗)⊗ U(su(1, 1)∗).

PROOF. As we did in Remark II.6 for the Heisenberg algebra, the only thing we have to
show is that ∆ preserves the commutation relations (IV.33), i.e., that

∆[Ku, Kv] = [∆(Ku),∆(Kv)]
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for u, v ∈ {+,−, 0}. We will show this for u = + and v = −, leaving the analogous
computations for the other cases to the reader. We will use repeatedly the obvious fact
that [Ku

1 , K
v
2 ] = 0 for u, v ∈ {+,−, 0}. We have

∆(K+K−) = (K+
1 +K+

2 )(K
−
1 +K−

2 ) = K+
1 K

−
1 +K+

2 K
−
2 +K+

1 K
−
2 +K+

2 K
−
1

and

∆(K−K+) = (K−
1 +K−

2 )(K
+
1 +K+

2 ) = K−
1 K

+
1 +K−

2 K
+
2 +K−

1 K
+
2 +K−

2 K
+
1 .

As a consequence,

∆([K+, K−]) = [K+
1 , K

−
1 ] + [K+

2 , K
−
2 ] = −2K0

1 − 2K0
2

and, on the other hand,

[∆(K+),∆(K−)] = [K+
1 +K+

2 , K
−
1 +K−

2 ] = [K+
1 , K

−
1 ] + [K+

2 , K
−
2 ] = 2K0

1 + 2K0
2

from which it follows that ∆([K+, K−]) = [∆(K+),∆(K−)].

REMARK IV.19. We have seen in Proposition IV.18 that the definition of the co-product
is consistent with the commutation relations. Notice that this is a general fact that does
not depend on the particular Lie algebra. Indeed if one defines the co-product as

∆(g) = g ⊗ I + I ⊗ g (IV.36)

for all elements g of the Lie algebra, then automatically one has

[∆(g),∆(h)]

= ∆(g)∆(h)−∆(h)∆(g)

= (g ⊗ I + I ⊗ g)(h⊗ I + I ⊗ h)− (h⊗ I + I ⊗ h)(g ⊗ I + I ⊗ g)

= (gh⊗ I + g ⊗ h+ h⊗ g + I ⊗ gh)− (hg ⊗ I + g ⊗ h+ h⊗ g + I ⊗ hg)

= gh⊗ I + I ⊗ gh− hg ⊗ I − I ⊗ hg = ∆[g, h]

and, as a consequence, the definition of ∆ can be extended to the universal enveloping
algebra.

The following lemma shows the relation between ∆(C) and the abstract generator of
the symmetric inclusion process.

LEMMA IV.20. Let C denote the Casimir element defined in (IV.34). Then we have

∆(C) = −(K+
1 K

−
2 +K+

2 K
−
1 ) + 2K0

1K
0
2 + C1 + C2 (IV.37)

with C1 = C ⊗ I and C2 = I ⊗ C.
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PROOF. We have

∆(C) = ∆
(
(K0)2

)
− 1

2
∆
(
K+K− +K−K+

)
= (K0

1 +K0
2)(K

0
1 +K0

2)−
1

2
(K+

1 +K+
2 )(K

−
1 +K−

2 )−
1

2
(K−

1 +K−
2 )(K

+
1 +K+

2 )

= −(K+
1 K

−
2 +K+

2 K
−
1 ) + 2K0

1K
0
2 + C1 + C2

that proves (IV.37).

If we now recall the abstract expression of the generator of the symmetric inclusion process
on two sites

L1,2 = K+
1 K

−
2 +K−

1 K
+
2 − 2K0

1K
0
2 +

α2

2
. (IV.38)

we see that it coincides with the coproduct of the Casimir modulo addition of a constant,
more precisely

L1,2 = −∆(C) + (C1 + C2) +
α2

2
(IV.39)

From Lemma IV.16 we know that the Casimir C is a central element of U(su(1, 1)∗), then
using Proposition IV.18 we deduce that the coproduct of the Casimir ∆(C) is a central
element of the tensor algebra U(su(1, 1)∗)×U(su(1, 1)∗). This implies, in particular, that
∆(C) commutes with ∆(Ku) = Ku

1 +K
u
2 , u ∈ {−, 0,+}. Thus we have found symmetries

of the generator of the symmetric inclusion process on two sites, namely

[L1,2, K
+
1 +K+

2 ] = 0, [L1,2, K
−
1 +K−

2 ] = 0, [L1,2, K
0
1 +K0

2 ] = 0.

The fact that the operators S+, S− and S0 defined in (IV.15) are symmetries of the
generator of the symmetric inclusion process on a general lattice V

L =
1

2

∑
x,y∈V

p(x, y)Lx,y (IV.40)

can be deduced similarly. The single-edge generator Lx,y can indeed be written in terms
of [∆(C)]xy as follows:

Lx,y = [∆(C)]xy + (Cx + Cy) +
α2

2
(IV.41)

where Cx and [∆(C)]xy are both elements of the algebra ⊗x∈VU(su(1, 1)
∗). More precisely

Cx is the Casimir element tensor identities in all sites different from x and [∆(C)]xy,
x, y ∈ V , is equal to ∆(C) on the edge {x, y} and equal to the identity on all other
components. Indeed we have that, for u ∈ {−, 0,+},

[L, Su] =
1

2

[∑
x,y∈V

p(x, y)[∆(C)]xy, S
u

]
=

1

2

∑
x,y∈V

p(x, y)
[
[∆(C)]xy, K

u
x +Ku

y

]
= 0

where in the first equality we used that Ku
z commutes with [∆(C)]xy for all z ̸∈ {x, y}

and in the second equality we used that [∆(C),∆(Ku)] = 0.
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IV.7 Ergodic tempered measures

So far we identified in (IV.23) reversible product measures for SIP(α), namely product
of discrete-Gamma distributions. These measures are the analogue of the homogeneous
Poisson measures for independent random walkers. In Chapter II, for independent random
walkers, in the infinite volume setting V = Zd we used self-duality to show the ergodicity of
Poisson product measures and the fact that among the set of tempered invariant measures,
Poisson product measures are the only ergodic ones. We now want to prove the same for
the symmetric inclusion process, i.e., in a general infinite-volume setting, we want to
characterize the set of ergodic tempered measures. In doing so, we will actually slightly
generalize the context to a process where we have duality and some conditions on the
duality functions. Then we define in that general setting the notion of tempered measures
and prove an ergodic theorem, i.e., characterize the set of ergodic tempered measures. The
advantage of this set up is that it will not only include the symmetric inclusion process
but also all the later examples to come, such as the Brownian energy process in Chapter
V and the symmetric partial exclusion process in Chapter VI.

We follow the road of Chapter II to characterize the set of ergodic measures. We
formulate an abstract theorem about tempered ergodic measures in a context where one
has duality polynomials. We then indicate, without giving full details how this applies in
the context of SIP(α) on V = Zd with translation invariant p. We refer to the literature
for details such as the existence of a successful coupling.

We consider a Markov process {η(t) : t ≥ 0} on a state space of the form Ω = EV

where in the example of the symmetric inclusion process we have E = N. In later examples
one has more general single-site state space, for instance E = [0,∞) for the Brownian
energy process in Chapter V. Furthermore we assume the existence of a dual process on
finite particle configurations, i.e., on the state space

Ω̂f =
⋃

n∈N
Ω̂n

where

Ω̂n =

{
ξ ∈ NV : |ξ| =

∑
x

ξx = n

}
denotes the set of dual configurations with n particles.

We denote the duality function by D : Ω̂f × Ω → R.
We then assume the following conditions for the duality function.

DEFINITION IV.21 (Regular duality functions). We call the duality function regular if
the following conditions are met.

1. The duality functions are homogeneously factorizing, i.e., they are of the form

D(ξ, η) =
∏
x∈V

d(ξx, ηx)

where for all k ≥ 1 we assume d(k, ·) is a non-negative function and d(0, ·) = 1.
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2. Growth condition. There exists a sequence cn, n ∈ N such that the following holds.
If, for a probability measure µ on Ω we have the bound

sup
ξ∈Ω̂n

∫
D(ξ, η)dµ(η) ≤ cn for all n ∈ N (IV.42)

then µ is uniquely determined by the expectations

µ̂(ξ) =

∫
D(ξ, η)dµ(η) (IV.43)

We call such a sequence cn, n ∈ N an allowed growth sequence.

3. Exponential growth sequences are allowed. The sequence cn = θn is an allowed
growth sequence for all θ > 0.

4. Density condition. For every µ satisfying (IV.42), the linear combinations of D(ξ, ·)
are dense in L2(µ).

As underlying motivating example we have in mind the self-duality polynomials for
symmetric inclusion process (IV.21) and the self-duality polynomials for independent
random walkers (II.34). Let us give three examples of allowed growth sequences associated
to a given single-site duality function d.

1. Monomials. Ω = [0,∞)V , d(k, z) = zk, (ck)k≥0 a sequence such that the Carleman
condition is satisfied, i.e., ∑

k

c
−1/k
k <∞

An example is ck = k!θk for some θ > 0 which corresponds to the moments of an
exponential distribution.

2. Falling factorials. Ω = NV , d(k, n) = n!/(n− k)!, ck = k!rk, for some r > 0.

3. Monomials in the compact setting. Ω = {0, 1, . . . , α}V , d(k, n) = nk, ck = αk.

Given the Markov process {η(t) : t ≥ 0}, its dual {ξ(t) : t ≥ 0} and the duality function D

satisfying the assumption of regularity, we define the set of tempered probability measures
as follows.

DEFINITION IV.22 (Tempered measures). Assume that the duality function is regular,
with regularity sequence cn, n ∈ N. Then we call a probability measure µ tempered if we
have

1. Allowed moment growth. There exist an allowed growth sequence in the sense of
Definition IV.21 such that

sup
|ξ|=n

∫
D(ξ, η)dµ(η) ≤ cn (IV.44)
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2. Second moment bounds for the duality function.

sup
|ξ|=n,|ξ′|=n

∫
D(ξ, η)D(ξ′, η)dµ(η) ≤ dn (IV.45)

for some sequence dn of non-negative numbers.

We denote by P the set of tempered probability measures on Ω.

DEFINITION IV.23 (Measure associated to a duality function). For a given regular duality
function D we define for θ ∈ [0,∞) the measure µθ via∫

D(ξ, η)dµθ(η) = θ|ξ| (IV.46)

We call R the set of product measures of this type.

We remark that, by definition, µθ are tempered product measures.
For the dual process {ξ(t) : t ≥ 0}, we assume the following.

DEFINITION IV.24 (Canonical dual). The dual process is called canonical if the following
three conditions are met.

1. Conservation law. The process conserves the number of particles, i.e., for ξ ∈ Ω̂n,
we have ξ(t) ∈ Ω̂n for all t ≥ 0.

2. Non-positive recurrence. For all ξ, ξ′ ∈ Ω̂f ,

lim
t→∞

pt(ξ, ξ
′) = 0 (IV.47)

Notice that this excludes the case V finite. It is generically satisfied when V = Zd
and the transition rates of individual particles are translation invariant and finite
range.

3. Bounded harmonic functions are constant. I.e., if f : Ω̂n → R is a bounded function
such that

f(ξ) = Eξf(ξ(t))

then f(ξ) = g(n) for some g : N → R.

The following lemma shows the relation between tempered invariant measures and
bounded harmonic functions of the dual process, see Theorem II.23 for the analogous
statement and proof for independente walkers.

LEMMA IV.25. Assume that the dual process is canonical in the sense of Definition IV.24.
If µ is tempered and invariant, then µ̂ is bounded and harmonic, and thus depends only
on the number of dual particle. I.e., for ξ ∈ Ω̂n

µ̂(ξ) = g(n) (IV.48)

for some g : N → R.
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REMARK IV.26. The third condition of Definition IV.24 is typically verified via the con-
struction of a successful coupling, i.e., from two different initial conditions ξ, ξ′ ∈ Ω̂n there
exists a coupling of the dual processes starting from ξ and ξ′ such that in this coupling,
the coupling time is finite.

The existence of a successful coupling for the dual is ensured in the following setting.

1. For independent random walks, we discussed the existence of a successful coupling
(the coordinate-wise Ornstein coupling) in Chapter 2.

2. For the symmetric exclusion process, the existence of a successful coupling is proved
in [67], see also [167].

3. For the symmetric inclusion process, using ideas from both [183], and [67] a suc-
cessful coupling is constructed for SIP(α) in [152].

Then we have the following general result.

THEOREM IV.27 (General ergodic theorem). Let {η(t), t ≥ 0} denote a configuration
process, with a canonical dual process, in the sense of Definition IV.24, with regular
duality function in the sense of Definition IV.21. Let us denote by I the set of ergodic
invariant measure. Then

I ∩P = R ∩P

In other words the only tempered ergodic measures are the those of Definition IV.23.

PROOF. We have defined the context in such a way that we can proceed very analogously
to how we proceeded for independent walkers, i.e., in the characterization of tempered
ergodic measures in Chapter 2. The essential ingredients are the bounds provided by
the temperedness, i.e., (IV.45), combined with (IV.47). We leave the easy details to the
reader.

IV.8 Propagation of positive correlations

In this section we see, as an application of self-duality for the SIP, that starting from local-
equilibrium product measures, the evolution produces measures with positive correlations.
This is another statement that confirms the “bosonic” or “attractive” character of the
inclusion process. In fact, as showed by Liggett in [167], under the symmetric exclusion
process evolution, product measures evolve towards negatively-correlated distributions.
However, for the symmetric exclusion process, which allows at most one particle per site,
there is essentially only one type of product measures, namely products of Bernoulli. We
will see that for symmetric inclusion process instead, a general initial product measure
can lead to both positive and negative correlations, and, in order to have propagation of
positive correlations we need to start from a well-chosen product measure, whose marginals
are discrete-Gamma, with scale parameters that can be site-dependent.

The way the correlation inequality is proved is exactly along the lines of Liggett’s
proof. We first need a labeled particle representation for SIP. We fix a countable lattice V
and a symmetric irreducible function p : V ×V → [0,∞). Then we consider the dynamics
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of a finite number of SIP particles, say n, and we attach to each of them a label that they
will keep forever. The evolution of their positions X1(t), . . . Xn(t) define a continuous-time
Markov chain on V n with generator

Lnf(x1, . . . , xn) =
n∑
i=1

n∑
j=1

∑
y∈V

p(xi, y)(α + 1l{xj=y})(f(x(i, y))− f(x)) (IV.49)

where x = (x1, . . . , xn) and with x(i, y) denoting the n-tuple obtained from x by replacing
the i-th component xi by y. We will also use the notation x(i, j;u, v) for the vector
arising from x by substituting xi with u and xj with v. We denote by Sn(t) = etLn the
corresponding semigroup.

As we did in Section IV.2 for the configuration process, also for the coordinates process,
we isolate the “independent” part of the dynamics. In other words we define a system of
n independent random walkers moving with rate αp(x, y) between x and y, and we label
them. In the coordinate representation this has generator

Lirw
n f(x) =

n∑
i=1

n∑
j=1

∑
y∈V

αp(xi, y)(f(x(i, y))− f(x)), (IV.50)

and corresponding semigroup Sirw
n (t) := etL

irw
n . So we have

(Ln − Lirw
n )f(x) =

n∑
i=1

n∑
j=1

p(xi, xj)(f(x(i, xj))− f(x)) (IV.51)

which, by symmetry of p, can be rewritten as follows for a symmetric function f : V n → R,

(Ln − Lirw
n )f(x) =

1

2

n∑
i=1

n∑
j=1

p(xi, xj)(f(x(i, xj)) + f(x(j, xi)− 2f(x)). (IV.52)

This quantity has positive sign if on top of being symmetric, f is also positive-definite.
Let us define this concept now more in detail.

DEFINITION IV.28. A function f : V 2 → R is positive-definite if for all φ : V → R∑
x,y

φ(x)φ(y)f(x, y) ≥ 0

A function f : V n → R is positive-definite if for all i, j and x ∈ V n, the map

(u, v) 7→ f(x(i, j;u, v))

is positive-definite. We denote by Sn the set of positive-definite symmetric functions
f : V n → R.

The simplest examples of elements of Sn are of the form

f(x) =
n∏
i=1

ρ(xi)
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for ρ : V n → [0,∞). Also functions of the form

(x1, . . . , xn) 7→
∫
W

n∏
i=1

ρ(xi, ω)dλ(ω)

belong to Sn whenever ρ : V × W → [0,∞), with W a measurable space, and λ is a
positive finite measure. We also notice that, for a : V 2 → [0,∞) and f ∈ Sn,

x 7→
∑
y1,...yn

∏
a(xi, yi)f(x)

is positive-definite (provided it is well-defined) and symmetric. As a consequence, for all
f ∈ Sn, we have Sirw

n (t)f ∈ Sn. We now prove the following.

THEOREM IV.29. For f ∈ Sn we have, for all x ∈ V n

Sn(t)f(x) ≥ Sirw
n (t)f(x) (IV.53)

PROOF. Put An := Ln − Lirw
n , then, using (IV.52), we have that for all f ∈ Sn,

Anf(x) =
1

2

n∑
i=1

n∑
j=1

p(xi, xj) (f(x(i, xj))− 2f(x) + f(x(j, xi))) ≥ 0

where we used that for f : V 2 → R positive-definite,

f(x, x) + f(y, y)− 2f(x, y) =
∑
u,v∈V

f(u, v)φ(u)φ(v) ≥ 0

with φ(u) = 1l{u=x}−1l{u=y}. Now if f ∈ Sn, then for 0 ≤ s ≤ t, also Sirw
n (s)f ∈ Sn, hence

AnS
irw
n (s)f ≥ 0, and then, since Sn(·) is a positivity preserving semigroup, we deduce that

Sn(t − s)AnS
irw
n (s)f ≥ 0. Then, using the variation of constants formula, we conclude

that

Sn(t)f − Sirw
n (t)f =

∫ t

0

Sn(t− s)(An(S
irw
n (s)f)) ≥ 0 (IV.54)

for all f ∈ Sn.

As a first consequence of this inequality, we show that two SIP particles spend more
time together than their independent walker counterparts. This statement can easily be
generalized to more than two SIP particles.

PROPOSITION IV.30. Let us denote by Psip(α)
t (x, y;u, v) the transition probabilities of two

labeled SIP(α) particles to move in time t from (x, y) to (u, v) and Pirw(α)
t (x, y;u, v) =

pt(x, u)pt(y, v) the corresponding independent random walk transition probabilities. Then
we have for all x, y, u ∈ V and t ≥ 0,

Psip(α)(x, y;u, u) ≥ Pirw(α)(x, y;u, u). (IV.55)



108 CHAPTER IV. DUALITY FOR THE SYMMETRIC INCLUSION PROCESS

PROOF. The statement follows immediately from Theorem IV.29 and the fact that the
function f(x, y) = 1l{u=x=y} is positive-definite and symmetric.

In order to apply Theorem IV.29 to prove the announced result on preservation of
positive correlations, we need to introduce some further notations. For a probability
measure µ on the configuration space of the (unlabeled) SIP(α), i.e. Ω = NV , we define
the so-called n-point function:

Cµ(x1, . . . , xn) =

∫
D

(
n∑
i=1

δxi , η

)
dµ(η) (IV.56)

where D is the SIP(α) self-duality function defined in (IV.21).

DEFINITION IV.31. Let ρ be a function ρ : V → [0,∞) modeling a density profile over
the lattice V . We denote by µρ the inhomogeneous product measure associated to ρ,
namely the product measure whose site-x marginal is the discrete-Gamma distribution

with parameters
(
α, ρx

1+ρx

)
.

REMARK IV.32. Notice that if the density profile ρ is constant, then µρ is one of the
reversible measures of the symmetric exclusion process (see (IV.23)). In general, i.e. for
inhomogeneous density profiles, the measure µρ is only “locally at equilibrium”. Notice
that the parametrization of the discrete-Gamma marginals is chosen in such a way to
make the local particle density ρx equal to the expected number of particles at site x
divided by α, namely

ρx = Eµρ
[ηx
α

]
= Eµρ [D(δx, η)] (IV.57)

where the second identity follows from the fact that d(1, n) = n
α
(see (IV.21)).

REMARK IV.33 (Characterizing property of µρ). A characterizing property of the proba-
bility measure µρ is the following identity profile ρ if

Cµρ(x1, . . . , xn) =
n∏
i=1

ρ(xi). (IV.58)

More precisely, the n-point functions with respect to a probability measure µ on Ω are of
the form (IV.58) if and only if µ is equal to µρ, inhomogeneous product measure associated
to ρ.

We define the density profile at time t > 0 by

ρt(x) =

∫
D(δx, η)dµρ(t)(η) =

∑
pt(x, y)ρ(y) (IV.59)

where pt(x, y) is the transition probability of the continuous-time random walk jumping
at rate αp(x, y) from x to y. Finally we define an order relation µ ≺ ν between two
probability measures on Ω if we have∫

D(ξ, η) dµ(η) ≤
∫
D(ξ, η) dν(η) (IV.60)
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for all particle configurations ξ in Ω with a finite number of particles. Notice that this
partial order is different from the usual stochastic domination partial order defined by
all monotone functions. Indeed the latter is stronger, and it can happen that µ ≺ ν
but ν does not stochastically dominate µ. We can now prove the following correlation
inequality.

THEOREM IV.34. Let µρ be a local equilibrium distribution for SIP(α) with density profile
ρ, and let µρ(t) denote the distribution at time t > 0 of SIP(α) when started from µρ at
time zero. Then we have, for all x1, . . . , xn ∈ V ,

Cµρ(t)(x1, . . . , xn) ≥
n∏
i=1

ρt(xi), (IV.61)

and, as a consequence, µρ(t) ≺ µρ(t). Moreover, the variables ηx1 , . . . , ηxn are positively
correlated under the measure µρ(t).

PROOF. Denote ρn : V n → R the function that assigns to a n-tuple x = (x1, . . . , xn)
the product ρn(x) =

∏n
i=1 ρ(xi). This function is clearly symmetric and positive-definite.

Using self-duality of SIP(α) with self-duality function (IV.21) and applying (IV.53) to
ρn(x), we obtain

Cµρ(t)(x1, . . . , xn) = (Sn(t)ρn)(x1, . . . , xn)

≥ (Sirw
n (t)ρn)(x1, . . . , xn) =

n∏
i=1

ρt(xi). (IV.62)

The inequality µρ(t) ≺ µρ(t) follows now by the definition of the order ≺. The statement
about positiveness of correlations follows immediately from the fact D(δx, η) =

ηx
α

with
α > 0, and the fact that, if x1 ̸= x2 ̸= . . . ̸= xn then

D

(
n∑
i=1

δxi , η

)
=

n∏
i=1

D(δxi , η).

This concludes the proof.

REMARK IV.35.

Notice that we did not use any particular property of the self-duality functions other than
the fact that ∫

D(
n∑
i=1

δxi , η)dµρ =
n∏
i=1

ρ(xi) = ρn(x). (IV.63)

In order for the function ρn(x) to be positive-definite we need the non-negativity of ρ, but
not the specific form of the self-duality functions. This implies that the result in Theorem
IV.34 holds true for any choice of the self-duality functions and any choice of the measure
µρ satisfying the relation (IV.63).
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IV.9 Inhomogeneous symmetric inclusion process

In this section we will see that it is possible to generalize the self-duality result proved
in Section IV.4 to a system of inclusion particles in which the parameter α > 0 is not
constant but site-dependent. To this aim we introduce the vector α = {αx, x ∈ V }
with αx > 0. Let p : V 2 → [0,∞) be a symmetric transition function, then we define
the inhomogeneous inclusion process with attraction intensity vector α, SIP(α), as the
process {η(t) : t ≥ 0} of interacting particles moving on the lattice V with generator

L =
1

2

∑
x,y∈V

p(x, y)Lx,y, (IV.64)

Lx,yf(η) = ηx(αy + ηy)[f(η
x,y)− f(η)] + ηy(αx + ηx)[f(η

y,x)− f(η)] (IV.65)

and state space Ω = NV .

Via a detailed-balance computation, one can see that the inhomogeneous process is still
reversible with respect to the product measures of the form

M(η) =
∏
x∈V

ληx

ηx!

Γ(ηx + αx)

Γ(αx)
, with λ > 0, (IV.66)

that is the inhomogeneous version of (IV.18). From this reversible measure one can
produce a cheap self-duality function. In order to obtain a non-trivial self-duality function,
now, it is sufficient to find a triangular symmetry as we did in Section IV.3 for the
homogeneous case, and act with it on the cheap duality. It is convenient, to this aim,
to rewrite the single-edge generator, in terms of the generators of the conjugate algebra
su(1, 1)∗. This can be easily done mimicking the homogeneous case. We have indeed:

Lx,y = K+
x K

−
y +K−

x K
+
y − 2K0

xK
0
y +

αxαy
2

. (IV.67)

where the operators Kv
x , v ∈ {0,+}, x ∈ V defined in (IX.94) for the homogeneous case,

are now site-dependent, since, at each site x ∈ V corresponds a different parameter αx,
whereas K−

x has the same action for all x:

K+
x f(n) = (αx + n)f(n+ 1),

K−
x f(n) = nf(n− 1),

K0
xf(n) =

(
αx

2
+ n
)
f(n). (IV.68)

The change in the definition of these operators doesn’t modify the commutation relations
that read again:

[K±
x , K

0
y ] = ±K±

x · δx,y,
[K+

x , K
−
y ] = 2K0

x · δx,y. (IV.69)

Due to the fact that the generator in the abstract form (IV.67) is the same as in (IV.14)
modulo addition of a constant, and since the commutation relations remain unperturbed,
we can deduce a symmetry result. The inhomogeneous inclusion process generator Lx,y
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commutes with Kv
x+K

v
y for v ∈ {+,−, 0}. This can be easily checked, we do it for v = +,

we have:

[K+
x K

−
y +K−

x K
+
y − 2K0

xK
0
y , K

+
x +K+

y ]

= [K−
x , K

+
x ]K

+,
y − 2[K0

x, K
+
x ]K

0
y

+ K+
x [K

−
y , K

+
y ]− 2K0

x[K
0
y , K

+
y ]

= −2K0
xK

+
y + 2K+

x K
0
y − 2K+

x K
0
y + 2K0

xK
+
y = 0. (IV.70)

The result can be easily generalized to the system with more sites and then to the entire
generator L that is thus commuting with the Sv :=

∑
x∈V K

v
x . We can combine now,

the cheap-duality result and the symmetry statement in order to obtain a triangular
self-duality for the inhomogeneous process.

THEOREM IV.36 (Self-duality of SIP(α)). The inhomogeneous symmetric inclusion pro-
cess with attraction intensity vector α = {αx, x ∈ V } on a finite graph V with generator
(IV.64)-(IV.65) is self-dual with self-duality function

D(ξ, η) =
∏
x∈V

dx(ξx, ηx), (IV.71)

and

dx(k, n) =
n!

(n− k)!

Γ(αx)

Γ(αx + k)
1l{k≤n} (IV.72)

PROOF. The result is obtained, similarly to the proof of Theorem IV.8, by acting with
the symmetry eS

+
, on the cheap duality function dch(ξ, η) =

δξ,η
M(ξ)

, where M(·) is the

reversible measure defined in (IV.66).

IV.10 Additive structure on ladder graphs

In this section we prove that the SIP(α) defined on a ladder graph has the remarkable
property that, summing over the levels of the ladder, defines a new symmetric inclusion
process with parameters obtained by summing the components of α over the ladder. The
proof of this property relies on computations involving the generator in its abstract form.

We start by introducing the idea of a particle system on a ladder. Let us denote by
V ∗ a set of sites. We consider a finite fibred vertex set over V ∗, i.e., a finite set of the form
V = {(x, ℓ) : x ∈ V ∗, ℓ ∈ {1, . . . , Lx}}, and we call such a set a “ladder vertex set”. The
interpretation is that at each “site” x ∈ V ∗ (name which we reserve for the base-points
of each fiber) there are Lx levels of a ladder.

Let p : V × V → [0,∞) be an irreducible symmetric function. We call p level-
independent if p((x, ℓ), (y, s)) = p((x, ℓ′), (y, s′)) for all ℓ, ℓ′ ∈ [Lx] and s, s

′ ∈ [Ly] (where
we use the notation [n] = {1, . . . , n}). In other words, this means that p only depends
on the base-points of the fibres, i.e. we can define a symmetric edge-weight function over
V ∗, p∗ : V ∗ × V ∗ → [0,∞) such that p((x, ℓ), (y, s)) = p∗(x, y), for all ℓ ∈ [Lx], s ∈ [Ly].
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For a configuration η ∈ NV we define its contraction as the configuration η∗ ∈ NV ∗

such that

η∗x =
Lx∑
ℓ=1

η(x,ℓ) (IV.73)

We then have the following theorem.

THEOREM IV.37. Consider the SIP(α) on a fibred vertex set V over V ∗, with edge
weights p : V × V → [0,∞) and parameters α = {α(x,ℓ), x ∈ V ∗, ℓ ∈ [Lx]). Assume that
p is level-independent. Then the contracted process {η∗(t) : t ≥ 0} is the SIP(α∗) on V ∗

with

α∗ = {α∗
x, x ∈ V ∗} and α∗

x =
Lx∑
ℓ=1

α(x,ℓ)

PROOF. Let us denote ψ : NV → NV ∗
the contraction map such that ψ(η) = η∗. We have

to show that, for all f : NV ∗ → R,

LSIP(α)(f ◦ ψ) = (LSIP(α∗)f) ◦ ψ. (IV.74)

To this aim we write the generator LSIP(α) of the symmetric inclusion process with pa-
rameters (α) in its abstract form

LSIP(α) =
∑
x,y∈V

p∗(x, y)
Lx∑
ℓ=1

Ly∑
s=1

(
K+

(x,ℓ)K
−
(y,s) +K−

(x,ℓ)K
+
(y,s) − 2K0

(x,ℓ)K
0
(y,s) +

1
2
α(x,ℓ)α(y,s)

)
Here we denote by K−

(x,ℓ) the operators given by

K+
(x,ℓ)f(n) = (α(x,ℓ) + n)f(n+ 1),

K−
(x,ℓ)f(n) = nf(n− 1),

K0
(x,ℓ)f(n) =

(α(x,ℓ)

2
+ n
)
f(n). (IV.75)

First of all we notice that, for what concerns the constant term, when we sum over the
ladders we have

Lx∑
ℓ=1

Ly∑
s=1

1
2
α(x,ℓ)α(y,s) =

1
2
α∗
xα

∗
y.

Hence, in order to prove our result it is sufficient to show that, for all functions f : NV ∗ →
R only depending on the x-coordinate, one has

Lx∑
ℓ=1

Kv
(x,ℓ)(f ◦ ψ) = (Kv

xf) ◦ ψ (IV.76)

for v ∈ {+,−, 0}, where

K+
x f(n) = (α∗

x + n)f(n+ 1),

K−
x f(n) = nf(n− 1),

K0
xf(n) =

(
α∗
x

2
+ n
)
f(n). (IV.77)
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We prove (IV.76) only for the case v = +, as the proof of the other cases is similar. Let
f : NV ∗ → R be a function only depending on the x-coordinate, and let η ∈ NV then we
first notice that for all ℓ ∈ {1, . . . , Lx} it holds that

f ◦ ψ(η + δx,ℓ) = f(η∗ + δx) = f(ψ(η) + δx)

As a consequence(
Lx∑
ℓ=1

Kv
(x,ℓ)(f ◦ ψ)

)
(η) =

Lx∑
ℓ=1

(α(x,ℓ) + η(x,ℓ))f(η
∗ + δx)

= (α∗
x + η∗x)f(η

∗ + δx)

= (K+
x f)(η

∗)

= (K+
x f) ◦ ψ(η).

REMARK IV.38. The result in Theorem IV.37 might appear surprising. In the contraction
procedure from η to η∗ a part of the information is lost. Being {η(t) : t ≥ 0} a Markov
process, one might wonder whether {η∗(t) : t ≥ 0} is still a Markov process. This is
the case. Indeed, because of the level independence of p, the rates satisfy the lumping
condition in [57] ensuring that the contraction from η to η∗ indeed preserves the Markov
property. Notice that this is also true because of the (bi)linearity of the rates in both α
and ηi, and hence this provides yet another proof of the theorem (see [111]).

IV.11 Additional notes

The inclusion process was introduced in [110] as a dual of a model of heat conduction
(the Brownian momentum process). Basic properties including the analogues of Liggett’s
correlation inequalities for the exclusion process were proved in [112]. In the literature on
population dynamics, the inclusion process on the complete graph appears as the Moran
model (with parent independent mutation rate). The precise connections between the
inclusion process and related processes in population dynamics is discussed in [43]. The
identification of the SU(1, 1) symmetry of the inclusion process and the consequent self-
dualities were first described in [111]. Later the connection with the Casimir element was
proved and used to construct an appropriate asymmetric version of the inclusion process
which has self-duality properties coming from quantum Lie algebra symmetries (see [48]).
Concerning the use of duality in the context of population dynamics, the emphasis is more
on the coalescent processes, describing the ancestral relations of individual backwards
in time. This leads e.g. to moment duality of the Moran model with the Kingman’s
coalescent block counting process see e.g. [176], [82]. The symmetric inclusion process
manifests condensation phenomena for small α, i.e., when α → 0 the process typically
forms piles of size 1/α which have a limiting dynamics. The self-duality allows to study
the coarsening process, i.e., how starting from a homogeneous initial distribution the
condensates are formed in the course of time and how they move on an appropriate time
scale. The study of condensation in the symmetric inclusion process was initiated in [121]
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for the condensation properties of the stationary measure, and [122] for the dynamics
of the condensate. The condensation is studied with potential theoretic methods and
a conjecture of the existence of multiple time scales was formulated in [29], which was
proved in [141]. In [55] for symmetric inclusion process on the complete graph, in the
condensation limit, a measure-valued diffusion process is obtained for the size-biased and
appropriately scaled empirical measures of mass distribution.



Chapter V

Duality for the Brownian energy
process

Abstract: In this chapter we study the Brownian energy process, a diffu-
sion process modelling heat conduction, where energy is diffusively exchanged
among sites. We will introduce it as a many-particle limit of the symmetric
inclusion process, in the spirit of population models where diffusion processes
arise when limits of large population size are taken, and the variables become
the ratios of the numbers individuals of different types with respect to the total
population size. Naturally, the generator of the Brownian energy process, in
its abstract form, reads exactly as the generator of the symmetric inclusion
process, in terms of the generator of the su(1, 1) Lie algebra. This algebraic
structure is also at the origin of the duality relation between the two processes.
We also introduce the Brownian momentum process, a diffusion process mod-
elling the evolution of interacting momenta on a lattice, also sharing the same
algebraic structure.

V.1 The Brownian energy process on two vertices

Let {η(t) : t ≥ 0} be the inhomogeneous SIP(α), with α = (α1, α2) on the two-site lattice
V = {1, 2}, i.e. the process with generator:

L1,2f(η) = η1(η2 + α2)[f(η
1,2)− f(η)] + η2(η1 + α1)[f(η

2,1)− f(η)] (V.1)

with ηx,y = η − δx + δy. As we did in Section III.1 for the system of independent random
walkers, we study the many- particle limit, i.e. the limit as N → ∞ of the process
{η(t)/N : t ≥ 0} started with order N particles. We start by scaling the initial conditions
as follows:

η
(N)
1 = ⌊Nζ1⌋, η

(N)
2 = ⌊Nζ2⌋ (V.2)

where ζ1, ζ2 ∈ [0,∞). Then we have

lim
N→∞

η
(N)
x

N
= ζx, for x = 1, 2. (V.3)
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We then study the behaviour of the limiting process {η(t)/N : t ≥ 0}. Let f : [0,∞) → R
be a smooth function. We have

f
(
(ζ1, ζ2)− δ1

N
+ δ2

N

)
− f(ζ1, ζ2)

=
1

N

(
∂

∂ζ2
− ∂

∂ζ1

)
f(ζ1, ζ2) +

1

2N2

(
∂

∂ζ2
− ∂

∂ζ1

)2

f(ζ1, ζ2) +O

(
1

N3

)
. (V.4)

Using this and expanding the generator working on a function of the form (η1, η2) 7→
f(η1

N
, η2
N
) up to second order yields

lim
N→∞

Lf(η1
N
, η2
N
)

= (α2ζ1 − α1ζ2)

(
∂

∂ζ2
− ∂

∂ζ1

)
f(ζ1, ζ2) + ζ1ζ2

(
∂

∂ζ2
− ∂

∂ζ1

)2

f(ζ1, ζ2). (V.5)

It is then a standard application of the Trotter-Kurtz theorem [153] that the sequence of
processes {η(t)/N : t ≥ 0} converges weakly in path-space to the diffusion process with
generator

L1,2 = (α2ζ1 − α1ζ2)

(
∂

∂ζ2
− ∂

∂ζ1

)
+ ζ1ζ2

(
∂

∂ζ2
− ∂

∂ζ1

)2

(V.6)

and state space [0,∞)V , starting from the configuration (ζ1, ζ2) at time zero.

In stochastic differential equation language, the process {(ζ1(t), ζ2(t)) : t ≥ 0} evolves
as

dζ1(t) = −(α2ζ1(t)− α1ζ2(t))dt+
√

2ζ1(t)ζ2(t)dBt

dζ2(t) = (α2ζ1(t)− α1ζ2(t))dt−
√
2ζ1(t)ζ2(t)dBt

From this we see that the sum ζ1(t) + ζ2(t) is a conserved quantity for the Brownian
energy process on two sites. In other words, if initially ζ1 + ζ2 = z then {ζ1(t) : t ≥ 0}
evolves as a diffusion process on the interval [0, z] governed by the equation:

dζ1(t) = (−α2ζ1(t) + α1(z − ζ1(t)))dt+
√
2ζ1(t)(z − ζ1(t))dBt

where {Bt : t ≥ 0} is the standard one-dimensional Brownian motion. This process is
called the (inhomogeneous) Brownian energy process with parameter vector α = (α1, α2)
on two sites, and abbreviated BEP(α) on two sites.

V.2 Duality on two vertices

We now use the convergence of the rescaled inclusion process {η(t)/N : t ≥ 0} to the
Brownian energy process, to obtain a duality relation between BEP(α) and SIP(α) from
the self-duality of the symmetric inclusion process. Notice that this result is analogous to
the result proven in Theorem III.2 about duality between independent random walkers
and the corresponding deterministic system.
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THEOREM V.1. Let V = {1, 2} and define

D(ξ, ζ) =
2∏

x=1

dαx(ξx, ζx) with dα(n, z) = zn
Γ(α)

Γ(α + n)
(V.7)

for ζ = (ζ1, ζ2) ∈ [0,∞)V and ξ = (ξ1, ξ2) ∈ NV . Then we have

ESIP(α)
ξ (D(ξ(t), ζ)) = EBEP(α)

ζ (D(ξ, ζ(t))) . (V.8)

PROOF. Notice that, for ζ1 > 0, we have

lim
N→∞

⌊Nζ1⌋!
(⌊Nζ1⌋ − k)!

= ζk1 .

Start from self-duality of the symmetric inclusion process, and take η1, η2 as in (V.2).
Then we have

ESIP(α)
ξ (D(ξ(t), η)) = ESIP(α)

ζ (D(ξ, η(t)))

Divide this identity by N ξ1+ξ2 , take the limit N → ∞ and use the weak convergence of
{η(t)/N : t ≥ 0} to {ζ(t) : t > 0} and the dominated convergence theorem to conclude
(V.8).

V.3 Abstract form of the generator

In order to understand better the duality properties of the Brownian energy process, in
particular how to naturally generate the duality function (V.7), we study the abstract
form of the generator. As we did in Section III.2 for the duality between independent
random walkers and the deterministic system, we would like to recognize the duality
result obtained in Theorem V.1 as the outcome of a change of representation of a (Lie)
algebra. In Section III.2 we had “discrete” and “continuous” representations a, a† and
A,A† of the generators of the (conjugate) Heisenberg algebra. In a similar way, here we
have a representation of the generators K +

x ,K
−
x ,K

0
x of the algebra su(1, 1) in terms

of differential operators. These operators work on smooth functions f : [0,∞) → R as
follows:

K +
x f(z) = zf(z)

K −
x f(z) = zf ′′(z) + αxf

′(z)

K 0
x f(z) = zf ′(z) + αx

2
f(z) (V.9)

and satisfy the commutation relations of the algebra su(1, 1)

[K +
x ,K

−
y ] = −2K 0

x · δx,y, [K 0
x ,K

±
y ] = ±K ±

x · δx,y (V.10)

i.e., they form a right representation of the algebra su(1, 1). It is easy to verify that the
generator of the BEP(α) on two sites can be written in terms of these operators in the
following way:

L1,2 = K +
1 K −

2 + K −
1 K +

2 − 2K 0
1 K 0

2 + α1α2

2
. (V.11)
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Now we recognize that the generator of the symmetric inclusion process SIP(α) and the
generator of Brownian energy process BEP(α) have the same abstract form (compare
(IV.14) to (V.11)). The generators of the two processes arise from two different repre-
sentations: a “discrete” representation for SIP(α) and a “continuous” representation for
BEP(α)) of the same abstract object. Then duality between the two processes follows
as a consequence of the duality between these two representations. This is the content of
the theorem below.

THEOREM V.2. Let dα(n, z) be defined as in (V.7). For x ∈ {1, 2} we have the dualities:

K+
x

dαx−−→ K +
x

K−
x

dαx−−→ K −
x

K0
x

dαx−−→ K 0
x . (V.12)

As a consequence we have the duality between the Brownian energy process on two sites
and the symmetric inclusion process on two sites

L1,2
D−−→ L1,2 (V.13)

with duality function D defined in (V.7).

PROOF. To see (C.115) we compute

[K +
x dαx(n, ·)](z) = z

znΓ(αx)

Γ(αx + n)

= (αx + n)zn+1 Γ(αx)

Γ(αx + n+ 1)

= (αx + n)dαx(n+ 1, z)

= [K+dαx(·, z)](n) (V.14)

[K −
x dαx(n, ·)](z) = z

n(n− 1)zn−2Γ(αx)

Γ(αx + n)
+ αx

nzn−1Γ(αx)

Γ(αx + n)

=
n(n+ αx − 1)zn−1Γ(αx)

Γ(αx + n)
= ndαx(n− 1, z)

= [K−dαx(·, z)](n) (V.15)

[K 0
x dαx(n, ·)](z) = z

nzn−1Γ(αx)

Γ(αx + n)
+
αx
2

znΓ(αx)

Γ(αx + n)

=
(αx
2

+ n
)
dαx(n, z)

= [K0dαx(·, z)](n). (V.16)

This proves the first statement. The consequence (V.13) follows via Proposition III.5.

Once we have obtained the duality between the Brownian energy process on two sites
and the symmetric inclusion process on two sites, we can straightforwardly extend it to a
general finite graph. This will be discussed in the next section.
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V.4 Duality of inhomogeneous BEP(α) and SIP(α)

We start from a finite set V , a symmetric irreducible function p : V × V → R, and a
profile of α’s: α : V → (0,∞). We define the symmetric inclusion process and Brownian
energy process associated to these parameters as follows.

DEFINITION V.3 (Inhomogeneous SIP and BEP). We define the following:

a) The SIP(α) with edge rates p is the Markov process on NV with generator

Lf(η) =
1

2

∑
x,y∈V

p(x, y) [ηx(αy + ηy)(f(η
x,y)− f(η)) + ηy(αx + ηx)(f(η

y,x)− f(η))]

(V.17)

b) The BEP(α) with edge rates p is the Markov process on [0,∞)V with generator

Lf(ζ) =
1

2

∑
x,y∈V

p(x, y)

[
(αyζx − αxζy)

(
∂

∂ζy
− ∂

∂ζx

)
+ ζxζy

(
∂

∂ζx
− ∂

∂ζy

)2
]

(V.18)

Because the generators of both processes defined in Definition V.3 are sums of gen-
erators working on two vertices, from the duality Theorem V.2 we obtain the results
described below.

THEOREM V.4. The following holds:

a) The BEP(α) with edge rates p is dual to the SIP(α) with edge rates p with duality
function

Dα(ξ, ζ) =
∏
x∈V

dαx(ξx, ζx)

with dα defined by

dα(n, z) = zn
Γ(α)

Γ(α + n)

b) The BEP(α) with edge rates p has stationary and reversible measures given by prod-
ucts of Gamma distributions with shape parameters given by α, and constant scale
parameter θ, i.e., the measures

µα,θ(dζ) =
∏
x∈V

1

θαx

ζαx−1
x

Γ(αx)
e−ζx/θ dζx. (V.19)

c) When
∑

x∈V ζx = z then the conditional measure

νM(dζ) := µα,θ

(
dζ
∣∣∣ ∑
x∈V

ζx = z
)

is equal to the distribution of zZ where Z is a random vector with Dirichlet dis-
tribution with parameters α, i.e., it has the probability density function

fZ (ζ) = Cα

∏
x∈V

ζαx−1
x · 1l{∑x∈V ζx=1} (V.20)
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where Cα is the normalizing constant which is given by

Cα =
Γ
(∑

x∈V αx
)∏

x∈V Γ(αx)
.

This canonical measure is also reversible for the BEP(α) with edge rates p.

d) The canonical measures in item c) are ergodic for the BEP(α) with edge rates p.

PROOF. Item a) follows from the duality of the two-site system, as proven in Theorem V.1.
For item b), we start with the relation between the duality functions and the measures
µα,θ: ∫

D(ξ, ζ)µα,θ(dζ) = θ|ξ|

with |ξ| =
∑

x∈V ξx. The result then follows by duality and the fact that in the SIP(α)
the number of particles is conserved. The reversibility can be obtained either by direct
verification, i.e., by showing that the generator of BEP(α) is selfadjoint on L2(µα,θ), or
by realizing that BEP(α) is the many-particle limit of SIP(α), for which products of
discrete-Gamma distributions are reversible measures. Then, taking the scaling limits of
these measures one obtains exactly the measures µα,θ. Item c) then follows immediately
because, conditioning a reversible measure on a time-invariant event, yields a reversible
measure. For item d) finally, we proceed as follows. For a finite configuration ξ we have

lim
t→∞

Eζ (D(ξ, ζ(t))) = lim
t→∞

Eξ (D(ξ(t), ζ)) . (V.21)

The symmetric inclusion process started from a configuration ξ is an irreducible Markov
chain on the finite state space {η ∈ NV : |η| = |ξ|}. As a consequence it converges to its
unique stationary distribution, and then the limit in the r.h.s. of (V.21) depends only on
|ζ| and is equal to the expectation of D(ξ, ζ) w.r.t. the canonical measure, i.e. the one
with density (V.20). The convergence (V.21) holds for all initial conditions ζ with fixed
sum. As a consequence we have that the limit is ergodic. Indeed we obtain from (V.21)
that the set of invariant measures on ζ with fixed sum is a singleton and therefore an
extreme point.

REMARK V.5 (Propagation of positive correlations). For the Brownian anergy process,
it is easy to infer the analogous results of Theorem (IV.34) for the symmetric inclusion
process. Namely, via duality of BEP(α) and SIP(α), one proves that starting the Brown-
ian energy process from the an inhomogeneous product measures with marginals Gamma
distribution, the evolution produces measures with positive correlations We leave this as
a useful exercise to the reader.

V.5 Generating functions

In this section we discuss the use of generating functions for the family of models with
su(1, 1) symmetry. This parallels what was done in Section III.3 for the models with
Heisenberg algebra symmetry.
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As a first result we show that, with the generating function method, the self-duality
of the inclusion process is equivalent to the duality between Brownian energy process and
inclusion process. We can already see a signature of this by considering the single-site
self-duality polynomial of the symmetric inclusion process,

dx(k, n) =
n!

(n− k)!

Γ(αx)

Γ(αx + k)
1l{n≥k} (V.22)

for a fixed x ∈ V , and defining the generating function

gx(k, z) =:
∞∑
n=0

dx(k, n)
zn

n!
=

Γ(αx)

Γ(αx + k)
zkez. (V.23)

We immediately notice that (V.23) coincides with the single-site duality function given in
(V.7) for the duality between the Brownian energy process and the symmetric inclusion
process (up to the factor ez that will be inessential from the duality point of view because
of the conservation law). Here we are implicitly assuming that, for any fixed x ∈ V , the
sequences (indexed by k ∈ N) of analytic functions dx(k, ·) : [0,∞) → R is such that the
series (V.23) converges.

THEOREM V.6 (Duality and generating function for SIP(α) and BEP(α), part 1). For
a given set V , fix a profile α : V → (0,∞) and define the functions D : NV × NV → R
and G : NV × [0,∞)V → R

D(ξ, η) =
∏
x∈V

dx(ξx, ηx) and G(ξ, ζ) =
∏
x∈V

gx(ξx, ζx) (V.24)

with

gx(k, z) =:
∞∑
n=0

dx(k, n)
zn

n!
. (V.25)

Let L be the generator of symmetric inclusion process defined in (V.17) and L be the
generator of the Brownian energy process defined in (V.18). Then the duality property
between BEP(α) and SIP(α) with duality function G

(LG(ξ, ·))(ζ) = (LG(·, ζ))(ξ) for all ξ ∈ NV , ζ ∈ [0,∞)V (V.26)

is equivalent to the self-duality property of SIP(α) with self-duality function D

(LD(ξ, ·))(η) = (LD(·, η))(ξ) for all ξ, η ∈ NV (V.27)

PROOF. Due to the symmetry of p : V ×V → R, the generator L can be rewritten as the
sum

L =
1

2

∑
x,y∈V

p(x, y)Lx,y, (V.28)

where Lx,y is the single-edge generator working on ηx, ηy (and not changing the other ηz’s
for z ̸= x, y). Clearly, because of (V.28) and the product nature of the duality functions
involved in the theorem, imposing the duality relation on a set V is equivalent to imposing
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it for each couple of sites, so, it is enough to prove the statement of the theorem for the
single-edge generators. For functions f : N2 → R, we recall the definition of L1,2

L1,2f(n1, n2) = n1(n2 + α2)(f(n1 − 1, n2 + 1)− f(n1, n2))

+ n2(n1 + α1)(f(n1 + 1, n2 − 1)− f(n1, n2)). (V.29)

and for smooth functions f : [0,∞)2 → R we recall the definition of L1,2

(L12f)(z1, z2) =
(
z1z2

( ∂

∂z1
− ∂

∂z2

)2
− (α2z1 − α1z2)

( ∂

∂z1
− ∂

∂z2

))
f(z1, z2) (V.30)

We prove the “if” part of the theorem. We thus assume that d(k1, n1)d(k2, n2) is a
self-duality function for L1,2, i.e. for all natural numbers k1, k2 and n1, n2,(

L1,2 d1(k1, ·)d2(k2, ·)
)
(n1, n2) =

(
L1,2 d1(·, n1)d2(·, n2)

)
(k1, k2) (V.31)

and would like to prove that, for all z1, z2 ∈ R and for all k1, k2 ∈ N,(
L1,2 g1(·, n1)g2(·, n2)

)
(z1, z2) =

(
L1,2 g1(·, n1)g2(·, n2)

)
(k1, k2). (V.32)

Using the definition of the generating function gx given in (V.25) and using the assumed
self-duality (V.31), the right hand side of (V.32) reads

(
L1,2 g1(·, z1)g2(·, z2)

)
(k1, k2) =

∞∑
n1=0

∞∑
n2=0

(
L1,2 d1(·, n1)d2(·, n2)

)
(k1, k2)

zn1
1

n1!

zn2
2

n2!

=
∞∑

n1=0

∞∑
n2=0

(
L1,2 d1(k1, ·)d2(k2, ·)

)
(n1, n2)

zn1
1

n1!

zn2
2

n2!
.

We now show this is equal to the left hand side of (V.32). We first compute

∞∑
n=0

n d1(k1, n− 1)
zn1
n!

= z1

∞∑
n=1

d1(k1, n− 1)
zn−1
1

(n− 1)!
= z1g1(k1, z1).

Moreover we compute

∞∑
n=0

d2(k2, n+ 1)
zn2
n!

=
∞∑
m=1

d2(k2,m)
zm−1
2

(m− 1)!
=

∂

∂z2
g2(k2, z2)

and

∞∑
n=0

n d2(k2, n+ 1)
zn2
n!

= z2

∞∑
n=1

d2(k2, n+ 1)
zn−1
2

(n− 1)!

= z2
∂2

∂z22

∞∑
n=0

d2(k2, n+ 1)
zn+1
2

(n+ 1)!
= z2

∂2

∂z22
g2(k2, z2)

which implies

∞∑
n=0

(α2 + n)d2(k2, n+ 1)
zn2
n!

=

(
α2

∂

∂z2
+ z2

∂2

∂z22

)
g2(k2, z2).
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As a consequence, we may write

∞∑
n1,n2=0

n1(α2 + n2)[d1(k1, n1 − 1)d2(k2, n2 + 1)− d1(k1, n1)d2(k2, n2)]
zn1
1 z

n2
2

n1!n2!

=

(
α2z1

∂

∂z2
+ z1z2

∂2

∂z22
− α2z1

∂

∂z1
− z1z2

∂

∂z1

∂

∂z2

)
(g1(k1, z1)g2(k2, z2)).

Similarly, we have

∞∑
n1,n2=0

n2(α1 + n1)[d1(k1, n1 + 1)d2(k2, n2 − 1)− d1(k1, n1)d2(k2, n2)]
zn1
1 z

n2
2

n1!n2!

=

(
α1z2

∂

∂z1
+ z1z2

∂2

∂z21
− α1z2

∂

∂z2
− z1z2

∂

∂z1

∂

∂z2

)
(g1(k1, z1)g2(k2, z2)).

Adding up (side-by-side) the previous two equations we obtain(
L1,2 g1(·, z1)g2(·, z2)

)
(k1, k2)

=

(
z1z2

(
∂

∂z1
− ∂

∂z2

)2

− (α2z1 − α1z2)

(
∂

∂z1
− ∂

∂z2

))
(g1(k1, z1)g2(k2, z2))

=
(
L1,2 g1(·, n1)g2(·, n2)

)
(z1, z2) (V.33)

This proves that (V.31) implies (V.32). The implication in the other direction follows
from a similar reasoning.

As a second application of the generating function method, we now prove a self-
duality property for the Brownian energy process. Since we are in a continuum context,
the method based on applying a symmetry to a cheap duality function is not natural to
implement. Indeed, while in the discrete context the cheap duality function is a diagonal
operator of the form 1

M(ξ)
δξ,η, with M a reversible measure, it is not clear how to define

an analogous object in the continuous context. The generating function method, on the
other hand, seems to be the most natural approach to lift duality from the discrete to the
continuous setting. Discrete self-dualities can be “lifted” to continuous-discrete dualities
by applying a generating function once. Moreover, iterating this procedure, continuous-
continuous self-dualities can be obtained by applying the generating function twice.

THEOREM V.7 (Duality and generating functions for for SIP(α) and BEP(α), part 2).
The following three statements are equivalent:

1. D(ξ, η) =
∏

x∈V dx(ξx, ηx) is a self-duality function for the symmetric inclusion
process with generator L in (V.17).

2. G(ξ, ζ) =
∏

x∈V gx(ξx, ζx) with gx(k, z) =
∑∞

n=0 dx(k, n)
zn

n!
is a duality function

between symmetric inclusion process and the Brownian energy process with generator
L in (V.18).

3. H(υ, ζ) =
∏

x∈V hx(υx, ζx) with hx(v, z) =
∑∞

k=0

∑∞
n=0 dx(k, n)

vkzn

n!k!
=
∑∞

k=0 gx(k, z)
vk

k!

is a self-duality function for the Brownian energy process with generator L in (V.18).



124 CHAPTER V. DUALITY FOR THE BROWNIAN ENERGY PROCESS

PROOF. The equivalence between 1 and 2 has already been proven in Theorem V.6. The
equivalence between 2 and 3 can be proved similarly. Namely, we start from

L1,2

(
g1(k1, ·)g2(k2, ·)

)
(z1, z2) = L1,2

(
g1(·, z1)g2(·, z2)

)
(k1, k2) (V.34)

and write

∞∑
k1,k2=0

L1,2

(
g1(k1, ·)g2(k2, ·)

)
(z1, z2)

vk11
k1!

vk22
k2!

=
∞∑

k1,k2=0

L1,2

(
g1(·, z1)g2(·, z2)

)
(k1, k2)

vk11
k1!

vk22
k2!

.

On the left hand side we recognize the definition of the generating function, thus obtaining

∞∑
k1,k2=0

L1,2

(
g1(k1, ·)g2(k2, ·)

)
(z1, z2)

vk11
k1!

vk22
k2!

= L1,2

(
h1(v1, ·)h2(v2, ·)

)
(z1, z2).

(V.35)

By an explicit computation that just uses the definitions of L and L, one can check that

∞∑
k1,k2=0

(
L1,2

(
g1(·, z1)g2(·, z2)

)
(k1, k2)

)vk11
k1!

vk22
k2!

= L1,2

(
h1(·, z1)h2(·, z2)

)
(v1, v2).

(V.36)

Thus the equivalence between item 2 and item 3 follows by combining (V.34), (V.35) and
(V.36)

Example. If we consider the single-site duality function between BEP(α) and SIP(α)

gx(n, z) = zn
Γ(αx)

Γ(αx + n)

and compute its generating function the we get a single-site self-duality function for
BEP(α) in terms of modified Bessel function Iα(y), i.e.

hx(v, z) =
∞∑
n=0

gx(n, z)
vn

n!

=
∞∑
n=0

(zv)n

n!

Γ(αx)

Γ(αx + n)

= Γ(αx)(
√
zv)1−αxIαx−1(2

√
zv)

where we recall that

Iα(y) =
∞∑
k=0

(y
2
)2k+α

k!Γ(α + 1 + k)

The self-duality function of BEP(α) is then the product

H(υ, ζ) =
∏
x

hx(υx, ζx).
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V.6 Intertwining

We know that from duality we can get intertwining (see Theorem I.25). In this section we
provide the description of the intertwining for the family of models with su(1, 1) symmetry.
This parallels what was done in Section III.4 for the models with Heisenberg algebra
symmetry. Here the situation is richer, since both the symmetric inclusion process and
the Brownian energy process admit a reversible measure and thus we have intertwining
in both directions.

Intertwining between BEP(α) and SIP(α)

The starting point is provided by the single-site duality function between SIP(α) and
BEP(α), namely

d(n, z) = zn
Γ(α)

Γ(α + n)

and the single-site reversible weight for SIP(α)

M(n) =
Γ(α + n)

n!Γ(α)
.

This then leads to the following single-site intertwiner (cf. (I.52)) between BEP(α) and
SIP(α)

Λf(z) =
∞∑
n=0

d(n, z)M(n)f(n)

=
∞∑
n=0

zn

n!
f(n). (V.37)

More precisely we have the following theorem.

THEOREM V.8 (Intertwining between BEP(α) and SIP(α)). For a function f : NV → R,
let Λf : [0,∞)V → R be defined by

(Λf)(ζ) =
∑
η∈NV

f(η)
∏
x∈V

ζηxx
ηx!

e−ζx . (V.38)

Then we have the intertwining

LΛ = ΛL, (V.39)

where L is the generator of the Brownian energy process with profile α defined in (V.18)
and L denotes the generator of the inclusion process generator with profile α defined in
(V.17).

PROOF. It is enough to consider the two-site generators, that we recall hereafter:

L12f(ζ1, ζ2) =
(
ζ1ζ2

( ∂

∂ζ1
− ∂

∂ζ2

)2
− (α2ζ1 − α1ζ2)

( ∂

∂ζ1
− ∂

∂ζ2

))
f(ζ1, ζ2),
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L12f(η1, η2) = η1(α + η2)(f(η1 − 1, η2 + 1)− f(η1, η2))

+ η2(α + η1)(f(η1 + 1, η2 − 1)− f(η1, η2)).

We start from

(L12Λf)(ζ1, ζ2) = L12

∑
η1,η2∈N2

f(η1, η2)
ζη11
η1!

ζη22
η2!

e−ζ1−ζ2 .

Acting with L12 on the (ζ1, ζ2) variables, after rearranging terms one finds

(L12Λf)(ζ1, ζ2) =
∑

η1,η2∈N2

f(η1, η2)

η1!η2!
e−ζ1−ζ2(

η1(η1 − 1 + α1)ζ
η1−1
1 ζη2+1

2 − η1(α2 + η2)ζ
η1
1 ζ

η2
2

+η2(η2 − 1 + α2)ζ
η1+1
1 ζη2−1

2 − η2(α1 + η1)ζ
η1
1 ζ

η2
2

)
.

By appropriate shifting of the discrete variables η1 and η2, one then recognizes, on the
r.h.s., the action of the symmetric inclusion process generator, which yields

(L12Λf)(ζ1, ζ2) =
∑

η1,η2∈N2

L12f(η1, η2)
ζη11
η1!

ζη22
η2!

e−ζ1−ζ2 .

This proves (V.39).

As already remarked in Section III.3, the intertwiner Λ has the probabilistic interpre-
tation of averaging over a (inhomogeneous) product Poisson distribution, i.e.,

Λf(ζ) =

∫
f(η)νζ(dη), (V.40)

where νζ is the product Poisson measure on NV with parameter ζx at x ∈ V . Then we
have the following result.

COROLLARY V.9 (Consequences of intertwining between BEP(α) and SIP(α)). Denote
by S(t) the semigroup of the Brownian energy process with profile α and by S(t) the
semigroup of the symmetric inclusion process with profile α. Then the following holds
true:

a) Λ is an intertwiner between the semigroups S(t) and S(t), i.e. for all t > 0

S(t)Λ = ΛS(t).

b) As a consequence, we have the following propagation of inhomogeneous Poisson
product measures for the symmetric inclusion process {η(t), t ≥ 0}: for all ζ ∈
[0,∞)V and f : NV → R bounded:∫ (

Eηf(η(t))
)
νζ(dη) = Eζ

(∫
f(η)νζ(t)(dη)

)
, (V.41)

where {ζ(t), t ≥ 0} is the Brownian energy process.
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PROOF. The first statement is a consequence of the lifting of the analogous relations for
generators. To prove the second statement, we have∫ (

Eηf(η(t))
)
νζ(dη) =

∫ (
S(t)f(η)

)
νζ(dη)

= Λ(S(t)f)(ζ)

= S(t)(Λf)(ζ)

= Eζ(Λf(ζ(t)))

= Eζ
(∫

f(η)νζ(t)(dη)
)
.

This concludes the proof.

REMARK V.10 (Interpretation of intertwining). The intertwining relation (V.41) can be
rewritten as ∫ (

Eηf(η(t))
)
νζ(dη) =

∫
dζ ′
(∫

f(η)νζ′(dη)
)
pt(ζ, ζ

′),

where pt(ζ, ζ
′) denotes the transition probability density in the Brownian energy process.

From this rewriting, the probabilistic meaning becomes more transparent: starting the
symmetric inclusion process from an inhomogeneous Poisson product measure νζ with
parameter ζ and evolving it at time t, has the same distribution as a mixture of Poisson
product measures, where the mixture is provided by the Brownian energy process initial-
ized at ζ and then evolved at time t. This is to be compared with the Doob’s theorem
(Theorem III.15) for independent walkers, for which inhomogeneous Poisson distributions
are exactly reproduced in the course of the evolution, due to a deterministic dual dynam-
ics. Here the dual BEP dynamics is stochastic, and therefore, the initial Poisson product
measures are not exactly reproduced, but turned instead into convex combinations of
Poisson product measures with random weights.

REMARK V.11 (Mixtures of products of Poisson distributions are closed for the symmetric
inclusion process). Equivalently, another way to rewrite (V.41) is

(⊗xνζx)S(t) = EBEP(α)
ζ

[
⊗xνζx(t)

]
. (V.42)

From this relation it follows that the set of mixtures of products of Poisson measures is
closed under the SIP dynamics. Indeed, if we start from an initial measure of the type:∫

λ(dζ) (⊗xνζx)

then evolving under the SIP dynamics, at time t > 0 we find the measure(∫
λ(dζ) (⊗xνζx)

)
S(t) =

∫
λt(dζ) (⊗xνζx) (V.43)

where λt(dζ) is the distribution of BEP at time t > 0 started from λ(dζ) at time 0.



128 CHAPTER V. DUALITY FOR THE BROWNIAN ENERGY PROCESS

REMARK V.12 (Stationarity of products of Gamma distribution for BEP(α) implies sta-
tionarity of product of discrete-Gamma for SIP(α)). A particular instance is when the
mixing measure λ(dζ) is a product of Gamma distributions with parameters (αx, θx) at
site x:

λ(dζ) =
∏
x

ζαx−1
x e−ζx/θx

1

θαx
x Γ(αx)

dζx.

Then the mixture of Poisson product measures with such mixing measure turns out to
be the product measure with marginals given by the discrete-Gamma distribution with
parameters (αx, θx/(1 + θx)):∫

λ(dζ) (⊗xνζx(dηx)) =
∏
x

(
1

1 + θx

)αx

(
θx

1+θx

)ηx
ηx!

Γ(ηx + αx)

Γ(αx)
dηx

which is indeed stationary for SIP, as we would find from (V.43), because inhomogeneous
product of Gamma distributions with parameters (αx, θx) is stationary for BEP(α).

Intertwining between SIP(α) and BEP(α)

So far we have been thinking the symmetric inclusion process as the dual of the Brownian
energy process. The duality relation is a symmetric relation and thus we can exchange
the role of the two processes. In this way we can construct the intertwiner in the other
direction.

THEOREM V.13 (Intertwining between SIP(α) and BEP(α)). For a function f : [0,∞)V →
R, let Uf : NV → R be defined by

(Uf)(η) =

∫
dζ f(ζ)

∏
x∈V

ζαx+ηx−1
x

Γ(αx + ηx)
e−ζx (V.44)

Then we have the intertwining
LU = UL, (V.45)

where L is the generator of the Brownian energy process with profile α defined in (V.18)
and L denotes the generator of the inclusion process with profile α defined in (V.17).

PROOF. It is enough to consider the two-site generators. On one hand we have

(Uf)(η1, η2) =

∫
dζ1 dζ2 f(ζ1, ζ2)

ζα1+η1−1
1

Γ(α1 + η1)

ζα2+η2−1
2

Γ(α2 + η2)
e−ζ1−ζ2

and acting with L12 on the (η1, η2) variables one finds

(L12Uf)(η1, η2) =

∫
dζ1 dζ2 f(ζ1, ζ2)e

−ζ1−ζ2[
η1(η2 + α2)

(
ζα1+η1−2
1

Γ(α1 + η1 − 2)

ζα2+η2
2

Γ(α2 + η2)
− ζα1+η1−1

1

Γ(α1 + η1)

ζα2+η2−1
2

Γ(α2 + η2)

)
+η2(η1 + α1)

(
ζα1+η1
1

Γ(α1 + η1)

ζα2+η2−2
2

Γ(α2 + η2 − 2)
− ζα1+η1−1

1

Γ(α1 + η1)

ζα2+η2−1
2

Γ(α2 + η2)

)]
.

(V.46)
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On the other hand we have

(L12f)(ζ1, ζ2) =
(
ζ1ζ2

( ∂

∂ζ1
− ∂

∂ζ2

)2
− (α2ζ1 − α1ζ2)

( ∂

∂ζ1
− ∂

∂ζ2

))
f(ζ1, ζ2),

and, acting with U , we obtain

(UL12f)(η1, η2) =

∫
dζ1 dζ2 f(ζ1, ζ2)e

−ζ1−ζ2[
ζα1+η1
1

Γ(α1 + η1)

ζα2+η2
2

Γ(α2 + η2)

( ∂

∂ζ1
− ∂

∂ζ2

)2
f(ζ1, ζ2)

−α2
ζα1+η1
1

Γ(α1 + η1)

ζα2+η2−1
2

Γ(α2 + η2)

( ∂

∂ζ1
− ∂

∂ζ2

)
f(ζ1, ζ2)

+α1
ζα1+η1−1
1

Γ(α1 + η1)

ζα2+η2
2

Γ(α2 + η2)

( ∂

∂ζ1
− ∂

∂ζ2

)
f(ζ1, ζ2)

]
. (V.47)

By integrating by parts this expression, one shows that (V.47) equals (V.46), which proves
(V.45).

The intertwiner U has the probabilistic interpretation of averaging over an (inhomo-
geneous) product Gamma distribution, i.e.,

(Uf)(η) =

∫
f(ζ)µη(dζ), (V.48)

where µη is the product Gamma measure on [0,∞)V with shape parameter αx+ηx at site
x ∈ V :

µη(dζ) =
∏
x

1

Γ(αx + ηx)
ζαx+ηx−1
x e−ζx dζx.

Then we have the following result.

COROLLARY V.14 (Consequences of intertwining between SIP(α) and BEP(α)). Denot-
ing by S(t) the semigroup of the Brownian energy process with profile α and by S(t) the
semigroup of the inclusion process with profile α, the following holds true:

a) U is an intertwiner between the semigroups S(t) and S(t), i.e. for all t > 0

S(t)U = US(t).

b) As a consequence, we have the following propagation of inhomogeneous Gamma
product measures for the Brownian energy process {ζ(t), t ≥ 0}: for all η ∈ NV and
f : [0,∞)V → R bounded:∫ (

Eζf(ζ(t))
)
µη(dζ) = Eη

(∫
f(ζ)µη(t)(dζ)

)
, (V.49)

where {η(t), t ≥ 0} is the symmetric inclusion process.
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PROOF. The first statement is a consequence of the lifting of the analogous relations for
generators. To prove the second statement, we have∫ (

Eζf(ζ(t))
)
µη(dζ) =

∫ (
S(t)f(ζ)

)
µη(dζ)

= U(S(t)f)(η)

= S(t)(Uf)(η)

= Eη(Uf(η(t)))

= Eη
(∫

f(ζ)µη(t)(dζ)
)
.

REMARK V.15 (Interpretation of intertwining). The intertwining relation (V.49) can be
rewritten as ∫ (

Eζf(ζ(t))
)
µη(dζ) =

∑
η′

(∫
f(ζ)µη′(dζ)

)
pt(η, η

′),

where pt(η, η
′) denotes the transition probability of the symmetric inclusion process. From

this rewriting, the probabilistic meaning becomes more transparent: starting the Brow-
nian energy process from an inhomogeneous Gamma product measure µη with shape
parameter η+α and evolving at time t, has the same distribution as a mixture of Gamma
product measures, where the mixture is provided by the transition probability of the
symmetric inclusion process initialized at η and then evolved at time t.

REMARK V.16 (Mixtures of products of Gamma distributions are closed for Brownian
energy process). From the previous remark it follows that initial Gamma product measures
are not exactly reproduced by the Brownian energy process but turned instead into convex
combinations of Gamma product measures with random weights provided by the inclusion
process. Namely

(⊗xµηx)S(t) = ESIP
η

[
⊗xµηx(t)

]
. (V.50)

From this it follows that the set of mixtures of products of Gamma measures is closed
under the BEP dynamics. Indeed, if we start from an initial measure∫

λ(dη) (⊗xµηx) (V.51)

and evolve under the BEP dynamics, at time t > 0 we find again a mixed measure(∫
λ(dη) (⊗xµηx)

)
S(t) =

∫
λt(dη) (⊗xµηx) (V.52)

where λt(dη) is the distribution of SIP(α) at time t > 0 started from λ(dη) at time 0.
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REMARK V.17 (Stationarity of products of Negative Binomials distributions for SIP(α)
implies stationarity of product of Gamma distributions for BEP(α) ). If the mixing mea-
sure λ(dζ) is a product of discrete-Gamma distributions with parameters (αx, θx) at site
x:

λ(dη) =
∏
x

(1− θx)
αx
θnx
n!

Γ(αx + ηx)

Γ(αx)
dηx (V.53)

then the result of the mixture (V.51) is a product of Gamma distributions with shape
parameter αx and scale parameter θx

1−θx :∫
λ(dη) (⊗xµηx(dζx)) =

∏
x

(
1− θx
θx

)αx ζαx−1
x e−(

1−θx
θx

)ζx

Γ(αx)
dζx

which is stationary for BEP(α). This is consistent with the formula (V.52), and the fact
that products of discrete-Gamma distributions (V.53) are invariant for SIP(α).

REMARK V.18. The essential point of the proof of the previous theorem lies in the fact
that in the action of K’s operators (as in (IV.68)) is linearly dependent, both on the
ηx variables and on the representation paramaters αx. Therefore these operators have
natural behavior with respect to contraction of both α and η. The same linearity property
holds for the K s operators (V.9) appearing in the abstract form of the generator of the
Brownian energy process. As a consequence, the same result can be proven for BEP(α).

V.7 The Brownian momentum process

The Brownian momentum process (sometimes we will use the abbreviation BMP process)
is another diffusion process which is similar to the Brownian energy process. However the
BMP process on a set V takes values in RV and the variables are interpreted as momenta.
The generator of BMP has the same abstract form of the generator of the Brownian
energy process in terms of the generators of the non-compact su(1, 1) Lie algebra. More
precisely, the K’s operators are written again in a representation in term of differential
operators, but this is different than the one used for the construction of Brownian energy
process.

We start by defining the process for the simplest case where the process parameters
αx are equal to 1 for all sites x ∈ V . Moreover we restrict to the two-site case V = {1, 2}.
Consider the following operator working on smooth compactly supported functions f :
R2 → R.

L1,2 =
1

4

(
z1

∂

∂z2
− z2

∂

∂z1

)2

(V.54)

If we use polar coordinates (θ, R) defined by

z21 + z22 = R2 θ = arctan(z2/z1),

then the operator simply reads

L1,2 =
1

4

∂2

∂θ2
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The change to polar coordinates also indicates a clear interpretation: the radial coordinate
R(t) = z21(t) + z22(t) is a constant of the dynamics, whereas the angular coordinate θ(t)
undergoes a Brownian motion on the circle. We will now see how the generator L1,2

derives from a representation of the su(1, 1) Lie algebra.

PROPOSITION V.19. Consider the following operators working on smooth compactly sup-
ported functions f : R → R

K+f(z) =
1

2
z2f(z)

K−f(z) =
1

2
f ′′(z)

K0f(z) =
1

4
(2zf ′(z) + f(z)) (V.55)

Then these operators form a representation of the Lie algebra su(1, 1), i.e., they satisfy
the commutation relations

[K0,K±] = ±K±, [K−,K+] = 2K0

Moreover, the generator (V.54) reads

L1,2 = K+
1 K−

2 +K+
2 K−

1 − 2K0
1K0

2 +
1

8
(V.56)

PROOF. We verify [K−,K+] = 2K0, leaving the computation of the other commutation
relations to the reader. We have

[K−K+]f(z) = −1

4

(
z2f ′′(z)− (z2f)′′

)
=

1

4
(4zf ′(z) + 2f(z)) = 2K0f(z)

Next

K+
1 K−

2 +K+
2 K−

1 − 2K0
1K0

2 +
1

2
=

1

4
z21

∂

∂z2

2

+
1

4
z2

∂

∂z1

2

− 1

2
z1

∂

∂z2
z2

∂

∂z2
− 1

4
z1

∂

∂z1

1

4
z2

∂

∂z2

=
1

4
(z1

∂

∂z2
− z2

∂

∂z1
)2

Notice that the generator L1,2 in (V.56) has the same abstract form of the generator of
the homogeneous SIP(α) with α = 1/2. In view of proving a duality relation between
the Brownian momentum process and the symmetric inclusion process with parameter
α = 1/2, we show in the following proposition how to intertwine this new continuous
representation with the discrete representation used for the construction of the inclusion
process.

PROPOSITION V.20. Consider the function d : N× R → R given by

d(n, z) =
z2n

(2n− 1)!!
(V.57)

where (2n− 1)!! =
∏n

k=1(2k − 1) Then we have

Ku d−−→ Ku (V.58)

for u ∈ {+,−, 0}, where Ku are the operators defined in (IX.94), with α = 1
2
.
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PROOF. This follows from explicit computation:

[K+d(n, ·)](z) = 1

2
z2

z2n

(2n− 1)!!
= (n+ 1

2
)
z2(n+1)

(2n+ 1)!!
= [K+d(·, z)](n)

[K−d(n, ·)](z) = 1

2

2n(2n− 1)z2n−2

(2n− 1)!!
= n

z2(n−1)

(2(n− 1)− 1)!!
= [K−d(·, z)](n)

[K0d(n, ·)](z) = 1

2

2nz2n

(2n− 1)!!
+

1

4

z2n

(2n− 1)!!
= (n+ 1

4
)d(n, z) = [K0d(·, z)](n)

THEOREM V.21. The Brownian momentum on two sites is dual to the symmetric inclu-
sion process SIP(1/2) on two sites, with duality functions

D(ξ, z) =
2∏

x=1

d(ξx, zx) (V.59)

where d is defined in (V.57). As a consequence, the Gaussian product measure

µσ(dz1dz2) =
1

2πσ2
e−

1
2σ2 (z

2
1+z22)dz1dz2

is invariant and reversible for all σ2 > 0.

PROOF. The duality property immediately follows from Proposition V.20, together with
the fact that the abstract form of the generator of BMP on one hand and the abstract
form of the generator of the SIP(1

2
) on the other hand are the same. In order to prove the

second statement, we notice that the relation between µσ(dz1dz2) and the duality function
(V.59) is given by ∫

D(ξ, z)µσ(dz1dz2) = σ2(ξ1+ξ2).

Then invariance of these measures follows from conservation of particles for the SIP.
Reversibility is a consequence of a direct computation, showing that the operator L1,2 is
symmetric, i.e., for f, g smooth compactly supported functions

⟨f, Lg⟩ = ⟨Lf, g⟩

with ⟨·, ·⟩ the L2(µσ(dz1dz2)) inner product.

We conclude this section by discussing the relation between the Brownian energy
process and the Brownian momentum process.

LEMMA V.22. Let {(z1(t), z2(t)) : t ≥ 0} denote the BMP process. Define (ζ1(t), ζ2(t)) =
(z21(t), z

2
2(t)), then {(ζ1(t), ζ2(t)) : t ≥ 0} is BEP(1

2
).
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PROOF. Let φ : [0,∞)2 → R be a smooth and compactly supported function, and define
f(z1, z2) := φ(z21, z

2
2). Using the chain rule, we compute(

z1
∂

∂z2
− z2

∂

∂z1

)
f(z1, z2) =

1

2
(z21 − z22)((

∂

∂z1
− ∂

∂z2
)φ)(z21, z

2
2) + z21z

2
2((

∂

∂z1
− ∂

∂z2
)2φ)(z21, z

2
2)

which means
LBMP

1,2 f(z1, z2) = L
BEP( 1

2
)

1,2 φ(ζ1, ζ2)

Since both LBMP
1,2 and L

BEP( 1
2
)

1,2 generate well-defined Markov processes, the lemma is
proved.
We can now generalize the Brownian momentum process, by considering α ∈ N momenta
per site, i.e., consider the generator

L
BMP(α)
1,2 =

α∑
ℓ,s=1

(z1,ℓ∂2,s − z1,s∂1,ℓ)
2 (V.60)

where we used the notation BMP(α) for the Brownian Momentum process of parameter
α ∈ N. This can be viewed as the BMP on a ladder graph with α levels, i.e., the underlying
vertex set is {1, 2}×{1, . . . , α}. We then have the following straightforward consequences
of Lemma V.22, together with Theorem IV.37.

THEOREM V.23. Consider the process BMP(α), with generator (V.60). Define for x =
1, 2

ζx =
α∑
ℓ=1

z2(x,ℓ)

then {(ζ1(t), ζ2(t)) : t ≥ 0} evolves according to BEP(α
2
).

PROOF. For α = 1 the theorem is true because of Lemma V.22. For general α, it follows
that {(z2(1,ℓ)(t), z2(2,ℓ)(t)), ℓ = 1, . . . , α; t ≥ 0} evolves according to the BEP(1

2
) on the lad-

der graph {1, 2}×{1, . . . , α}. Therefore, by Theorem IV.37, {(ζ1(t), ζ2(t)), t ≥ 0} evolves
according to BEP(α

2
)

V.8 Additional notes

The Brownian energy process and its duality properties were studied first in [111], where
also the connection with the continuous representation of SU(1, 1) is given. In population
dynamics, the Wright-Fisher diffusion with parent independent mutation rate is a related
diffusion process, for which a dual was found in [83]. The intertwining between the Brow-
nian energy process and the inclusion process is from [193]. The equivalent formulation
in terms of the evolution of a product of Poisson measures is natural analogue of Doob’s
theorem in this setting. In [173] several new intertwinings between diffusion processes
and discrete processes of birth and death type are derived. The intertwining between the
inclusion process and the Brownian energy process is new. We believe that these inter-
twinings are related to the recent developments in characterizing non-equilibrium steady
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states as mixtures of product measures see [39], [65], [38], but understanding this connec-
tion is at present an open problem. The Brownian momentum process was introduced
in [109], and its duality properties were first formulated in [110], then generalized in [111].

To construct a process where both energy and momentum are conserved and such
that there is still duality is at present an open problem. Models of heat conduction with
momentum conservation are studied e.g. in [11], see also [93].
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Chapter VI

Duality for the symmetric partial
exclusion process

Abstract: In this chapter we introduce the symmetric partial exclusion process,
which generalizes the symmetric exclusion process, by allowing a maximal par-
ticle number per site. Because on the exclusion process there is an extensive
literature, both in the area of probability theory as well as in the area of quan-
tum spin chains, we give a concise discussion of duality and intertwining from
the algebraic point of view. We construct the single edge generator from the
su(2) algebra generators, in a discrete representation labeled by the maximal
number of particles. We show that the single edge generator of this process
is related to the coproduct of the Casimir in a manner which is completely
analogous to the computation for the symmetric inclusion process, but now in
the setting of the su(2) algebra. Next we show that symmetric partial exclu-
sion process has an additive structure given by copies of symmetric exclusion
processes on a layered graph, similarly to what we proved in the setting of the
symmetric inclusion process. This leads to intertwining of symmetric partial
exclusion processes with different maximal occupation numbers. Finally, we
consider a scaling limit where the maximal number of particles diverges, and
find the deterministic process associated to independent random walkers.

The exclusion process is extensively studied in the literature, it is the prototype model
of an interacting particle system. This is true also for duality: it is in the context of the
exclusion process that a proper definition of duality of a Markov process emerged [167,208]
and was proven to be useful. In particular Chapter 8 of [167] uses substantially duality to
obtain a complete ergodic theory of the symmetric exclusion process on Zd. Because the
exclusion process is so much studied in the literature, this chapter will be more condensed
with respect to other chapters, and focuses mainly on the aspects that are more relevant
to the spirit of the book, such as the Lie algebraic structure of the process and the
intertwining properties. The algebraic approach in the context of the symmetric exclusion
process was pioneered in [203], and later extended to the asymmetric setting [204] using
the q-deformation of the su(2) Lie algebra.

The algebraic approach leads in particular to a natural generalization of the standard
symmetric exclusion process, called symmetric partial exclusion process and denoted by

137
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SEP(α). The parameter α of the symmetric partial exclusion represents the maximal
number of particles per site. As a consequence, α is an integer and in the simplest
version of the process (α = 1), particles are forbidden to be at the same vertex. In the
SEP(α) process the rate for a particle to jump decreases linearly in the occupation of the
arrival site, and increases linearly in the occupation of the departure site. For α = 1,
the symmetric exclusion process is recovered and for generic α ∈ N \ {1} particles are
discouraged to go to vertices which are already occupied, as opposed to the SIP(α) process
where particles are encouraged to join the same vertex. The symmetric partial exclusion
process is thus a particle system which is the “fermionic” companion of the symmetric
inclusion process, or equivalently, the SIP(α) process is the “bosonic” companion of the
SEP(α) process. The generalization which consists of having a maximum number of
particles that is even allowed to depend on the site, emerges naturally from the abstract
generator of the standard symmetric exclusion process, by choosing a representation which
can even be site dependent. The representation parameter corresponds to the maximal
number of particles at each site.

The fact that the symmetric partial exclusion process is a close relative of the sym-
metric inclusion process is also seen at the level of the Lie algebra underlying the process.
We shall see that the underlying algebra responsible for the self-duality properties of
SEP(α) is the su(2) Lie algebra, and the abstract generator will be very familiar to the
reader who is already acquainted with the abstract generator of the SIP(α) process. In
particular, the generator has exactly the same relation with the Casimir element of su(2),
i.e., up to trivial central elements it equals the co-product of the Casimir, yielding the
Heisenberg XXX spin chain [1]. The process with parameter α is obtained by considering
an (α + 1)-dimensional representation of su(2).

Being associated to the compact algebra su(2), for the SEP(α) process we do not have
a companion diffusion process arising in the many-particle scaling, such as the Brownian
energy process process that was found starting from the SIP(α) process in the setting
of the non compact su(1, 1) Lie algebra. The only possible scaling limit corresponds to
letting the maximal number of particles at each site go to infinity, and this leads or to a
deterministic system in the continuum or to a system of independent random walkers. The
reason that “the many particle limit” of the previous chapter, which produces the BEP(α)
from the SIP(α) is not possible when starting from the SEP(α) is that it would produce
a non-positive definite diffusion matrix, i.e., this limit does not lead to the generator of a
Markov diffusion process.

VI.1 Process definition and connection with su(2)

We immediately give the definition of the inhomogeneous version of the process, where
site x ∈ V has a maximum number of particles αx ∈ N. We start with two sites.

DEFINITION VI.1. The symmetric partial exclusion process SEP(α1, α2) on two vertices
1, 2 with parameters α1, α2 ∈ N \ {0} is the process on {0, . . . , α1} × {0, . . . , α2} with
generator

L1,2f(η1, η2) = η1(α2 − η2)(f(η1 − 1, η2 + 1)− f(η))

+ η2(α1 − η1)(f(η1 + 1, η2 − 1)− f(η)). (VI.1)



VI.1. PROCESS DEFINITION AND CONNECTION WITH su(2) 139

The algebraic description of the process will use the su(2) Lie algebra.

DEFINITION VI.2. The Lie algebra su(2) is defined by the generators J+, J−, J0 which
satisfy the commutation relations

[J0, J±] = ±J±, [J−, J+] = −2J0. (VI.2)

Representation theory of su(2) is well studied. The next lemma provides (α + 1)-
dimensional irreducible representations.

LEMMA VI.3. A representation of the conjugate algebra of su(2) indexed by α ∈ N is
given by the following operators working on f : {0, 1, . . . , α} → R

Jα,+f(n) = (α− n)f(n+ 1)

Jα,−f(n) = nf(n− 1)

Jα,0f(n) = (−α
2
+ n)f(n) (VI.3)

i.e., these operators satisfy the commutation relations with opposite sign of (VI.2).

PROOF. The proof is an explicit computation, we verify [Jα,+, Jα,−] = −2J0, leaving the
other commutators as an exercise. We have

Jα,+Jα,−f(n) = (α− n)Jα,−f(n+ 1) = (α− n)(n+ 1)f(n)

Jα,−Jα,+f(n) = nJα,+f(n− 1) = n(α− n+ 1)f(n)

so that
Jα,+Jα,−f(n)− Jα,−Jα,+f(n) = (α− 2n)f(n) = −2Jα,0f(n).

LEMMA VI.4. The generator of SEP(α1, α2) is given by

L1,2 = Jα2,+
1 Jα1,−

2 + Jα2,−
1 Jα1,+

2 + 2Jα1,0
1 Jα2,0

2 − α1α2

2
(VI.4)

PROOF. The proof is a by explicit computation, using (C.88). Because the computation
is completely analogous to the similar computation explicitly performed in Lemma (IV.3),
we leave this to the reader.

Given the algebraic description of the process, it is now immediate to deduce duality
properties.

THEOREM VI.5. The following holds:

a) The generator L1,2 commutes with Jα1,u + Jα2,u for u ∈ {+,−, 0}.

b) A reversible measure for the generator L1,2 is given by

M(η1, η2) =

(
α1

η1

)(
α1

η2

)
.
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c) The SEP(α1, α2) is self-dual with self-duality function given by

D(ξ1, ξ2; η1, η2) = dα1(ξ1, η1)dα2(ξ2, η2) (VI.5)

with the single-site self-duality function given by

dα(k, n) =

(
n
k

)(
α
k

)1l{k≤n} (VI.6)

d) The SEP(α1, α2) has reversible product probability measures given by the product of
binomials parametrized by the success probability ρ ∈ (0, 1) and given by

να1,α2
ρ =

(
α1

η1

)(
α1

η2

)
ρη1+η2(1− ρ)α1+α2−η1−η2 . (VI.7)

e) The relation between να1,α2
ρ and the self-duality function D(ξ1, ξ2; η1, η2) reads∫
D(ξ1, ξ2; η1, η2) ν

α1,α2
ρ (dη1dη2) = ρξ1+ξ2 .

PROOF. The proof of item (a) is analogous to the proof of Lemma IV.5. The proof of (b)
follows from the detailed balance relation

M(η1, η2)η1(α2 − η2) =M(η1 − 1, η2 + 1)(η2 + 1)(α1 − η1 + 1)

By item (b),

Dcheap(ξ1, ξ2; η1, η2) =
1

M(η1, η2)
δξ1,η1δξ2,η2

is a cheap self-duality function. Now work with the symmetry eJ
α1,++Jα2,+ on the (ξ1, ξ2)

variables of this cheap duality function. Use here that for k ≤ n

1(
α
n

) (eJα,+

δ·,n

)
(k) =

(
α

n

)−1
(Jα,+)n−kδ·,n(k)

(n− k)!

=
(α− k)(α− k − 1) . . . (α− n+ 1)

(n− k)!

(
α

n

)−1

=
1

(n− k)!

(
α!

(α− k)!n!

)−1

=

(
n
k

)(
α
k

)
This proves item c). Item d) follows from item b), and item e) is a simple computation

left to the reader.

The two vertex self-duality immediately implies self-duality for a general graph, where
along each edge {x, y}, x, y ∈ V we copy the two-site generator (with parameters αx, αy).
We first define the process and the state the general self-duality results on the next
theorem.
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DEFINITION VI.6. Let V be a finite set and let p : V ×V → [0,∞) be a positive symmetric
and irreducible function. Let α : V → N \ {0}. Then the symmetric partial exclusion
process SEP(α) is defined as the process with generator

L =
∑
x,y∈V

p(x, y) [ηx(αy − ηy)(f(η
x,y)− f(η)) + ηy(αx − ηx)(f(η

y,x)− f(η))] (VI.8)

where, as usual, ηx,y = η− δx+ δy is the configuration which arises from η by the jump of
a particle from x to y.

THEOREM VI.7. The following holds true:

a) The process SEP(α) is self-dual with self-duality functions

D(ξ, η) =
∏
x∈V

dαx(ξx, ηx) (VI.9)

with dα given in (VI.6).

b) For all ρ ∈ [0, 1] the product of binomial distributions with parameters αi, ρ given by

ναρ = ⊗x∈V ν
αx
ρ

with

ναx
ρ (n) =

(
αx
n

)
ρn(1− ρ)αx−n

is reversible for SEP(α).

PROOF. This is an immediate consequence of the corresponding results for the two vertex
case contained in Theorem VI.5.

REMARK VI.8. If αx = 1 for all i ∈ V , then every site carries at most one particle, and
the self-duality function (VI.9) becomes simpler:

D(ξ, η) =
∏

x∈V :ξx=1

ηx = 1l{ξ≤η}

where ≤ is the point-wise order between configurations. This duality function is the
Siegmund duality function which we already met in the introduction and which is the
basic duality function used in the book of Liggett, for the symmetric exclusion process
and for various other models such as spin systems, the voter model and the contact
process [167].

VI.2 The abstract generator

In what follows we show that, up to constants and central elements, the abstract generator
is the co-product of the Casimir, i.e., the analogue of Section IV.6, now in the context of
the universal enveloping algebra U(su(2)).
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DEFINITION VI.9. The co-product ∆ : su(2) → su(2)⊗ su(2) is given by (analogously to
(IV.35))

∆(Jv) = Jv1 + Jv2 (VI.10)

for v ∈ {+,−, 0}.
Similarly, we introduce the distinguished central element.

DEFINITION VI.10. The Casimir element of su(2) is given by

C =
1

2
(J+J− + J−J+) + (J0)2 (VI.11)

This element C is central, i.e., it commutes with the three generators J+, J−, J0 and, as
a consequence, with any other element of the universal enveloping algebra. The following
lemma shows the connection between the abstract generator of SEP and the coproduct
of the Casimir. We omit its proof, because it is exactly as the proof of Lemma IV.20,
replacing K-operators by J-operators.

LEMMA VI.11. The co-product of the Casimir is given by

∆(C) = (J+
1 J

−
2 + J+

2 J
−
1 − 2J0

1J
0
2 ) + C1 + C2

As a consequence, the abstract generator of SEP commutes with ∆(Jv) for v ∈ {+,−, 0}.

VI.3 Additive structure

The fact that α appears linearly in the representation (C.88) leads to an additive structure
analogous to what we encountered in Section IV.10. We state here the analogous results
without proofs, which are exact copies of the proofs in Section IV.10 replacingK operators
by J operators.

Given a base set V ∗ and a sequence of positive integers Lx for x ∈ V ∗, we consider a
“vertex set with ladders”, i.e., V = {(x, s) : x ∈ V ∗, s = 1, . . . , Lx}, where we interpret
the s-coordinate as the “ladder height” at x. We then consider a positive symmetric
irreducible transition function p((x, s), (y, r)) which does not depend on the “ladder-level”
(i.e., the second coordinate)

p((x, s), (y, r)) = p∗(x, y) (VI.12)

We then have the following analogue of Theorem IV.37. Because the proof is identical to
that of Theorem IV.37 with obvious adaptations, we omit it.

THEOREM VI.12. Let V be a vertex set with ladders, with base set V ∗ and transition
function p(·, ·) as in (VI.12). Let {η(t) : t ≥ 0} denote the SEP(α) process on V with
parameters α : V → N. Then the contracted process {η∗(t), t ≥ 0} defined via

(η∗(t))x =
Lx∑
s=1

(η(t))x,s, x ∈ V ∗ (VI.13)

is a SEP(α∗) process on V ∗ with transition function p∗(·, ·) and parameters α∗ : V ∗ → N
defined by

α∗
x =

Lx∑
s=1

α(x,s)
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VI.4 Intertwining between different α’s

The contraction in Theorem VI.12 can be interpreted as an intertwining. Indeed, let us
denote by LSEP(α) and LSEP(α∗) the generators of the η(t) process, resp. η∗(t) process, of
Theorem VI.12, and let us denote by Ωα, resp. Ωα∗ , their respective state spaces. Then
the map T : η → η∗ defined by equation (VI.13) yields an intertwining between “ladder
SEP” and “contracted ladder SEP” via the relation

LSEP(α)Λ = ΛLSEP(α∗) (VI.14)

where Λ maps functions f ∗ on the state space Ωα∗ to functions Λf ∗ on the state space
Ωα via

(Λf ∗)(η) = f ∗(Tη).

This intertwining exists also in the “opposite direction”. We will illustrate this for
ladder with at most one particle per vertex. It will give us that the self-duality functions
for SEP(α∗) can be obtained from the self-duality functions of the ladder SEP(1) com-
bined with intertwining. Because the self-duality functions for SEP(1) are well-known and
easy, this provides an easy way to obtain a family of self-duality functions for SEP(α∗),
via intertwining, starting from the self-duality functions of SEP(1) which are simple and
known.

So we now assume that on V , the vertex set with ladders, α(x,s) = 1 for all x ∈ V ∗, s =
1, . . . , Lx. As a consequence α∗

x = Lx for all x ∈ V ∗. For η∗ ∈ Ωα∗ , denote by C(η∗) the
set of compatible ladder SEP(1) configurations. In particular the cardinality of this set
is:

|C(η∗)| =
∏
x∈V ∗

(
Lx
η∗x

)
.

Indeed, for each x and η∗, we have to choose η∗x ladder places at x to put the particles.
For f : Ωα → R, define Λ∗f : Ωα∗ → R via

Λ∗f(η∗) =
∑

η∈C(η∗)

1

|C(η∗)|
f(η) (VI.15)

We have the following “inverse” (w.r.t. (VI.14)) intertwining relation:

LSEP(α∗)Λ∗ = Λ∗LSEP(1) (VI.16)

The proof is a simple explicit computation left to the reader. This relation means in word
the following. Fix η∗ ∈ Ωα∗ . Choose uniformly a compatible ladder SEP(1) configuration
η ∈ C(η∗) and evolve it for a time t > 0, according to the ladder SEP(1); alternatively,
evolve η∗ according to the SEP(α∗) that is obtained by “contracting” the SEP(1), and
next choose a uniform element compatible with the evolved configuration. The intertwin-
ing result is that both evolutions lead to the same configuration (in distribution).

Because we have chosen α = 1 for the ladder SEP, as we have seen before, the self-
duality functions are simple and of the form

D(ξ, η) =
∏

(x,s)∈V

(a+ bξ(x,s) + cη(x,s) + dη(x,s)ξ(x,s)) (VI.17)

where a, d, c, d ∈ R. Combining this with the intertwining yields that if we work with Λ∗

both on the ξ and η variables, we find all self-duality functions of the contracted SEP(α∗).
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THEOREM VI.13. The functions

D(ξ∗, η∗) =
1

|C(η∗)||C(ξ∗)|
∑

ξ∈C(ξ∗)

∑
η∈C(η∗)

∏
(x,s)∈V

(a+ bξ(x,s) + cη(x,s) + dη(x,s)ξ(x,s)) (VI.18)

are self-duality functions of SEP(α∗). In particular

D(ξ∗, η∗) =
∏
x∈V ∗

(
η∗x
ξ∗x

)(
α∗
x
ξ∗x

) (VI.19)

is a self-duality function for SEP(α∗).

PROOF. The first statement follows from the intertwining (VI.16), combined with the
fact that the for the SEP(1), (VI.17) are self-duality functions.

To find the self-duality with (VI.19) we show that it arises by acting with the inter-
twiner Λ∗ on the left and on the right on the Siegmund self-duality function

D(ξ, η) = 1l{ξ≤η}

Acting with Λ∗ both on the η∗ and ξ∗ variables gives

(Λ∗
leftΛ

∗
rightD)(ξ∗, η∗) =

1

|C(ξ∗)|
1

|C(η∗)|
∑

ξ∈C(ξ∗)

∑
η∈C(η∗)

1l{ξ≤η}

where Λ∗
left denotes Λ

∗ working on the ξ variable and Λ∗
right denotes Λ

∗ working on the η
variable. This expression can now be interpreted as the probability that two independent
uniformly chosen configurations ξ ∈ C(ξ∗), η ∈ C(η∗) satisfy the inequality ξ ≤ η, i.e.,
where there are particles in ξ, there are also particles in η. This probability equals

∏
x∈V ∗

(
η∗x
ξ∗x

)(
α∗
x
ξ∗x

)
because given η∗, and x ∈ V ∗, we have to choose occupied places in η ∈ C(η∗) to place
the ξ∗x particles of ξ, of which there are exactly η∗x at x ∈ V ∗, and at every site x ∈ V ∗

there are α∗
x available places.

VI.5 Scaling limits

One might think that taking a “many particle limit” for the symmetric partial exclusion
process produces a new Markov process in the continuum, with a finite maximal value
on each site that would be the analogous of the maximum occupancy αx at site x in
the discrete setting. Indeed, we recall that the scaling limit obtained by considering a
large number of particles N and then studying the scaled process η(t)/N as N → ∞ was
already studied in Section III.1 for the independent random walkers process, yielding a
deterministic system of ODE’s, and in Section V.1 for the symmetric inclusion process,
yielding the Brownian energy process.
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However, for the SEP(α), this procedure does not lead to a Markov diffusion process
as we will see now. A first problem is that on a finite graph the total number of particles
is upper bounded by

∑
x∈V αx and thus is not possible to achieve a limit of infinite

population without also scaling the αx. Even when we ignore this problem, and proceed
formally, via a Taylor expansion of the generator of the scaled process η(t)/N , we start
from

L(N)f
(
η
N

)
=
∑
x,y∈V

p(x, y) ηx(αy − ηy)
(
f
(
η
N
− 1

N
δx +

1
N
δy
)
− f( η

N
)
)
.

Using then the symmetry of p, we get L(N) → L as N → ∞ where

L̃ =
1

2

∑
x,y∈V

p(x, y)

(
(αxζy − αyζx)

(
∂

∂ζx
− ∂

∂ζy

)
− ζxζy

(
∂

∂ζx
− ∂

∂ζy

)2
)
.

However L̃ is a differential operator which is not the generator of a Markov diffusion
process. Indeed, if we rewrite the second order derivatives like

ax,y(ζ)
∂2

∂ζx∂ζy

then the quadratic form generated by the 2× 2 matrix withe elements ax,y(ζ) = −ζxζy is
not positive definite, which is impossible for the generator of a diffusion process. Note the
similarity to the many particle limit of the symmetric inclusion process that instead pro-
duced the positive definite “diffusivity matrix” +ζxζy and thus allowed for the definition
of the Brownian energy process.

In order to obtain a process that is a proper scaling limit of the symmetric partial
exclusion process we thus need to change strategy. Having identified, in the formal appli-
cation of the many particle limit, the source of problems in the term with second order
derivatives, the idea is to rescale time to eliminate the problematic term. We illustrate
this for the homogeneous setting αx = α ∈ N for all x ∈ V , in which case we have the
following result.

Define a sequence of initial configurations η(α), α ∈ N with a number of particles of
order α, i.e. for all x ∈ V

η(α)x = ⌊αζx⌋,

for some configuration ζ : V → [0, 1]V . This implies that η
(α)
x /α → ζx as α → ∞.

THEOREM VI.14 (Scaling limit of SEP(α)). Let {η(α)(t), t ≥ 0} be the symmetric partial
exclusion process, initialized from η(α), and defined on the set of vertices V with symmetric
transition function p : V × V → R. The process {ζ(α)(t), t ≥ 0} defined by

ζ(α)x (t) = η(α)x (αt)/α,

weakly converges, as α → ∞, (in the Skorohod topology) to the deterministic process
{ζ(t), t ≥ 0} on [0, 1]V which is the solution of the ODE’s

dζx(t)

dt
=
∑
y∈V

p(x, y)(ζy(t)− ζx(t)). (VI.20)
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PROOF. The proof is a consequence of the Trotter-Kurtz theorem. It is enough to show
that the generator L(α) of the process ζ(α)(t) converges as α → ∞ to

Lf(ζ) =
∑
x,y∈V

p(x, y)(ζy − ζx)
∂f(ζ)

∂ζx
. (VI.21)

which is the generator of the deterministic system (VI.20) For α fixed, we have

L(α)f(ζ) = α
∑
x,y∈V

p(x, y) ζx(1− ζy)
(
f
(
ζ − 1

α
δx +

1
α
δy
)
− f(ζ)

)
. (VI.22)

Assuming now that f : [0, 1]V → R is smooth, by Taylor expansion, we find

lim
α→∞

L(α)f = Lf,

where the convergence is uniform on compact sets. Because such smooth f are a core of
the generator L, we conclude that {ζ(α)(t), t ≥ 0} → {ζ(t) : t ≥ 0} as α → ∞, where the
convergence is weak convergence in the Skorohod topology.

REMARK VI.15. Notice that the limiting system of ODE’s (VI.20) is the same as the one
we found for independent random walkers. The only difference is that the initial condition
is taken from ζ(0) ∈ [0, 1]V , and thus remains in this set [0, 1]V , because the evolution
ζ(t) is a contraction in the supremum norm and preserves positivity. In other words, in
this scaling limit, we do no longer see the effect of exclusion in the evolution.

REMARK VI.16. How does the self-duality of symmetric partial exclusion process “prop-
agate” to the scaling limit of Theorem VI.14? Let {η(t), ξ(t), t ≥ 0} be two copies of the
SEP(α) process on V starting, respectively, from η, ξ ∈ {0, 1, . . . , α}|V |. Then we recall
the self-duality relation

EηD(ξ, η(αt)) = EξD(ξ(αt), η) (VI.23)

with D as in Theorem VI.7, namely

D(ξ, η) =
∏
x∈V

ηx(ηx − 1) . . . (ηx − ξx + 1)

α(α− 1) . . . (α− ξx + 1)

We put η = ⌊αζ(α)⌋, η(αt) = ⌊αζ(α)(t)⌋ and take the limit as α → ∞. On one hand we
find, using the convergence {ζ(α)(t), t ≥ 0} → {ζ(t) : t ≥ 0}, that

D(ξ, η(αt)) →
∏
x∈V

ζx(t)
ξx .

On the other hand we easily find that ξ(αt) → σ(t), where {σ(t), t ≥ 0} denotes the
independent random walk process and thus

D(ξ(αt), η(α)) →
∏
x∈V

ζσx(t)x .

As a consequence, the self-duality relation (VI.23) implies that

EζD(ξ, ζ(t)) = EξD(σ(t), ζ),
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with

D(ξ, ζ) =
∏
x∈V

ζξxx . (VI.24)

We recovered in this way the duality relation between the linear system of ODE’s and the
independent random walker process.

VI.6 Additional notes

Self-duality property for the standard symmetric exclusion process (SEP(1) in this book)
dates back to Spitzer [208] who introduced it to characterize the stationary distribution.
Later on, Ligget [167] gave a systematic treatment of duality for spin systems and its
applications in the characterization of ergodic properties. From these very first results
duality techniques for SEP were extensively used. The most common applications of
duality are related to the derivation of scaling limits, such as the hydrodynamic equation
[69].

Also the relation between the symmetric exclusion process and the XXX quantum spin
chain with spin 1/2 has been known for a long time in the theoretical physics literature
[184]. The symmetric partial exclusion process duality was formalized for the first time
by Sandow and Schütz in [203], where they used the su(2) symmetry of the spin chain to
identify the self-duality function. In the mathematcial literature, the symmetric partial
exclusion process was also considered in [37] in relation to the spectral gap. More recents
works include [110,111] and [112], where duality was used to find correlation inequalities.
In [46] the authors find explicit formulas for the Laplace transform of the two-particle
dynamics transition probabilities, and then, via duality the time-dependent covariances of
the process with an arbitrary number of particles. We remark that the partial exclusion
process is not the only generalization of SEP allowing for a given number of particles
per site. Another process of this type had already been considered in [138] (where it is
referred to as toK-exclusion process). The latter though, does not have a simple algebraic
structure, thus the SEP(α) emerges as the most natural generalization of SEP showing a
factorized self-duality property.

The extension of the self-duality property to the asymmetric exclusion process (ASEP)
is due to Schütz [204]. This result immediately found a vast number of applications, al-
lowing, among the other things, to compute the current fluctuations [134] and several
properties of the transition probabilities [133]. In the case of the ASEP, several applica-
tions of duality rely on Bethe ansatz techniques, which allow to solve the dual dynam-
ics [205]. These methods are applicable for a whole class of models that are referred as
to integrable stochastic systems (see e.g. [197] for a review on integrable models). The
self-duality function of ASEP is structurally very different from the one of SEP. It exhibits
indeed a nested product structure reminding the Gartner transform [108]. Rather than
correlations (as in the symmetric case), expectations of self-duality functions allow to
compute suitable q-exponential moments of the current (where q is the parameter tuning
the asymmetry). Thanks to its structure, this self-duality function has played an impor-
tant role in the proof of convergence to the KPZ equation of WASEP (weakly asymmetric
exclusion process) and, more generally, to the identification of models belonging to the
KPZ-universality class (see e.g. [28,32,58,59,135]).
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The asymmetric version of SEP(α) was introduced in [47] where the authors called it
the ASEP(q, α) process, q being the asymmetry parameter. The generator is constructed
in such a way to have a duality property from a (α + 1)-dimensional representation of a
quantum Hamiltonian with Uq(sl2) invariance. The self-duality relation for ASEP(q, α)
follows then as a consequence of the algebraic structure. The self-duality function has
again a nested-product structure that allows to compute the q-exponential moment of the
current for suitable initial conditions by means of a single dual particle. The model is not
integrable, and thus the dynamic of n dual particle could not be solved. A generalization
of ASEP(q, α) is proposed in [170]. The process allows for multiple jumps of particles
between neighbouring sites and its generator is constructed using the Temperley-Lieb
algebra. Finally we mention [179] for another processes with Uq(sl2) symmetry.

The duality functions that emerge in all the aforementioned cases are standard dual-
ities, i.e. they show a triangular structure. Orthogonal polynomial duality functions for
SEP(α) were introduced more recently in a series of papers [40,94,95,193] for the SEP(α).
In [41] the authors find a q-orthogonal polynomial duality functions for the asymmetric
process ASEP(q, α). In the last few years self-duality techniques for SEP(α) have been
broadly used in the realm of scaling-limits investigations [7, 52, 89, 190], among these we
stress the innovative role played by orthogonal dualities for the definition of higher order
density fields [7, 52]. Among the applications of self-duality and algebraic approach in
the context of asymmetric exclusion processes, we mention the key role played in the
study of shocks. We mention e.g. [16] for an analysis of microscopic shock dynamics for
ASEP(1), [15] for its multispecies version and [202] for the process conditioned to low
current.

Several steps forward have been done, in the last few years, in the direction of finding
duality relations for multispecies exclusion systems. The first result was obtained by
Kuan in [150] where a duality function is found for an ASEP(1) with particles of two
types. This is achieved by using symmetries of the quantum groups Uq(gl3) and Uq(sp4).
In the already mentioned [15] the authors define a multi-species version of ASEP(1), find a
duality relation and use it to study multiple shocks dynamics. In [151] the author defines
a general multi-species version of ASEP(q, α) and finds duality relations.

A different version of asymmetric partial exclusion process, in its multispecies version,
is introduced in [53, 54]. The authors refer to this model as mASEP and find dual-
ity functions exploiting the mathematical structure provided by the deformed quantum
Knizhnik-Zamolodchikov equation.



Chapter VII

Duality for other models

Abstract: In this chapter we consider additional models with duality properties.
We start with a class of models of mass transport, both discrete and continuous,
inspired by the well-known KMP (Kipnis-Marchioro-Presutti) model. We ob-
tain these models from a “thermalization procedure” applied to the basic models
of the previous chapters. The thermalization of a model preserves duality. As
a consequence, all these thermalized models automatically satisfy duality prop-
erties. This yields a one parameter family of discrete and continuous models
of KMP type with duality properties. Other models which we obtain via ther-
malization include the Kac model and the Aldous averaging model. Next we
study two additional models and their duality properties using the algebraic ap-
proach for the Heisenberg algebra. The first is the Ginzburg-Landau model with
quadratic potential which we show to be dual to independent random walkers.
The second is the Wright-Fisher diffusion with mutation (and its finite popu-
lation companion the Moran model), where we have the well-known dualities
of population genetics, namely duality with the coalescent. In both cases the
dualities can be understood from a change of representation in the Heisenberg
algebra.

VII.1 Introduction

In this chapter we shall describe the dualities of several other models of interacting stochas-
tic systems. Many of these models are well-known in the literature and have played a
very important role in the context where they have been proposed. We will see here how
these models are naturally related to the models we have already studied so far, and fit
well in the algebraic approach. In this sense they can be considered as “derived models”
where dualities can be obtained straightforwardly from the dualities that we have studied
up to now. We restrict to five models:

(i) The Aldous averaging process [2], introduced as an interacting particle system ap-
proach to social dynamics.

(ii) The Kac model [137], introduced as a model of particle collisions in kinetic theory.

149
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(iii) The Kipnis-Marchioro-Presutti model [145], that provided one of the first exactly
solvable stochastic models of heat conduction (Fourier law).

(iv) The stochastic Ginzburg-Landau model [123], that played a crucial role in the de-
velopment of the entropy method for the derivation of the hydrodynamic limit [123].

(v) The Wright-Fisher diffusion process and the Moran model, which are the prototype
models of mathematical population genetics [82].

It is our aim in this chapter to show that for all these models, the existence of a dual
process can be understood using the algebraic approach described in this book.

For instance, some of these models are obtained from the models that we discussed in
previous chapters by the so-called procedure of “thermalization”. We shall explain this
procedure in general terms in Section VII.2 and then apply it to discuss the duality of
the Aldous averaging process. We then continue to discuss the duality of the Kipnis-
Marchioro-Presutti model in Section VII.3 and the duality of the Kac model in Section
VII.4. Since the thermalization procedure conserves the duality property of the original
models, we will identify the dual processes as the thermalized version of the duals of the
original models.

We shall discuss the duality of the stochastic Ginzburg-Landau model with quadratic
potential in Section VII.5 and the duality of the Wright-Fisher diffusion and Moran model
in Section VII.6. Those dualities can be understood as a consequence of a change of
representation of a Lie algebra.

VII.2 Thermalization: definition and a first example

So far, for the processes which we have studied we start from the “single-edge gener-
ator” which acts on the variables associated to the two vertices of an edge. Then we
prove duality for this generator via symmetries acting on the cheap duality associated to
a reversible measure. The thus obtained duality functions are in factorized form (i.e., a
product over the vertex variables). This allows to extend directly to a model on a gen-
eral graph where along the edges the “single edge generator” is copied. In the previous
chapters, new processes were obtained by taking the many particle limit, which leads for
the symmetric inclusion process to the Brownian energy process, and from independent
symmetric random walkers to a deterministic system of ordinary differential equations.

In this chapter, we describe yet another method, which we call “thermalization”, to
generate processes which satisfy duality properties by construction. These models will
be of the type “mass redistribution models” where at each edge, at fixed rate, mass is
exchanged between the vertices of the edge, in a way which conserves the total mass of
the edge upon each transition.

To explain this procedure, let us start with the example of the single edge generator
of independent random walkers. We remind that this generator is given by

L1,2f(η) = η1(f(η
1,2)− f(η)) + η2(f(η

2,1)− f(η))

with η = (η1, η2) and η
1,2 = (η1 − 1, η2 + 1).
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Starting from a given configuration (η1, η2) with η1 + η2 = N , the process generated
by L1,2 converges to a unique stationary measure µN1,2 which is given by

µN1,2(η1 = k, η2 = N − k) =

(
N

k

)(
1

2

)N
(VII.1)

I.e., η1 is Bin(N, 1/2) and η2 = N − η1.
This Binomial distribution can be obtained by conditioning the reversible measure νρ

which is a product of Poisson with vertex-independent parameter ρ to the event η1+η2 =
N :

νρ(η1 = k, η2 = N − k|η1 + η2 = N) =
ρkρN−ke−2ρ

k!(N − k)!
∑N

l=0
ρlρN−le−2ρ

l!(N−l)!

=

(
N

k

)(
1

2

)N
Alternatively, one can check directly by detailed balance that µ1,2 is reversible. The
reversible measure µ1,2 is called the “canonical” reversible measure with total particle
number N , corresponding to the “grand canonical” reversible measure νρ which is the
product of Poisson, where the number of particles is not fixed.

We then introduce a new process as follows: at rate 1, η1, η2 changes to η′1, η
′
2 where

η′1 is Bin(η1 + η2, 1/2) and η
′
2 = η1 + η2 − η′1. We call this process the thermalization of

the process with generator L1,2. It has generator

Lth
1,2f(η1, η2) =

η1+η2∑
k=0

(
η1 + η2
k

)(
1

2

)η1+η2
(f(k, η1 + η2 − k)− f(η1, η2))

Alternatively, this can be written as

Lth
1,2f(η1, η2) = lim

t→∞
(etL1,2 − I)f(η1, η2) (VII.2)

where etL1,2 denotes as usual the semigroup of the process (η1(t), η2(t)).
The equality (VII.2) explains the name “thermalization”: at rate 1, the configuration

of the edge {1, 2} is updated according to the unique (canonical) stationary measure of
that edge, obtained by running the process with generator L1,2 for “infinite time”.

As we have seen before in Chapter 3, the process of independent random walkers is
dual to the deterministic process with generator

L1,2 = −(ζ1 − ζ2)

(
∂

∂ζ1
− ∂

∂ζ2

)
This system, when initiated from a configuration (ζ1, ζ2) ∈ [0,∞)2 evolves in the course
of time as

(ζ1(t), ζ2(t)) =

(
ζ1 + ζ2

2
+
ζ1 − ζ2

2
e−2t,

ζ1 + ζ2
2

− ζ1 − ζ2
2

e−2t

)
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which converges exponentially fast to the unique fixed point(
ζ1 + ζ2

2
,
ζ1 + ζ2

2

)
Therefore, for this system, we define its thermalization

Lth
1,2f(ζ1, ζ2) = lim

t→∞
(etL1,2 − I)f(η1, η2) =

(
f

(
ζ1 + ζ2

2
,
ζ1 + ζ2

2

)
− f(ζ1, ζ2)

)
(VII.3)

I.e., at rate one we redistribute the mass of the edge according to the unique fixed point
(which is the analogue here of the unique canonical reversible measure). This process
is called the “Aldous averaging model” [2] on two vertices. Using (VII.2), (VII.3) we
immediately infer the following dualities.

1. Self-duality of thermalized independent walkers. I.e., Self-duality of the process with
generator Lth

1,2 with self-duality function

D(ξ, η) =
η1!

(η1 − ξ1)!

η2!

(η2 − ξ2)!

This follows from the self-duality of L1,2 with this self-duality function.

2. Duality between thermalized independent walkers with generator Lth
1,2 and the ther-

malized deterministic process (Aldous averaging process) with generator Lth
1,2 with

duality function
D(ξ, ζ) = ζξ11 ζ

ξ2
2

3. Self-duality of the thermalized deterministic process (Aldous averaging process) with
generator Lth

1,2 with self-duality function

D(u, ζ) = eu1ζ1+u2ζ2

We can then copy the thermalized processes along the edges of a graph G = (V,E) and
have the analogue of the above mentioned dualities for these processes.

DEFINITION VII.1 (Thermalized random walkers and Aldous averaging process ). Let V
be a finite set, and p : V × V → [0,∞) a symmetric irreducible transition function.

1) Thermalized random walkers. We define the process of thermalized random walkers
via the generator

Lthf(η) =
∑
x,y∈V

p(x, y)E (f(T xy(η))− f(η)) (VII.4)

where

(T xy(η))z =


ηz for x ̸∈ {x, y}
Zηx+ηy for z = x

ηx + ηy − Zηx+ηy for z = y

(VII.5)

where Zηx+ηy is a Bin(ηx + ηy, 1/2) distributed random variables, and E denotes
expectation w.r.t. this random variable.
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2) Aldous averaging process.

We define the Aldous averaging process via the generator

Lthf(ζ) =
∑
x,y∈V

p(x, y) (f(Txy(ζ))− f(ζ)) (VII.6)

where

(Txy(ζ))z =

{
ζz for z ̸∈ {x, y}
ζx+ζy

2
for z ∈ {x, y}

We then have the following duality theorem, which follows immediately from the
corresponding single edge duality results discussed above.

THEOREM VII.2. 1. The process of thermalized random walkers is self-dual with self-
duality function given by

D(ξ, η) =
∏
x∈V

ηx!

(ηx − ξx)!

2. The Aldous averaging process is dual to the process of thermalized random walkers
with duality function given by

D(ξ, ζ) =
∏
x∈V

ζξxx

3. The Aldous averaging process is self-dual with self-duality function given by

D(u, ζ) =
∏
x∈V

euxζx

VII.3 Continuous and discrete KMP models

Some background on the KMP model

The Kipnis-Marchioro-Presutti model was introduced in [145] as a model of heat conduc-
tion. It has been the very first (stochastic) model for which one could prove Fourier’s law.
In [145] the model was defined by considering a one-dimensional system that is coupled
to two “reservoirs” at the left and right boundaries. We here focus on the evolution in
the bulk (which we allow to be a finite graph G = (V,E)), we postpone the analysis of
the process with boundary reservoirs to Chapter X.

In the KMP process, we consider a graph G = (V,E), and a configuration ζ ∈ ΩV =
[0,∞)V which is interpreted as associating to vertices x ∈ V an “energy” ζx ≥ 0. These
energies evolve as follows. Each edge has a Poisson clock of rate 1. When the clock of the
edge {x, y} rings, the energy of the edge is redistributed uniformly, conserving the total
energy, i.e., according to the rule

(ζx, ζy) → ((ζx + ζy)U, (ζx + ζy)(1− U))

where U is a uniform random variable in [0, 1].
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This simple redistribution model is a caricature of a realistic Hamiltonian model of
heat conduction such as an interacting system of (non-harmonic) oscillators where energy
and momentum are exchanged in the course of the Hamiltonian evolution. Of course, in
the KMPmodel only energy is conserved, whereas in a Hamiltonian model also momentum
would be conserved.

Because the KMP model satisfies Fourier’s law, i.e., the macroscopic equation for the
time-evolution of the energy is the heat equation, and is to some degree “exactly solvable”
(though not integrable), it became one of the paradigmatic models in the literature of in-
teracting particle systems and non-equilibrium statistical physics. Already in the original
paper [145], duality played a fundamental role to compute the energy profile in a linear
chain coupled to reservoirs at left and right ends, and in the proof of local equilibrium.

Clearly this model has the flavour of a “thermalized model”. In fact we will show that
is corresponds to the thermalization of the Brownian energy process with a parameter
α = 1. This hidden structure makes it possible to reveal a one-parameter family of KMP
models, as well as a one-parameter family of discrete KMP models, which correspond to
thermalization of the symmetric inclusion process (which is dual to Brownian energy pro-
cess). For all these models we will automatically have duality and self-duality properties,
inherited from the corresponding dualities between the symmetric inclusion process and
the Brownian energy process.

Thermalization of symmetric inclusion process and of Brownian
energy process

As we have seen in the first section where duality of the Aldous averaging was discussed,
one can obtain new models via thermalization and inherits automatically dualities from
the models one starts from. In this section we focus on thermalization in the context
of the symmetric inclusion process SIP(α) and the Brownian energy process BEP(α).
The analogue of the Binomial distribution which we encountered for independent random
walkers now becomes the Beta Binomial distribution for SIP, and the analogue of the
“fixed point” for the continuous deterministic system derived from independent random
walks now becomes a redistribution according to a Beta distributed random variable.

The thermalization of SIP(α) will therefore be a discrete mass redistribution model
based on the Beta Binomial distribution, whereas the thermalization of BEP(α) will be
a continuous mass redistribution model based on the Beta distribution. As we already
mentioned above, the latter, when α = 1 is the famous KMP model [145].

We start with recalling some elementary facts of the Beta Binomial and Beta distri-
butions. We recall that the Beta function is defined via

B(α, β) =

∫ 1

0

xα−1(1− x)β−1dx =
Γ(α)Γ(β)

Γ(α + β)

DEFINITION VII.3. A random variable X taking values in {0, 1, . . . , N} is called Beta
Binomial distributed with parameters (N,α, β) when its probability mass function is given
by

P(X = k) =

(
N

k

)
B(α + k,N − k + β)

B(α, β)
(VII.7)
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A random variable X taking values in [0, 1] is called Beta distributed with parameters
(α, β) if its probability density is given by

fX(x) =
xα−1(1− x)β−1

B(α, β)
1l{0≤x≤1} (VII.8)

REMARK VII.4. Remark that one can obtain the Beta Binomial distribution by consid-
ering a binomial distribution with parameters N, p where p is random and has a Beta
distribution with parameters (α, β), i.e.,(

N

k

)
B(α + k,N − k + β)

B(α, β)
=

(
N

k

)
1

B(α, β)

∫ 1

0

pk(1− p)N−kpα−1(1− p)β−1 dp

We also recall for the convenience of the reader the related discrete Gamma and
continuous Gamma distributions.

DEFINITION VII.5. 1. A random variable X taking values in N is called discrete Gamma
with scale parameter λ ∈ (0, 1) and shape parameter α > 0 if

P(X = n) =
λnΓ(α + n)

n!Γ(α)
(1− λ)α

2. A random variable X taking values in [0,∞) is called Gamma with scale parameter
θ ∈ (0,∞) and shape parameter α > 0 if its probability density is given by

fX(x) =
θαxα−1e−θx

Γ(α)

We have the following elementary lemma which relates the reversible product measures
of SIP(α), resp. BEP(α) to Beta Binomial and Beta distributions.

LEMMA VII.6. 1. Let (η1, η2) be distributed as a product of two independent discrete
Gamma distributions with identical scale parameters and with respective shape pa-
rameter α and β, i.e.,

P(η1 = k, η2 = l) =
λk+l

l!k!

Γ(α + k)Γ(β + l)

Γ(α)Γ(β)
(1− λ)α+β

Then conditional on η1 + η2 = N , η1 is Beta Binomial with parameters (N,α, β)

2. Let (ζ1, ζ2) be distributed as a product of two independent Gamma distributions with
identical scale parameters and respective shape parameters α and β, i.e., with joint
probability density

f(ζ1,ζ2)(z1, z2) = θα+β
zα−1
1 zβ−1

2

Γ(α)Γ(β)
e−θ(z1+z2)1l{0≤z1}1l{0≤z2}

Then conditional on ζ1 + ζ2 = x, η1 is distributed as xB where B is Beta(α, β)
distributed.
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PROOF. This follows from simple explicit computation.

We then have the following explicit form of the thermalizations of SIP(α) and BEP(α).

PROPOSITION VII.7. The following holds.

1. Thermalization of SIP(α). Let L1,2 denote the generator of SIP(α) defined on two
sites, i.e.,

L1,2f(η1, η2) = η1(α2 + η2)(f(η
1,2)− f(η)) + η2(α1 + η1)(f(η

2,1)− f(η))

Let Lth
1,2 denote the corresponding thermalized process, i.e.,

Lth
1,2f(η1, η2) = lim

t→∞
(etL1,2 − I)f(η1, η2)

Then we have

Lth
1,2f(η1, η2) = E(f(X, η1 + η2 −X)− f(η1, η2)) (VII.9)

where the expectation is w.r.t. X, a Beta Binomial random variable with parameters
(η1 + η2, α1, α2).

2. Thermalization of BEP (α). Let L1,2 denote the generator of BEP(α) defined on
two sites, i.e.,

L1,2f(ζ1, ζ2) =
(
ζ1ζ2

( ∂

∂ζ1
− ∂

∂ζ2

)2
− (α2ζ1 − α1ζ2)

( ∂

∂ζ1
− ∂

∂ζ2

))
f(ζ1, ζ2)

Let Lth
1,2 denote the corresponding thermalized process, i.e.,

Lth
1,2f(η1, η2) = lim

t→∞
(etL1,2 − I)f(η1, η2)

Then we have

Lth
1,2f(η1, η2) = E(f(X(ζ1 + ζ2), (1−X)(ζ1 + ζ2))− f(ζ1, ζ2)) (VII.10)

where the expectation is w.r.t. X, a Beta random variable with parameters (α1, α2).

PROOF. The first item follows from the fact that the process with generator L1,2, when
started from (η1, η2), converges to its unique reversible distribution which is the distribu-
tion of (X, η1 + η2 − X) where X is a Beta Binomial random variable with parameters
(η1 + η2, α1, α2). This in turn follows from the reversibility of the product of discrete
Gamma distribution with identical scale parameters and shape parameters (α1, α2), to-
gether with Lemma VII.6. The second item follows in the same spirit from the fact that
the process with generator L1,2, when started from (ζ1, ζ2), converges to its unique re-
versible distribution which is the distribution of (X(ζ1 + ζ2), (1−X)(ζ1 + ζ2)), where X
is a Beta random variable with parameters (η1 + η2, α1, α2).
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Generalized discrete and continuous KMP processes

We can now, by copying the thermalized generators along the edges of a graph define
the generalized KMP model, the generalized discrete KMP model and obtain immediate
duality relations between these models.

DEFINITION VII.8 (Thermalized SIP or discrete generalized KMP process). Let G =
(V,E) be a finite graph, and let p : V × V → [0,∞) denote an irreducible symmetric
transition function. Let α : V → (0,∞). Then the discrete generalized KMP(α) process
or thermalized SIP(α) is defined as the process on the state space ΩV = NV via its
generator

Lf(η) =
∑
xy∈E

p(x, y)E(f(T (Xxy, η))− f(η)) (VII.11)

where

(T (Xxy, η))z =


ηz if z ̸∈ {x, y}
Xxy if z = x

ηx + ηy −Xxy if z = y

(VII.12)

where Xxy is Beta Binomial with parameters (ηx + ηy, αx, αy) and where the expectation
in (VII.11) is w.r.t. this variable Xxy.

DEFINITION VII.9 (Thermalized BEP or generalized KMP process). Let G = (V,E) be a
finite graph, and let p : E → [0,∞) denote an irreducible symmetric transition function.
Let α : V → (0,∞). Then the generalized KMP(α) process or thermalized BEP(α) is
defined as the process on the state space ΩV = [0,∞)V by its generator

Lf(ζ) =
∑
xy∈E

p(x, y)E(f(T(Xxy, η))− f(η)) (VII.13)

where

(T(Xxy, η))z =


ζz if z ̸∈ {x, y}
Xxy(ζx + ζy) if z = x

(ζx + ζy)(1−Xxy) if z = y

(VII.14)

where Xxy is a random variable which is Beta distributed with parameters (αx, αy) and
where the expectation in (VII.13) is w.r.t. this random variable Xxy.

REMARK VII.10. We now see that α = 1 reduces to the original Kipnis-Marchioro-
Presutti process discussed in the introduction to this chapter. The redistribution rule is
thus uniform on every edge for this model. The discrete case with α = 1 corresponds to
a natural analogous discrete uniform redistribution rule.

Combining Lemma VII.6 and Proposition VII.7 we obtain the following dualities and
relation between the discrete and continuous generalized KMP processes.

THEOREM VII.11 (Duality and basic properties of generalized KMP models). Let G =
(V,E) be a finite graph, and let p : E → [0,∞) denote an irreducible symmetric transition
function. Let α : V → (0,∞).
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1. Self-duality of discrete KMP. The discrete KMP(α) process is self-dual with self-
duality function

D(ξ, η) =
∏
x∈V

dα(x)(ξx, ηx)

where dα(k, n) =
n!Γ(α)

(n−k)!Γ(α+k) is the single-site self-duality function of SIP(α).

2. Duality between continuous and discrete KMP. The continuous and discrete KMP
process are dual with duality function

D(ξ, ζ) =
∏
x∈V

dα(x)(ξx, ζx)

where dα(k, z) = zkΓ(α)
Γ(α+k)

is the single-site self-duality function for duality between

SIP(α) and BEP(α).

3. Many particle limit of discrete KMP gives continuous KMP. The continuous KMP
process can be obtained as a “many-particle limit” of the discrete KMP process as
follows. Let ζ ∈ [0,∞)V be given and let η(N) ∈ NV be a sequence of configurations
such that η(N)/N → ζ as N → ∞. Let η(N)(t) denote the discrete KMP process
starting from η(N), and let ζ(t) denote the continuous KMP process starting from ζ.
Then {η(N)(t) : t ≥ 0} converges weakly in pathspace to {ζ(t) : t ≥ 0}

4. Reversible product measures of discrete and continuous KMP. The discrete KMP
process has reversible measures given by the product of discrete Gamma distributions,
with constant scale parameter λ ∈ (0, 1) and with shape parameter αx at site x ∈
V . The continuous KMP process has reversible measures the product of Gamma
distributions with constant scale parameter θ > 0 and with shape parameter αx at
site x ∈ V .

PROOF. The dualities follow immediately because the models are thermalized models of
SIP, resp. BEP, and therefore the self-duality of SIP, and the duality between SIP and
BEP carries over to the thermalized models.

To see the convergence {η(N)(t) : t ≥ 0} to {ζ(t) : t ≥ 0} notice that if XN is Beta
Binomial with parameters (N,α, β) then

XN

N
→ X as N → ∞

where X is Beta distributed with parameters (α, β), and where the convergence is in
distribution. As a consequence we have generator convergence of the process η(N)(t)/N
to the generator of the process ζ(t).

Finally, to prove item 4), notice that the reversible product measures, notice that
thermalization does not change the reversible measures.
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VII.4 The Kac model

The Kac model was introduced by Mark Kac [137], in the context of kinetic theory, as
a lattice model of particles with stochastically evolving velocities. The aim was to have
a simple microscopic model from which in a kinitic limit the linear Boltzmann equation
can be derived rigorously. The time evolution for the probability distribution of velocities
is a linear master equation, called the Kac master equation. The model has been studied
rigorously in several works, see for instance [31,50,171].

In the Kac model the basic dynamic rule yielding interaction of particles by collisions
is the following. The vertices of a finite graph G = (V,E) label the velocities of particles
that evolve as a continuous-time Markov chain {ζ(t), t ≥ 0} with ζ(t) ∈ ΩV = RV . An
irreducible symmetric transition rate function p : V × V → R+ is given. After waiting a
random time that is exponentially distributed with parameter p(x, y) > 0, the edge {x, y}
is selected and we let particle x and particle y collide with a random scattering angle.
At collision times the velocities (ζx, ζy) of particles associated to the edge xy are updated
according to the rule(

ζx, ζy

)
→
(
ζx cosΘx,y + ζy sinΘx,y,−ζx sinΘx,y + ζy cosΘx,y

)
,

where Θx,y is a random variable that is uniformly distributed on [0, 2π]. More explictly,
the Kac model {ζ(t), t ≥ 0} is then the Markov process with state space RV and generator

LKac =
∑

(x,y)∈E

p(x, y)
1

2π

∫ 2π

0

dθx,y[f(T(ζ, θx,y)− f(ζ)] (VII.15)

with

T(ζ, θx,y) =


ζz for z ̸∈ {x, y}
ζx cos θx,y + ζy sin θx,y for z = x

−ζx sin θx,y + ζy cos θx,y for z = y

(VII.16)

Our first aim is to show that the velocity process {ζ(t), t ≥ 0} of the Kac model can
be obtained as the thermalization of the Brownian momentum process of Section V.7.
We recall that the Brownian momentum process on the graph G = (V,E) is the diffusion
process {ζ(t), t ≥ 0} taking values in RV defined by the generator

L =
∑

(x,y)∈E

p(x, y)Lx,y

with

Lx,y =
1

4

(
ζx

∂

∂ζy
− ζy

∂

∂ζx

)2
. (VII.17)

The single-edge generator Lx,y evolves only the variables on the vertices x and y, leaving
all other variables unchanged. To obtain the thermalization of {ζ(t), t ≥ 0} we use
that the reversible product measures of the Brownian momentum process are products of
centered Normal distributions with identical variance as we have seen before in Section
V.7.
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As a consequence, when the process with generator Lx,y is started from (ζx, ζy) then
it converges to its unique stationary distribution which is the product of two centered
Normal distributions (ζ ′x, ζ

′
y) with identical variance and expectation zero conditioned to

(ζ ′x)
2 + (ζ ′y)

2 = ζ2x + ζ2y . This is because Lx,y conserves the Euclidean length of the vector
(ζx, ζy), and this is the unique conserved quantity. An easy computation shows that this
marginal distribution µζx,ζy is given by the uniform distribution on the circle

Cζx,ζy = {(ζ ′x, ζ ′y) ∈ R2 : (ζ ′x)
2 + (ζ ′y)

2 = ζ2x + ζ2y} (VII.18)

This allows us to obtain the thermalization of the BMP process, which is formulated in
the following proposition.

PROPOSITION VII.12. Parametrizing the points of Cζx,ζy as

ζ ′x = ζx cos θx,y + ζy sin θx,y

ζ ′y = −ζx sin θx,y + ζy cos θx,y (VII.19)

with the angle θx,y ∈ [0, 2π), we have that the thermalized single-edge generator corre-
sponding to the generator (VII.17) reads

Lth
x,yf(ζ) = lim

t→∞
(etLx,y − I)f(ζ)

= E[f(T(ζ,Θx,y)]− f(ζ). (VII.20)

where T(ζ,Θx,y) is as in (VII.16), with Θx,y uniformly distributed in [0, 2π) and where E
denotes expectation with respect to this random variable Θx,y.

Because the BMP process is dual to SIP with α = 1/2 by Theorem V.21, we obtain
immediately that the Kac process is dual to the thermalized SIP with parameter α = 1/2.

This is formulated in the next theorem.

THEOREM VII.13 (Duality for the Kac process). The Kac process {ζ(t), t ≥ 0} with state
space RV and generator LKac in (VII.15) is dual to the thermalized inclusion process with
parameter α = 1

2
, i.e., the process with generator (VII.11) with α = 1

2
. The duality

function is given by

D(ξ, ζ) =
∏
x∈V

ζ2ξxx

(2ξx − 1)!!
(VII.21)

PROOF. This follows from the duality between BMP and SIP with α = 1/2 and the fact
that the Kac process is the thermalization of BMP.

VII.5 The Ginzburg-Landau model

The stochastic Ginzburg Landau model [123] is a Markov diffusion process on the state
space ΩV = RV which describes the time evolution of real variables φx(t), x ∈ V which
represent the amount of “charge” at time t ≥ 0 at vertex x ∈ V of a graph G = (V,E).
Charges are randomly redistributed between vertices connected by an edge as a diffusion
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process that conserves the total charge and depends on a Hamiltonian function H : RV →
R . Notice that we use the letter φ to describe the configuration, rather than the earlier
used ζ, in order to distinguish this process from the earlier introduced diffusion processes
such as the Brownian energy process or the Brownian momentum process.

The generator of the stochastic Ginzburg Landau model is acting on smooth compactly
supported functions as follows:

L =
∑

(x,y)∈E

Lx,y (VII.22)

where the single-edge term Lx,y is given by:

Lx,y = −
(
∂H

∂φx
− ∂H

∂φy

)(
∂

∂φx
− ∂

∂φy

)
+

(
∂

∂φx
− ∂

∂φy

)2

(VII.23)

The single edge generator L1,2 generates a diffusion process on (φ1(t), φ2(t)) which is
described by the stochastic differential equation

dφ1(t) = −
(
∂H

∂φ1

− ∂H

∂φ2

)
dt+

√
2dB1,2(t) = −dφ2(t)

where B1,2(t) is a standard Brownian motion. The charge conservation rule is expressed
by d(φ1(t) + φ2(t)) = 0.

On the graph G = (V,E), the evolution is governed by the system of stochastic
differential equations

dφx(t) = −
∑

y∈V,y∼x

{ ∂H
∂φx

(φ(s))− ∂H

∂φy
(φ(s))

}
dt+

√
2
∑

y∈V,y∼x

dBx,y(t),

(VII.24)

where x ∈ V , the notation y ∼ x denotes that y is a neighbor of x in the graph (V,E),
and where for {x, y} ∈ V × V such that {x, y} ∈ E

Bx,y(t) = −By,x(t) = W{x,y}(t) (VII.25)

where We(t) with e ∈ E is a collection of independent standard Brownian motions.

As a consequence of the antisymmetry property (VII.25) one immediately see that at
all times t ≥ 0 ∑

x∈V

φx(t) =
∑
x∈V

φx(0). (VII.26)

i.e., the total “charge” is conserved.

The diffusion process has a drift term that is dictated by the Hamiltonian H : RV → R
and a “noise” term associated to edges which acts with opposite sign on both ends of the
edge. For the dynamics to exist and to be well-defined, sufficient regularity properties on
the Hamiltonian H must be specified (even for a finite graph G). We do not discuss this
issue and refer to [44], where standard assumptions are specified in the context of lattice
models.
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For any Hamiltonian H for which the diffusion process associated to the generator
(VII.22) exists, the Boltzmann-Gibbs measure with Hamiltonian H is reversible, provided
e−H is integrable. More precisely, if we define the Boltzmann-Gibbs measure as

µ(dφ) =
1

Z
· e−H(φ) dφ, (VII.27)

where the normalizing partition function is

Z =

∫
e−H(φ) dφ (VII.28)

then we have the following result.

THEOREM VII.14. The Boltzmann-Gibbs measure in (VII.27) is a reversible measure for
the Ginzburg-Landau dynamics.

PROOF. It suffices to show that for f, g smooth compactly supported functions we have∫
(Lf)gdµ =

∫
g(Lf)dµ

So let us fix f, g, two smooth compactly supported functions. Remark that the single
edge generator can be rewritten as follows

Lx,y = eH∇x,y(e
−H∇x,y)

where

∇x,y =
∂

∂φx
− ∂

∂φy

As a consequence, using partial integration,∫
(Lx,yf)gdµ =

1

Z

∫
g∇x,y(e

−H∇x,yf)dφ = −
∫
(∇x,yg)(∇x,yf)dµ

The expression −
∫
(∇x,yg)(∇x,yf)dµ is clearly symmetric in f and g, which implies that

µ is reversible.

Duality is not expected to hold for the general Ginzburg-Landau model, i.e., with a
generic Hamiltonian H. However, as we will show, we have duality for the quadratic
Hamiltonian

H(φ) =
1

2

∑
x∈V

φ2
x. (VII.29)

see [44, 120].

In this case the dual process is the system of independent random walkers of Chapter
II. More precisely we have the following theorem.
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THEOREM VII.15 (Duality for the quadratic Ginzburg-Landau process). The Ginzburg-
Landau process {φ(t) , t ≥ 0} on a graph G = (V,E) with generator

L =
∑

(x,y)∈E

[
− (φx − φy)

(
∂

∂φx
− ∂

∂φy

)
+

(
∂

∂φx
− ∂

∂φy

)2
]

(VII.30)

is dual to the independent random walk process {η(t) , t ≥ 0} on a graph G = (V,E) with
generator

Lf(η) =
∑

(x,y)∈E

[
ηx(f(η

x,y)− f(η)) + ηy(f(η
y,x)− f(η))

]
(VII.31)

where ηx,y, as usual, denotes the configuration obtained from η by moving a particle from
vertex x to vertex y. The duality function is

D(η, φ) =
∏
x∈V

Hηx(φx) (VII.32)

where Hη(φx) is the Hermite polynomial of degree ηx.

PROOF. We provide two independent proofs, the first based on an explicit computa-
tions using identities for the Hermite polynomials and the second based on the algebraic
approach described in this book.

First proof: direct computation To alleviate notation we do not write the argument of
the polynomials. We start by writing out the action of the single-edge Ginzburg-Landau
generator with quadratic Hamiltonian:

Lx,yD(η, ·)(φ) =
[ ∏
z∈V,z ̸=x,y

Hηz

][
H ′′
ηxHηy +HηxH

′′
ηy − 2H ′

ηxH
′
ηy

−φxH ′
ηxHηy − φyHηxH

′
ηy + φxHηxH

′
ηy + φyH

′
ηxHηy

]
.

We regroup terms as follows

Lx,yD(η, ·)(φ) =
[ ∏
z∈V,z ̸=x,y

Hηz

]
[
H ′
ηx(φyHηy −H ′

ηy) + (H ′′
ηx − φxH

′
ηx)Hηy

+(φxHηx −H ′
ηx)H

′
ηy +Hηx(H

′′
ηy − φyH

′
ηy)
]
,

and then use the following identities for Hermite polynomials

H ′
ηx(φx) = ηxHηx−1(φx) (VII.33)

φxHηx(φx)−H ′
ηx(φx) = Hηx+1(φx) (VII.34)

H ′′
ηx(φx)− φxH

′
ηx(φx) = −ηxHηx(φx) (VII.35)
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to find

Lx,yD(η, ·)(φ) =
[ ∏
z∈V,z ̸=x,y

Hηz

][
ηx(Hηx−1Hηy+1 −HηxHηy) + ηy(Hηx+1Hηy−1 −HηxHηy)

]
= Lx,yD(·, φ)(η),

so that we have recovered the action of the single-edge independent random walkers
generator.

Second proof: two representations of the Heisenberg algebra. We introduce the opera-
tors A†

x, Ax working on smooth functions of a real variable

A†
xf(φx) = φxf(φx)−

∂f

∂φx
(φx)

Axf(φx) =
∂f

∂φx
(φx). (VII.36)

On the tensor product space, these operators satisfy the “canonical commutation relation”[
Ax, A

†
y

]
=
[ ∂

∂φx
, φy −

∂

∂φy

]
=
[ ∂

∂φx
, φy

]
= Iδx,y (VII.37)

where I denotes the identity operator and δx,y is the Kronecker delta function. Next, we
consider the operators working on functions f : N → R

a†xf(ηx) = f(ηx + 1)

axf(ηx) = ηxf(ηx − 1) axf(0) = 0. (VII.38)

As we have seen before, on the tensor product space, these operators satisfy the “dual
canonical commutation relations”

[ax, a
†
y] = −Iδx,y (VII.39)

The operators Ax, A
†
x and ax, a

†
x satisfy a duality relation via the Hermite orthogonal

polynomials D(ηx, φx) = Hηx(φx):(
AD(ηx, ·)

)
(φx) =

(
aD(·, φx)

)
(ηx), (VII.40)(

A†D(ηx, ·)
)
(φx) =

(
a†D(·, φx)

)
(ηx). (VII.41)

In fact, the dualities (VII.40) and (VII.41) are an equivalent formulation of the identities
(VII.33) and (VII.34), as it was discussed in the last example of Section I.5. In terms
of the Ax, A

†
x operators the generator (VII.30) of the Ginzburg-Landau diffusion process

reads
Lx,y = −(A†

x − A†
y)(Ax − Ay) (VII.42)

Similarly, we know from Chapter II that, in terms of the ax, a
†
x operators, the generator

of the independent random walkers process is

Lx,y = −(ax − ay)(a
†
x − a†y). (VII.43)

We see that the duality between L and L is a consequence of the basic dualities (VII.40)
and (VII.41) and of the general principle that says “replace Ax by ax, replace A

†
x by a†x

and write product of these operators in reversed order”.
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REMARK VII.16. In the proof of the duality, we have only proved “generator” duality.
To some extent even that proof is formal because the generator is defined as the closure
of the differential operator (VII.30) on smooth compactly supported functions C∞

c (ΩV ),
and the Hermite polynomials are of course not in that class. However, once the existence
of the diffusion process is established, one can use standard multi-variate Ito calculus to
show the semigroup duality from the formal generator duality, i.e., via Ito calculus one
obtains that for the Hermite polynomials one has

Hη(φ(t))−Hη(φ(0))−
∫ t

0

LH·(φ(0))(η(s))ds =M(t)

where L is the generator of independent random walkers acting on the η variable, and
where {M(t) : t ≥ 0} is a martingale.

VII.6 The Wright-Fisher diffusion and the Moran

model

Duality is a crucially important concept in the context of mathematical population genet-
ics, see e.g. [82], [62]. Usually, duality in this context means relating the forward-in-time
models of allele frequency evolution with the backwards-in-time genealogical models. In
Section I.5 we discussed the basic example of such a duality: duality between the Wright-
Fisher diffusion for genetic drift and its genealogical counterpart, the block counting
process of the Kingman coalescence. In this section we add some material that expands
this basic example in several directions and shows that these dualities all fit in the context
of the Heisenberg algebra. We restrict our discussion to populations of two types only,
for the generalization to multi-type populations see [43,119].

Notice that our aim in this section is not to add much to the extensive literature
for the models of population dynamics. Rather, we want to illustrate how also these
examples fit naturally in the algebraic framework, by considering two representations of
the Heisenberg algebra (different from the ones we have encountered so far).

Coalescent: duality with a pure death process

The first generalization we consider is the addition of mutation to theWright diffusion with
two-types. We call {X(t) , t ≥ 0} the fraction of individuals of type 1 in an infinitely large
population. Besides “random genetic drift” we include mutations: thus each individual of
type 2 mutates at rate α1

2
into type 1 and, conversely, individuals of type 1 mutate at rate

α2

2
into type 2. The Markov process {X(t) , t ≥ 0} is a diffusion process with generator

L =
1

2
x(1− x)

d2

dx2
+

1

2

(
α1(1− x)− α2x

) d
dx
. (VII.44)

The action of this generator on the monomial xn does not yield in general a Markov process
in the n-variable (except in the case α1 = 1 and α2 = 0). To have a dual Markov process
we need to scale the monomial with an appropriate function of n. This implies that the
dual death process provided by the block counting process of Kingman’s coalescencent
gets an extra rate describing mutations.
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THEOREM VII.17. The diffusion process {X(t) , t ≥ 0} with generator (VII.44) is dual
to the death process {N(t) , t ≥ 0} with generator

Lf(n) =
n(n− 1 + α1 + α2)

2

(
f(n− 1)− f(n)

)
(VII.45)

with duality function D : N× [0, 1] → R given by

D(n, x) = xn
Γ(α1)

Γ(α1 + n)

Γ(α1 + α2 + n)

Γ(α1 + α2)
(VII.46)

PROOF. The statement of the theorem can be checked with an elementary computation.
To understand the origin of the duality function we provide instead an algebraic proof,
and see how the duality arises from two representations of the Heisenberg algebra. Using
the standard representation of the Heisenberg algebra

A† = x A =
d

dx
(VII.47)

yielding [A,A†] = I, the generator (VII.44) can be rewritten in the abstract form

L =
1

2
A†(1− A†)A2 +

1

2
(α1(1− A†)− α2A

†)A (VII.48)

Similarly, consider the discrete representation of the dual Heisenberg algebra given by

a†f(n) =
α1 + n

α1 + α2 + n
f(n+ 1)

af(n) = n
α1 + α2 + n− 1

α1 + n− 1
f(n− 1) (VII.49)

where as usual we make the convention af(0) = 0. The operators a, a† form a discrete
representation of the dual Heisenberg algebra, i.e., [a, a†] = −I. Using this representation
one can write the generator (VII.45) as

L =
1

2
a2(1− a†)a† +

1

2
a(α1(1− a†)− α2a

†). (VII.50)

Thus the duality between the process {X(t) , t ≥ 0} with generator (VII.44) and the
process {N(t) , t ≥ 0} with generator (VII.45) follows from the general composition rule
of dualities if one can prove that(

A†D(n, ·)
)
(x) =

(
a†D(·, x)

)
(n), (VII.51)(

AD(n, ·)
)
(x) =

(
aD(·, x)

)
(n) (VII.52)

where D is given by (VII.46). We verify the first of these dualities and leave to the reader
the verification of the second. The l.h.s. of (VII.51) reads

(
A†D(n, ·)

)
(x) = xD(n, x) = xn+1 Γ(α1)

Γ(α1 + n)

Γ(α1 + α2 + n)

Γ(α1 + α2)
(VII.53)
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whereas the r.h.s. is given by(
a†D(·, x)

)
(n) =

α1 + n

α1 + α2 + n
D(n+ 1, x)

=
α1 + n

α1 + α2 + n
xn+1 Γ(α1)

Γ(α1 + n+ 1)

Γ(α1 + α2 + n+ 1)

Γ(α1 + α2)

= xn+1 Γ(α1)

Γ(α1 + n)

Γ(α1 + α2 + n)

Γ(α1 + α2)
(VII.54)

where we used the property of Gamma function Γ(n+ 1) = nΓ(n).

Conservative duals: birth and death processes

In the previous example, the dual process used to infer properties of Wright-Fisher dif-
fusion is given by a death process describing the dynamics of the former in reverse time.
By using the algebraic approach it has been observed that duality exists also keeping
the forward direction of time for the dual process. More precisely, for the Wright-Fisher
diffusion with mutation one has duality with the Moran process with mutation. Thus the
dual is now a birth and death process.

THEOREM VII.18. The diffusion process {X(t) , t ≥ 0} with generator (VII.44) is dual
to the birth and death process {N(t) , t ≥ 0} with generator

Lf(n) =
n(N − n+ α2)

4

(
f(n− 1)− f(n)

)
+

(N − n)(n+ α1)

4

(
f(n+ 1)− f(n)

)
(VII.55)

with duality function D : {0, 1, . . . , N} × [0, 1] → R given by

D(n, x) = xn(1− x)N−n Γ(α1)

Γ(α1 + n)

Γ(α2)

Γ(α2 +N − n)
(VII.56)

PROOF. The duality between Wright-Fisher diffusion and Moran process is just an in-
stance of the more general duality between the Brownian Energy Process and the Sym-
metric Inclusion Process. Thus the algebraic structure behind this duality is the one of
the su(1, 1) algebra.

Consider indeed the generator of the two-sites BEP process with inhomogeneities α1

and α2

LBEP = x1x2

(
∂

∂x1
− ∂

∂x2

)2

− (α2x1 − α1x2)

(
∂

∂x1
− ∂

∂x2

)
(VII.57)

restricted to the simplex x1 + x2 = 1. Then defining x1 = x and x2 = 1− x one sees that

LBEP = 4L (VII.58)
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where L is the generator in (VII.44). Similarly, start from the generator of the two-sites
SIP process with inhomogeneities α1 and α2

LSIPf(n1, n2) = n1(n2 + α2)(f(n1 − 1, n2 + 1)− f(n1, n2))

+ n2(n1 + α1)(f(n1 + 1, n2 − 1)− f(n1, n2)). (VII.59)

Restricting to the simplex n1+n2 = N and defining n1 = n and n2 = N −n one sees that

LSIP = 4L (VII.60)

where L is the generator in (VII.55).

Dualities for finite size populations

We close this section by observing that dualities for population of finite sizes can also
be put in the framework of the algebraic approach described in this book. We show this
by considering the simple example of the neutral Moran process with N individuals. Let
K(t) denotes the number of individuals of type 1 at time t ≥ 0.

THEOREM VII.19. The neutral Moran process {K(t) , t ≥ 0} with generator

LNf(k) =
1

2
k(N − k)

(
f(k − 1)− 2f(k) + f(k + 1)

)
(VII.61)

is dual to the death process {N(t) , t ≥ 0} with generator

Lf(n) =
n(n− 1)

2

(
f(n− 1)− f(n)

)
(VII.62)

with duality function D : N× {0, 1, . . . , N} → R given by

D(n, k) =

(
k
n

)(
N
n

) =
k(k − 1) · · · (k − (n− 1))

N(N − 1) · · · (N − (n− 1))
(VII.63)

PROOF. The proof follows by combining the following observations:

(i) The generator (VII.61) is rewritten as

LN = a†N(1− a†N)a
2
N (VII.64)

where the ladder operators defined by

a†Nf(k) =
k−1∑
r=0

(−1)k−1−r
(
N
r

)(
N
k

)f(r)
aNf(k) = (N − k)f(k + 1) + (2k −N)f(k)− kf(k − 1) (VII.65)

give a representation of the Heisenberg algebra [aN , a
†
N ] = I.
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(ii) The generator (VII.62) is rewritten as

L = a2(1− a†)a† (VII.66)

where the ladder operators defined by

a†f(n) = f(n+ 1)

af(n) = nf(n− 1) (VII.67)

give a representation of the dual Heisenberg algebra [a, a†] = −I.

(iii) The duality function (VII.63) is the intertwiner between these two representations:(
a†ND(n, ·)

)
(k) =

(
a†D(·, k)

)
(n), (VII.68)(

aND(n, ·)
)
(k) =

(
aD(·, k)

)
(n). (VII.69)

VII.7 Additional notes

The KMP model on a chain {1, . . . , N} with boundary reservoirs at left and right end of
the chain was introduced in [145] (see also [107]) as a stochastic model of heat conduc-
tion which satisfies Fourier law. The absorbing dual was discovered in that paper and
used to prove properties of the non-equilibrium steady state such as local equilibrium.
Macroscopic properties of the model have been further analyzed using the “macroscopic
fluctuation theory” in [27], [22]. In the recent work [65] new properties of KMP process
and its non-equilibrium steady state are proved using a “hidden temperature model”. The
identification of the KMP model as a thermalization of the Brownian energy process is
from [111]. As a consequence, a one-parameter family of KMP models with similar duality
properties were introduced. Other models of mass redistribution arise in the context of
agent based models of wealth distribution see e.g. [51], [229] for more background on the
context and various models of this type. In [56] and [222], [192] such models are analyzed
with duality techniques.

The Aldous averaging process is studied in [2], whereas the Kac ring model served as
one of the first kinetic models where the Boltzmann equation can be derived rigorously.
This model is a toy model for many problems in statistical physics which turn around
the micro-to-macro problem, such as the irreversibility paradox, see e.g. [34]. To our
knowledge the dualities for both of these models are new. In [188] a class of discrete
averaging processes is analyzed and mixing properties are proved.

The stochastic Ginzburg-Landau model is a special case of a large class of models of
interacting diffusions, of which the hydrodynamic limit was studied first in [105]. Large
deviations for the density profile in such models of this type lead to the Guo-Papanicolao-
Varadhan method, see [123]. In [44] the Ginzburg-Landau model of the current chapter
was used to prove existence of stationary states with non-zero current in infinite-volume
systems. This results is strongly based on the duality with independent walkers discussed
here.
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The Moran model and the Wright Fisher diffusion are extensively studied in the liter-
ature of stochastics models of population dynamics. The main aim of the section on this
subject is to relate the known dualities to representations of creation and annihilation
operators.



Chapter VIII

Orthogonal dualities

Abstract: In this chapter we consider orthogonal dualities, i.e. we search for
duality functions that satisfy an orthogonality condition in the Hilbert space
weighted by the reversible measure of the process. As the standard duality
functions are associated to the kernel of an intertwiner between two Lie alge-
bra representations, here we prove that orthogonal dualities are associated to
unitary intertwiners. The orthogonal dualities for the processes studied in the
previous chapters turn out to be classical orthogonal polynomials which can
indeed be obtained by Gram-Schmidt orthogonalization of the basic dualities.

VIII.1 Introduction

In the previous chapters, we have discussed several dualities for various processes. In this
chapter we ask if and when these dualities can be turned into orthogonal dualities. By
this we mean that, if we have a process {η(t) : t ≥ 0} with state space Ω and reversible
measure µ, then we search for a duality function that is orthogonal in the Hilbert space
L2(Ω, µ). More precisely, considering the Hilbert space with inner product

⟨f, g⟩ =
∫
Ω

f(η)g(η)µ(dη)

of all measurable functions f : Ω → R with ⟨f, f⟩ = ||f ||2 < ∞, we search for a duality

function D : Ω̂ × Ω → R such that the sequence of functions D(ξ, ·) labeleed by ξ ∈ Ω̂
satisfies the orthogonality condition

⟨D(ξ, ·), D(ξ′, ·)⟩ = δξ,ξ′a(ξ) (VIII.1)

where δξ,ξ′ denotes the Kronecker delta function between two configurations in the state
space of the dual process and a is the squared norm:

a(ξ) = ||D(ξ, ·)||2.

Here, and throughout this chapter, we assume that the state space of the dual process is
countable.

171
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Usefulness of orthogonal dualities. There are several reasons to be interested in
orthogonal dualities. Clearly, whenever the duality function (viewed as a sequence of
functions labeled by the configurations of the dual process) form a basis of the Hilbert
space L2(Ω, µ), then one can in principle study the statistical dynamical properties of any
observable by expanding it on this base and following the evolution of the coefficients.
If the base happens to be an orthogonal one, then one needs to study fewer coefficients,
since many terms in the expansion vanish as a consequence of the orthogonality condition.

Consider for instance time-dependent expectations with respect to the stationary mea-
sure of an observable f ∈ L2(Ω, µ) with expansion

f(η) =
∑
ξ∈Ω̂

cf (ξ)D(ξ, η)

and coefficients

cf (ξ) =
1

a(ξ)
⟨f,D(ξ, ·)⟩.

By stationarity we have E[Stf ] = E[f ] for all t ≥ 0. Assuming E[f ] = 0, we will show in
Proposition VIII.2 that the variance at time t > 0 can be written as

Var[Stf ] =
∑
ξ,ξ′

cf (ξ)
2 a(ξ) p2t(ξ

′, ξ) (VIII.2)

where pt(ξ, ξ
′) is the transition probability of the dual process, i.e.

pt(ξ, ξ
′) = P(ξ(t) = ξ′ | ξ(0) = ξ). (VIII.3)

Thus orthogonal dualities can be used to control the speed of convergence to equilibrium
in L2(Ω, µ). More generally, if we consider another observable g ∈ L2(Ω, µ) with expansion

g(η) =
∑
ξ

cg(ξ)D(ξ, η)

then, considering two times t, t′ > 0, for the time-dependent covariance one has

Cov[Stf, St′g] =
∑
ξ,ξ′

cf (ξ) cg(ξ
′) a(ξ) pt+t′(ξ

′, ξ). (VIII.4)

Thus, having orthogonal dualities maybe useful to identify functions with positive correla-
tions. A third application of orthogonal dualities will be given in the context of fluctuating
hydrodynamics (see Chapter XI) by looking at the fluctuation fields associated to orthog-
onal dualities under diffusive space-time rescaling.

Orthogonal polynomials and Gram-Schmidt orthogonalization. Our next ques-
tion is thus how to identify orthogonal duality functions. For processes that we already
know to admit a duality function in the form of a monomial or a polynomial, the natu-
ral guess in the quest of orthogonal dualities are the orthogonal polynomials in L2(Ω, µ).
The original process will be associated with the variables of the polynomials, whereas the
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dual process will be associated with the degrees of the polynomial. We shall see indeed
that this guess is correct for our examples, where we will encounter some of the classical
orthogonal polynomials. This covers in particular the self-dualities of discrete processes
and the dualities between discrete and continuos processes. To achieve self-dualities of
continuos process, other special functions are needed, such as the Bessel functions.

It turns out that the dualities with product of orthogonal polynomials as duality
function can be derived from the dualities of the previous chapters by applying the Gram-
Schmidt orthogonalization procedure. The reason for this is that the Gram-Schmidt
orthogonalization procedure is actually a symmetry of the generator, see Section VIII.8.

A remark on the norm of the orthogonal duality function. Before concluding
this introductory section, let us remark that – when the dual process has a countable
state space and a reversible measure µ̂ – the orthogonality condition with respect to the
reversible measure µ of the original process fixes the squared norm a(ξ) = ||D(ξ, ·)||2 of
the orthogonal duality function to

a(ξ) =
c

µ̂(ξ)
(VIII.5)

where c > 0 is a constant and µ̂ is the reversible measure of the dual process. Indeed, the
reversibility with respect to the measure µ tell us that the semigroup St is self-adjoint in
L2(Ω, µ)

⟨StD(ξ, ·), D(ξ′, ·)⟩ = ⟨D(ξ, ·), StD(ξ′, ·)⟩ (VIII.6)

Now, considering the left hand side of the above equation we have by duality

⟨StD(ξ, ·), D(ξ′, ·)⟩ =

∫
µ(dη)[StD(ξ, ·)](η)D(ξ′, η)

=

∫
µ(dη)[ŜtD(·, η)](ξ)D(ξ′, η)

and the orthogonality condition (VIII.1) yields

⟨StD(ξ, ·), D(ξ′, ·)⟩ = ||D(ξ′, ·)||2 pt(ξ, ξ′), (VIII.7)

where we recall that pt(ξ, ξ
′), defined in (VIII.3), denotes the transition probability of the

dual process to go in a time t from the configuration ξ to the configuration ξ′.

Similarly, for the right hand side of (VIII.6) we have

⟨D(ξ, ·), StD(ξ′, ·)⟩ = ||D(ξ, ·)||2 pt(ξ′, ξ). (VIII.8)

Inserting (VIII.7) and (VIII.8) into (VIII.6) we deduce that the squared norm of the
duality function has to be (up to a constant) the inverse of the reversible measure of the
dual process.
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Chapter organization. The content of this chapter is organized as follows. As we
often do in this book, we start by considering the simplest possible setting. In Section
VIII.2 we shall prove that the product of Charlier polynomials is an orthogonal self-
duality function for independent random walkers. This is followed, in Section VIII.3, by
the illustration of how orthogonal dualities can be used for general systems to quantify
the speed of relaxation to the equilibrium by estimating the decay of the time-dependent
variance. In particular, for independent random walkers on Zd, whose equilibrium is given
by a product of Poisson, we will see that orthogonal duality with Charlier polynomials
yields a bound on the time-dependent variance of the type t−d/2 for large times t.

Then, in Section VIII.4, we present a complete list of orthogonal duality relations
for the processes studied so far in this book. The list includes orthogonal self-dualities
of discrete processes, orthogonal dualities between discrete and continuos processes, self-
dualities of continuous processes. In the subsequent chapters, we provide multiple proofs
for those orthogonal duality relations. Each of this proof reveals a particular aspect of
the approach presented in this book.

The first option to prove orthogonal dualities is to use structural properties of classical
orthogonal polynomials and other special functions. This is described in Section VIII.5. It
amounts to a sequence of algebraic manipulations that show how duality is a consequence
of three important properties of hypergeometric functions: their recurrence relations, their
difference/differential equations and the introduction of a “creation” operator that raises
the dual variable by one unit.

From the algebraic perspective it is natural to ask how orthogonal dualities are con-
nected to the representation theory of the Lie algebras. We therefore show in Section
VIII.6 that they arise from unitary equivalent representations of Lie algebras.

In the case of self-dualities for Markov processes with countable state space, we know
that the self-duality functions can be obtained by acting with a symmetry of the generator
on the cheap self-duality function. We show in Section VIII.7 that the orthogonal self-
duality functions can be obtained by using a unitary symmetry.

Finally, in Section VIII.8, we prove that the dualities with product of orthogonal
polynomials as duality function can be derived from the “basic” dualities by applying the
Gram-Schmidt orthogonalization procedure.

VIII.2 Orthogonal self-duality for independent ran-

dom walkers

Independent random walkers have the homogeneous Poisson product measure νρ, with
expectation ρ > 0, as reversible measure. Then a natural conjecture is that an homo-
geneous product of Charlier polynomials (which are the orthogonal polynomials of the
Poisson measure) is an orthogonal self-duality function. In this section we show that this
conjecture is correct.

We first recall some basic properties of the univariate Charlier polynomials. Let Cn(x)
denote the nth-order Charlier polynomial in the variable x (later we will give their explicit
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form, see (VIII.41)). They satisfy the orthogonality relation

∞∑
x=0

ρx

x!
e−ρCn(x)Cm(x) =

n!

ρn
δm,n (VIII.9)

where n,m ∈ N are the degrees of two polynomials. We see that the squared norm is

||Cn||2 =
n!

ρn

and thus they are correctly normalized for being a candidate orthogonal duality function.
Indeed, since we aim for self-duality, we know from (VIII.5) that the norm of the self-
duality function must be (up to constants) the inverse of Poisson measure with parameter
ρ.

As all other orthogonal polynomials, the Charlier polynomials satisfy a three-term
recurrence relation, given by

xCn(x) = −ρCn+1(x) + (n+ ρ)Cn(x)− nCn−1(x) (VIII.10)

where it is understood that C−1(x) = 0. Furthermore, they belong to the classical or-
thogonal polynomials and thus they satisfy a second-order difference equation, given by

x[Cn(x+ 1)− 2Cn(x) + Cn(x− 1)] + (ρ− x)[Cn(x+ 1)− Cn(x)] + nCn(x) = 0

(VIII.11)

Finally, the Charlier polynomials can also be represented using the Rodrigues formula

Cn(x) =
x!

ρx
(∇ℓ)

n

[
ρx

x!

]
(VIII.12)

where ∇ℓ is the discrete left derivative

∇ℓf(x) = f(x)− f(x− 1).

From this one can check the identity

ρCn(x)− xCn(x− 1) = ρCn+1(x) (VIII.13)

which can be interpreted as a raising relation. Namely, the operator R defined by

Rf(x) = ρf(x)− xf(x− 1)

increases by one the degree of the polynomial

RCn(x) = ρCn+1(x).

THEOREM VIII.1 (Self-duality of independent random walkers and Charlier polynomi-
als). The independent random walkers process on a set V with generator L in (II.5) has
a family (parametrize by ρ > 0) of orthogonal self-duality function given by

Dρ(ξ, η) =
∏
x∈V

Cξx(ηx) (VIII.14)

where Cξx(ηx) are the Charlier polynomials with orthogonality relation (VIII.9).
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PROOF. As we did several times, given the product structure of the duality function it is
enough to consider two sites. We thus need to verify that for all x1, x2, n1, n2 ∈ N it holds

L12D12(n1, n2; ·, ·)(x1, x2) = L12D12(·, ·;x1, x2)(n1, n2) (VIII.15)

where

L12D12(n1, n2; ·, ·)(x1, x2) = x1 [Cn1(x1 − 1)Cn2(x2 + 1)− Cn1(x1)Cn2(x2)]

+ x2 [Cn1(x1 + 1)Cn2(x2 − 1)− Cn1(x1)Cn2(x2)]

and

L12D12(·, ·;x1, x2)(n1, n2) = n1 [Cn1−1(x1)Cn2+1(x2)− Cn1(x1)Cn2(x2)]

+ n2 [Cn1+1(x1)Cn2−1(x2)− Cn1(x1)Cn2(x2)] .

The left hand side of (VIII.15) can be re-written as

L12D12(n1, n2; ·, ·)(x1, x2) = [x1Cn1(x1 − 1)]Cn2(x2 + 1)− [x1Cn1(x1)]Cn2(x2)

+ Cn1(x1 + 1)[x2Cn2(x2 − 1)]− Cn1(x1)[x2Cn2(x2)].

From this we see that to prove self-duality we need to express the terms

xCn(x− 1) , xCn(x) , Cn(x+ 1) (VIII.16)

using Cn(x), Cn−1(x), Cn+1(x). To get those expressions, we use the properties of the
Charlier polynomials. The expression for the first term is simply obtained from the
raising operator relation (VIII.13) which gives

xCn(x− 1) = ρCn(x)− ρCn+1(x). (VIII.17)

The expression for the second term is provided by the three-term recurrence relation
(VIII.10) which gives

xCn(x) = −ρCn+1(x) + (n+ ρ)Cn(x)− nCn−1(x). (VIII.18)

For the third term, its expression is obtained inserting (VIII.17) and (VIII.18) into the
difference equation (VIII.11). This gives

Cn(x+ 1) = Cn(x)−
n

ρ
Cn−1(x). (VIII.19)

We now plug the expressions that we found in the generator:

L12D12(n1, n2; ·, ·)(x1, x2) =
[
ρCn1(x1)− ρCn1+1(x1)

][
Cn2(x2)−

n2

ρ
Cn2−1(x2)

]
−

[
− ρCn1+1(x1) + (n1 + ρ)Cn1(x1)− n1Cn1−1(x1)

]
Cn2(x2)

+
[
Cn1(x1)−

n1

ρ
Cn1−1(x1)

][
ρCn2(x2)− ρCn2+1(x2)]

− Cn1(x1)
[
− ρCn2+1(x2) + (n2 + ρ)Cn2(x2)− n2Cn2−1(x2)

]
.
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Expanding the products above, only polynomials having degree n1 + n2 survive. In par-
ticular, after simplifications, one is left with

L12D12(n1, n2; ·, ·)(x1, x2) = n1 [Cn1−1(x1)Cn2+1(x2)− Cn1(x1)Cn2(x2)]

+ n2 [Cn1+1(x1)Cn2−1(x2)− Cn1(x1)Cn2(x2)]

and thus the self-duality relation (VIII.15) is proved.

VIII.3 Orthogonal duality and relaxation to equilib-

rium

In this section we show some applications of orthogonal dualities, in particular how they
can be used to estimate the speed of convergence to equilibrium in the L2 sense. We
first prove the expressions for the variance (VIII.2) and covariance (VIII.4) of functions
claimed in the introductory section. We then consider the case of independent random
walkers in Zd and prove, exploiting independence, that the variance of a function in L2

vanishes as t−d/2.

Variance, covariance and orthogonal polynomials

We have the following simple proposition.

PROPOSITION VIII.2 (Variance, covariance and orthogonal polynomials). Let {η(t) , t ≥
0} be a Markov process with state space Ω and reversible measure µ. Let {ξ(t) , t ≥ 0} be

a dual Markov process with a discrete state space Ω̂ and let D : Ω̂ × Ω → R be a duality
function. Assume that D(ξ, ·) form an orthogonal base of L2(Ω, µ), i.e. they are a linearly
independent spanning set and

⟨D(ξ, ·), D(ξ′, ·)⟩ =
∫
Ω

D(ξ, η)D(ξ′, η)µ(dη) = a(ξ)δξ,ξ′ . (VIII.20)

Then we have

a) for t > 0 and ξ, ξ′ ∈ Ω̂,∫
[StD(ξ, ·)](η)D(ξ′, η)µ(dη) = a(ξ′) pt(ξ, ξ

′) (VIII.21)

where pt(ξ, ξ
′) is the transition probability of the dual process:

pt(ξ, ξ
′) = P(ξ(t) = ξ′ | ξ(0) = ξ);

b) for f ∈ L2(Ω, µ) with E[f ] =
∫
f(η)µ(dη) = 0,

Var[Stf ] =
∑
ξ,ξ′

p2t(ξ
′, ξ)cf (ξ)cf (ξ

′)a(ξ) (VIII.22)

where

cf (ξ) =
1

a(ξ)
⟨f,D(ξ, ·)⟩ (VIII.23)
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c) for f, g ∈ L2(Ω, µ) with zero-expectation

Cov[Stf, St′g] =
∑
ξ,ξ′

cf (ξ)cg(ξ
′) a(ξ) pt+t′(ξ

′, ξ). (VIII.24)

PROOF. Item a). Using duality we have

[StD(ξ, ·)](η) = [ŜtD(·, η)](ξ) =
∑
ξ′′

pt(ξ, ξ
′′)D(ξ′′, η)

and then∫
[StD(ξ, ·)](η)D(ξ′, η)µ(dη) =

∫ ∑
ξ′′

pt(ξ, ξ
′′)D(ξ′′, η)D(ξ′, η)µ(dη)

= a(ξ′) pt(ξ, ξ
′)

where in the last step we used the orthogonality (VIII.20). This proves (VIII.21).
Item b). By reversibility we have that

Var[Stf ] = ⟨Stf, Stf⟩ = ⟨S2tf, f⟩.

Hence, decomposing

f =
∑
ξ

cf (ξ)D(ξ, ·)

one gets

Var[Stf ] =
∑
ξ,xi′

cf (ξ)cf (ξ
′)⟨S2tD(ξ, ·), D(ξ′, ·)⟩ . (VIII.25)

Applying item a) (VIII.22) follows. The proof of item c) is similar and left to the reader.

Application to independent random walkers

We shall now discuss more in details the case of independent random walkers. As we
saw in Theorem VIII.1, this process satisfies self-duality with an orthogonal self-duality
function given by product of Charlier polynomials. We start from the homogeneous
Poisson product measure νρ, with expectation ρ, and recall the notation Dρ(ξ, η) for the
corresponding orthogonal self-duality polynomials:

Dρ(ξ, η) =
∏
x∈V

Cξx(ηx) (VIII.26)

with ∫
Dρ(ξ, η)Dρ(ξ

′, η)νρ(dη) = a(ξ′)δξ,ξ′ (VIII.27)
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where

a(ξ) = ∥Dρ(ξ, ·)∥2 =
∏
x∈V

ξx!

ρξx
. (VIII.28)

We will always work on V = Zd with translation invariant underlying random walk, and
denote

pt(x, y) = πt(y − x), x, y ∈ Zd

the corresponding symmetric and translation invariant transition probability for the po-
sition of each single particle (notice that, with a slight abuse, we use the same notation
for the transition probability in the configuration state-space, pt(ξ, ξ

′), ξ, ξ′ ∈ Ω). For any
allowed configuration η ∈ Ωalw ⊆ NV (see Definition II.14) we denote by {η(t) , t ≥ 0}
the process of independent walkers starting from η.

We can then state the main result of this section, where we make use of the following
notation. Let n ∈ N and denote by x ∈ Znd the coordinates vector x := (x1, . . . , xn),
with xi ∈ Zd, i = 1, . . . , n. We denote by ξ(x) the configuration associated to x, i.e.
ξx(x) =

∑n
i=1 1l{x=xi}. We define |x| := |ξ(x)| = n. Here xi is the position of the i-th

particle, where particles are labeled in such a way that the dynamics is symmetric. Then,
if |ξ| = n, the number of labeled configurations corresponding to ξ is c(n, ξ) := n!∏

x ξx!
.

THEOREM VIII.3 (Speed of relaxation to equilibrium for independent random walkers).
Let f be in L2 such that for some 0 < z < 1 the weighted norm

∥f∥2z :=
∞∑
n=1

zn
∑
ξ:|ξ|=n

|f̂(ξ)|
∑

ξ′:|ξ′|=n

a(ξ′)|f̂(ξ′)| (VIII.29)

is finite. Then, denoting p2t(0, 0) the return probability for a single random walk on Zd,
we have the estimate

Varνρ(Stf) ≤ ∥f∥2p2t(0,0)
As a consequence, for all t large enough such that p2t(0, 0) < z,

Varνρ(Stf) ≤
c

z
t−d/2∥f∥2z (VIII.30)

PROOF. First we will pass to labeled configurations, and rewrite

Varνρ(Stf) =
∑
ξ,ξ′

a(ξ)p2t(ξ, ξ
′)f̂(ξ)f̂(ξ′)

=
∞∑
n=1

∑
x,x′∈Zdn

a(x)

c(n, ξ(x))c(n, ξ(x′))
· p2t(x,x′)f̂(x)f̂(x′) (VIII.31)

where, with a slight abuse of notation, we use the same symbol for f̂(ξ) and f̂(x). Notice
that the sum in the rhs of (VIII.31) starts at n = 1, because f has zero expectation,
so its projection on the polynomial of order zero is zero. The essential point now is
that pt(x,x

′) = πt(x
′ − x) is translation invariant, and hence the sum over x′ acts as a

convolution. Let us further abbreviate

f̂n(x) :=
f̂(x)

c(n, ξ(x))
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then we can rewrite (VIII.31) as

∞∑
n=1

∑
x,x′∈Zdn

a(x)p2t(x,x
′)f̂n(x)f̂n(x

′)

=
∞∑
n=1

∑
x,x′∈Zdn

a(x)π2t(x
′ − x)f̂n(x)f̂n(x

′)

=
∞∑
n=1

∑
x∈Zdn

a(x)f̂n(x) · π2t ∗ f̂n(x)

=
∞∑
n=1

⟨af̂n, π2t ∗ f̂n⟩n (VIII.32)

where ⟨g, h⟩n =
∑

x∈Zdn g(x)h(x) denotes the innerproduct in l2(Zdn) and where ∗ denotes
convolution. Now notice that the convolution with π2t is a self-adjoint semigroup (by
symmetry of pt(x,x

′) in x,x′) in l2(Zdn) and therefore, using Cauchy-Schwarz and Young’s
inequality, we rewrite

⟨af̂n, π2t ∗ f̂n⟩n = ⟨πt ∗ (af̂n), πt ∗ f̂n⟩n
≤ ∥πt ∗ (af̂n)∥2∥πt ∗ (f̂n)∥2
≤ ∥πt∥22∥af̂n∥1∥f̂n∥1.

Now notice that

∥af̂n∥1 =
∑
x∈Zdn

a(x)

c(n, ξ(x))
|f(x)| =

∑
ξ:|ξ|=n

a(ξ)|f̂(ξ)|

and similarly,

∥f̂n∥1 =
∑
ξ:|ξ|=n

|f̂(ξ)|

On the other hand,

∥πt∥22 =
∑
x

pt(0,x)pt(x,0) = p2t(0, 0)
n

Inserting these into (VIII.32) we arrive to

Varνρ(Stf) ≤ ∥f∥2p2t(0,0)
From the definition of the norm (VIII.29) we can further write, for all t large enough such
that p2t(0, 0) < z,

Varνρ(Stf) ≤
p2t(0, 0)

z
∥f∥2z

Finally using the asymptotics
p2t(0, 0) ≤ ct−d/2

with some constant c > 0, it follows

Varνρ(Stf) ≤
c

z
t−d/2∥f∥2z.
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VIII.4 Overview of orthogonal dualities

In this section we classify orthogonal duality relations for the Markov processes considered
in previous chapters. After a preliminary paragraph in which we recall the definitions of
some hypergeometric functions, we present three theorems containing, respectively: i) the
orthogonal self-dualities of discrete processes; ii) the orthogonal dualities between discrete
and continuos processes; iii) the self-dualities of continuous processes. As for all duality
relations, the “generating function” method applies to orthogonal dualities as well, and
reveals that orthogonal discrete self-dualities, orthogonal dualities discrete-continuos and
continuos self-dualities are essentially equivalent (in the sense that one of them implies
the others).

Preliminaries: hypergeometric polynomials and special functions

Hypergeometric series. The hypergeometric function rFs is defined by the hypergeo-
metric series

rFs

(
a1, . . . , ar
b1, . . . , bs

; z

)
=

∞∑
k=0

(a1)k · · · (ar)k
(b1)k · · · (bs)k

zk

k!
(VIII.33)

where (a)k denotes the Pochhammer symbol

(a)k = a(a+ 1) · · · (a+ k − 1) =
Γ(a+ k)

Γ(a)
. (VIII.34)

This series is absolutely convergent for all z if r ≤ s and for |z| < 1 if r = s + 1. It is
divergent for all z ̸= 0 if r > s+1, as long as the series is not finite. This follows directly
from the ratio test applied to the series. Indeed calling

ck =
(a1)k · · · (ar)k
(b1)k · · · (bs)k

zk

k!

one has
ck+1

ck
=

(k + a1)(k + a2) · · · (k + ar)z

(k + b1)(k + b2) · · · (k + bs)(k + 1)

and therefore

lim
k→∞

∣∣∣∣ck+1

ck

∣∣∣∣ =


0 if r < s+ 1,
|z| if r = s+ 1,
∞ if r > s+ 1.

Whenever one of the numerator parameter aj is a negative integer −n, the hyper-
geometric function rFs is a finite sum up to n, i.e. a polynomial of degree n. This
can be seen by observing that (−n)k = 0 when k > n, since in this cas the product
(−n)(−n+ 1) · · · (−n+ k − 1) contains a zero. We also remark the identity

(−n)k =
n!

(n− k)!
(−1)k . (VIII.35)
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Classical orthogonal polynomials. Among hypergeometric functions, we will be es-
pecially interested in some classical orthogonal polynomials. For an index set I, a sequence
of orthogonal polynomials {pn(x) : n ∈ I} on the interval (a, b) is defined by the choice of a
positive Borel measure µ defining the Hilbert space L2((a, b), µ) and by the orthogonality
relation

⟨pn, pm⟩ :=
∫ b

a

pn(x)pm(x)µ(dx) = δn,md
2
n . (VIII.36)

where the non-negative sequence (d2n)n∈I fixes the L2-norm of the polynomials. In the
above, δn,m is the Kronecker delta.

We shall meet several classical orthogonal polynomials, both of discrete and continuos
variables. Notably, in the first set we will encounter Meixner polynomials, Krawtchouk
polynomials and Charlier polynomials. Following [147] we recall their definitions in terms
of the hypergeometric series.

Meixner polynomials. They are the orthogonal polynomials of the Negative Binomial
distribution NB(α, p) with parameters 0 < p < 1 and α > 0:

Mn(x;α, p) = 2F1

(
−n,−x
α

; 1− 1

p

)
x ∈ N (VIII.37)

with orthogonality relation

∞∑
x=0

Γ(α + x)

Γ(α)

px

x!
(1− p)αMn(x;α, p)Mm(x;α, p) =

n!

pn
Γ(α)

Γ(α + n)
δm,n (VIII.38)

Krawtchouk polynomials. They are the orthogonal polynomials of the Binomial dis-
tribution B(α, p) with parameters 0 < p < 1 and α ∈ N:

Kn(x;α, p) = 2F1

(
−n,−x
−α

;
1

p

)
x ∈ {0, 1, . . . , α} (VIII.39)

with orthogonality relation

α∑
x=0

(
α

x

)
px(1− p)α−xKn(x;α, p)Km(x;α, p) = n!

(−1)n

(−α)n

(
1− p

p

)n
δm,n (VIII.40)

Charlier polynomials. They are the orthogonal polynomials of the Poisson distribu-
tion Poi(λ) with parameter λ > 0:

Cn(x;λ) = 2F0

(
−n,−x

−
;−1

λ

)
x ∈ N (VIII.41)

with orthogonality relation

∞∑
x=0

λx

x!
e−λCn(x;λ)Cm(x;λ) =

n!

λn
δm,n (VIII.42)
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REMARK VIII.4. We observe that the Meixner polynomials, Krawtchouk polynomials
and Charlier polynomials, as it is clear from inspection of the hypergeometric function
defining them, are symmetric if one exchanges the variable and the degree, i.e.

pn(x) = px(n).

In the orthogonal polynomial literature this property is sometimes called “duality”, how-
ever it should not be confused with the Markov duality that is the topic of this book.

Next, we recall the definitions [147] of the Hermite polynomials and of the Laguerre
polynomials. They belong to the classical orthogonal polynomials of a continuous variable.

Hermite polynomials. They are the orthogonal polynomials of the Gaussian distri-
bution N(0, 1) with zero mean and unit variance:

Hn(x) = (2x)n2F0

(
−n/2,−(n− 1)/2

−

∣∣∣∣− 1

x2

)
x ∈ R (VIII.43)

with orthogonality relation∫ ∞

−∞

1√
π
e−x

2

Hn(x)Hm(x)dx = 2nn!δm,n (VIII.44)

Laguerre polynomials. They are the orthogonal polynomials of the Gamma(α+1, 1)
distribution, with shape parameter α + 1 > 0 and unit scale parameter:

Ln(x;α) =
Γ(α + 1 + n)

Γ(α + 1)

1

n!
1F1

(
−n
α + 1

;x

)
x ∈ R+ (VIII.45)

with orthogonality relation∫ ∞

0

xαe−x

Γ(α + 1)
Ln(x;α)Lm(x;α)dx =

1

n!

Γ(n+ α + 1)

Γ(α + 1)
δm,n (VIII.46)

Finally, we shall need other special functions of hypergeometric nature such as the
Bessel function.

Bessel functions. They are the canonical solutions of the Bessel equation:

Jα(x) =
(x/2)α

Γ(α + 1)
0F1

(
−

α + 1
;−x

2

4

)
x ∈ R+, α > 0 (VIII.47)

with orthogonality relation∫ 1

0

xJα (xuα,m) Jα (xuα,n) dx =
δm,n
2

[Jα+1 (uα,m)]
2 ,

where uα,m is the mth zero of Jα(x).
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Orthogonal self-duality of discrete processes

The next theorem and its corollary summarize the orthogonal self-dualities of the processes
with discrete state space studied in previous chapters.

THEOREM VIII.5 (Orthogonal self-dualities of the main discrete processes). For a given
set V , the following holds:

1. Consider the family of functions (parametrize by 0 < p < 1)

Dp(ξ, η) =
∏
x∈V

Mξx(ηx;α, p) (VIII.48)

where ξ, η ∈ NV and Mξx(ηx;α, p) are the Meixner polynomials defined in (VIII.37).
Then Dp is an orthogonal self-duality function of the symmetric inclusion process
SIP(α).

2. Consider the family of functions (parametrize by 0 < p < 1)

Dp(ξ, η) =
∏
x∈V

Kξx(ηx;α, p) (VIII.49)

where ξ, η ∈ {0, 1, . . . , α}V and Kξx(ηx;α, p) are the Krawtchouk polynomials defined
in (VIII.39). Then Dp is an orthogonal self-duality function of the symmetric partial
exclusion process SEP(α).

3. Consider the family of functions (parametrize by ρ > 0)

Dρ(ξ, η) =
∏
x∈V

Cξx(ηx; ρ) (VIII.50)

where ξ, η ∈ NV and Cξx(ηx; ρ) are the Charlier polynomials defined in (VIII.41).
Then Dρ is an orthogonal self-duality function of the independent random walkers
process.

PROOF. It can be found in the next Section VIII.5.

Since the thermalization procedure described in Chapter VII conserves the duality
properties, the following corollary immediately follows.

COROLLARY VIII.6. The function Dp in (VIII.48) is an orthogonal self-duality function
of the thermalized SIP(α) process (or discrete generalized KMP process) introduced in
Definition VII.8.

Similarly, the function Dρ in (VIII.50) is an orthogonal self-duality function of ther-
malized random walkers intoduced in introduced in Definition VII.1.



VIII.4. OVERVIEW OF ORTHOGONAL DUALITIES 185

Orthogonal duality between continuous and discrete processes

The next theorem and its corollary concern orthogonal dualities between continuous and
discrete processes.

THEOREM VIII.7 (Orthogonal dualities between continuos and discrete processes). For
a given set V , the following holds.

1. Consider the function

D(ξ, z) =
∏
x∈V

H2ξx(zx)

(2ξx − 1)!!
=
∏
x∈V

(
−1

2

)ξx
1F1

(
−ξx
1
2

∣∣∣∣ z2x) (VIII.51)

where ξ ∈ NV , z ∈ RV and Hξx(zx) are the Hermite polynomials defined in (VIII.43).
Then D is an orthogonal duality function between the Brownian momentum process
and the symmetric inclusion process with parameter α = 1/2.

2. Consider the function

D(ξ, z) =
∏
x∈V

ξx! Γ(α)

Γ(α + ξx)
Lξx(zx; α− 1) =

∏
x∈V

1F1

(
−ξx
α

; zx

)
(VIII.52)

where ξ ∈ NV , z ∈ RV
+ and Lξx(zx;α − 1) are the Laguerre polynomials defined in

(VIII.45). Then D is an orthogonal duality function between the Brownian energy
process BEP(α) and the symmetric inclusion process SIP(α).

PROOF. It can be found in the next Section VIII.5.

REMARK VIII.8. The expression (VIII.51) in terms of the 1F1 hypergeometric function is
obtained by using the two identities

H2n(x) = (−1)n
(2n)!

n!
1F1

(
−n
1
2

;x2
)

and

(2n− 1)!! =
(2n)!

2nn!

Actually, the expression can be further simplified using that the inclusion process con-

serves the number of particles. Namely, we could just consider
∏

x∈V 1F1

(
−ξx
1
2

∣∣∣ z2x) as

a duality function between Brownian momentum process and the symmetric inclusion
process with parameter 1/2, as duality functions are always defined up to functions that
are constant for the dual dynamics.

Since the thermalization procedure described in Chapter VII conserves the duality
properties, the following corollary immediately follows.
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COROLLARY VIII.9. The function D in (VIII.51) is an orthogonal duality function be-
tween the Kac model with generator (VII.15) and the thermalized SIP(1

2
) (or generalized

discrete KMP process with parameter 1/2) introduced in Definition VII.8.
Similarly, the function D in (VIII.52) is an orthogonal duality function between the

thermalized BEP(α) (or generalized KMP process) of Definition VII.9 and the thermalized
SIP(α) (or generalized discrete KMP process) introduced in Definition VII.8.

Self-duality of continuous processes

The next theorem and its corollary present self-dualities of processes with continuous state
spaces.

THEOREM VIII.10 (Self-duality of continuous processes). For a given set V , the following
holds true.

1. Consider the function

D(v, z) =
∏
x∈V

cos(zxvx) =
∏
x∈V

0F1

(
−
1
2

;−v
2
xz

2
x

4

)
(VIII.53)

where v, z ∈ RV . Then D is a self-duality function for the Brownian momentum
process.

2. Consider the function

D(v, z) =
∏
x∈V

Γ(α)
(vxzx

2

)−α
2
+ 1

2
Jα−1(

√
vxzx) =

∏
x∈V

0F1

(
−
α
;−vxzx

4

)
(VIII.54)

where v, z ∈ RV
+ and Jα−1(

√
vxzx) are the Bessel functions defined in (VIII.47).

Then D is a self-duality function for the Brownian energy process BEP(α).

3. Consider the function

D(v, z) =
∏
x∈V

exp(vxzx) =
∏
x∈V

0F0

(
−
−

; vxzx

)
(VIII.55)

where v, z ∈ RV
+. Then D is a self-duality function for the deterministic process

considered in Chapter III.

PROOF. It can be found in the next Section VIII.5.

REMARK VIII.11. Recall that the Brownian energy process with α = 1/2 can be identified
(component-wise) with the square of the Brownian momentum process. This is consistent
with the fact that (VIII.53) can be obtained from (VIII.54) by specializing it to α = 1/2
and using the identity √

|xy|
2
J−1/2(xy) =

√
1

π
cos(xy) (VIII.56)
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Since the thermalization procedure described in Chapter VII conserves the duality
properties, the following corollary immediately follows.

COROLLARY VIII.12. The function D in (VIII.53) is a self-duality function for the Kac
model with generator (VII.15).

Similarly, the function D in (VIII.54) is a self-duality function thermalized BEP(α)
(or generalized KMP process) of Definition VII.9

Finally, the function D in (VIII.55) is a self-duality function for the averaging process
of Definition VII.1.

VIII.5 Structural relations of hypergeometric func-

tions

The first method we present to prove the orthogonal dualities stated in the previous section
is based on explicit computations. The proof relies on the hypergeometric structure of the
duality functions. Similarly to what we did in Section VIII.2 for the Charlier polynomials,
the idea here is to use three structural properties of classical orthogonal polynomials: the
first is the differential or difference hypergeometric equation they satisfy; the second is
the three-term recurrence relation; the third is the expression for the raising operator,
that can be derived by using Rodriguez formula. These three properties provide three
identities that can be directly used to express the action of the generator and verify the
duality relation.

We denote the discrete left and right derivatives and the discrete Laplacian as

(∇l)pn(x) = pn(x)− pn(x− 1), (∇r)pn(x) = pn(x+ 1)− pn(x),

∆pn(x) = pn(x+ 1)− 2pn(x) + pn(x− 1).

Then the three properties of classical (hypergeometric) orthogonal polynomials can be
described in general terms as follows:

1. A difference equation for discrete variables

σn(x)∆pn(x) + τn(x)(∇r)pn(x) + λnpn(x) = 0 (VIII.57)

or a differential equation for continuous variables

σn(x)
d2

dx2
pn(x) + τn(x)

d

dx
pn(x) + λnpn(x) = 0 (VIII.58)

where the sequences σn(x) and τn(x) are polynomials in the x variable of at most
second and first degree, respectively, and λn is a sequence of constants.

2. A three-term recurrence relation of the form

xpn(x) = αnpn+1(x) + βnpn(x) + γnpn−1(x) (VIII.59)

for a sequence of coefficients αn, βn, γn.
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3. A raising operator
Rnpn(x) = rnpn+1(x) (VIII.60)

where the operator Rn on the left side acts on the x variable. This operator is
defined from the Rodrigues formula, that yields a relation for the first difference
operator of polynomials pn(x) in terms of the polynomials themselves.

In the remaining of this section we verify the self-dualities and dualities described in
Theorem VIII.5, Theorem VIII.7, Theorem VIII.10.

Proof of Theorem VIII.5

The independent random walkers case was already proved in Section VIII.2. We provide
here full details for the symmetric inclusion process orthogonal self-duality, whereas for
the symmetric partial exclusion process we only write the basic identities used in the
proof. As usual, because of the product form of the self-duality and duality functions, it
is enough to work with two sites.

Orthogonal self-duality of the symmetric inclusion process, SIP(α). We recall
from [147] some identities for the Meixner polynomials defined in (VIII.37) (we shorthand
here Mn(x) for Mn(x;α, p). They satisfy the difference equation

x [Mn(x+ 1)− 2Mn(x) +Mn(x− 1)] (VIII.61)

+ (αp− x+ xp) [Mn(x+ 1)−Mn(x)] + n(1− p)Mn(x) = 0 ,

and their three-term recurrence relation read

xMn(x) =
p(n+ α)

p− 1
Mn+1(x)−

n+ p(n+ α)

p− 1
Mn(x) +

n

p− 1
Mn−1(x) . (VIII.62)

From the Rodrigues formula

Mn(x) =
x!

(α)x px
(∇l)

n

[
(α + n)x p

x

x!

]
(VIII.63)

one can extract the raising operator

[p(n+ α + x)]Mn(x)− xMn(x− 1) = p(n+ α)Mn+1(x) . (VIII.64)

The action of the Symmettic Inclusion Process SIP(α) generator working on the self-
duality function for two sites is given by

L12D12(n1, n2; ·, ·)(x1, x2) = x1(α + x2) [Mn1(x1 − 1)Mn2(x2 + 1)−Mn1(x1)Mn2(x2)]

+ (α + x1)x2 [Mn1(x1 + 1)Mn2(x2 − 1)−Mn1(x1)Mn2(x2)]

(VIII.65)

We see that we need an expression for the following terms:

xMn(x) , xMn(x− 1) , (α + x)Mn(x+ 1) . (VIII.66)
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in terms of Mn−1(x),Mn(x),Mn+1(x). To get those, we simply perform algebraic manip-
ulations on equations (VIII.61), (VIII.62), (VIII.64). We arrive to

xMn(x) =
p

p− 1
(α + n)Mn+1(x)−

n+ p(n+ α)

p− 1
Mn(x) +

n

p− 1
Mn−1(x)

xMn(x− 1) =
p

p− 1
(α + n)Mn+1(x)−

p

p− 1
(α + 2n)Mn(x) +

p

p− 1
nMn−1(x)

(α + x)Mn(x+ 1) =
p

p− 1
(α + n)Mn+1(x)−

1

p− 1
(α + 2n)Mn(x) +

1

p− 1
nMn−1(x)

(VIII.67)

We notice that on the left hand side we have operators that act on the x variable, whereas
on the right hand side we have operators acting on the n variable. These relations allow
us to expand the SIP(α) generator in Equation (VIII.65) as

L12D12(n1, n2; ·, ·)(x1, x2)

=

[
p(α + n1)

p− 1
Mn1+1(x1)−

p(α + 2n1)

p− 1
Mn1(x1) +

pn1

p− 1
Mn1−1(x1)

]
×[

p(α + n2)

p− 1
Mn2+1(x2)−

α + 2n2

p− 1
Mn2(x2) +

n2

p− 1
Mn2−1(x2)

]
−
[
p(α + n1)

p− 1
Mn1+1(x1)−

n1 + p(n1 + α)

p− 1
Mn1(x1) +

n1

p− 1
Mn1−1(x1)

]
×[

p(α + n2)

p− 1
Mn2+1(x2)−

n2 + p(n2 + α)

p− 1
Mn2(x2) +

n2

p− 1
Mn2−1(x2) + αMn2(x2)

]
+

[
p(α + n2)

p− 1
Mn2+1(x2)−

p(α + 2n2)

p− 1
Mn2(x2) +

pn2

p− 1
Mn2−1(x2)

]
×[

p(α + n1)

p− 1
Mn1+1(x1)−

α + 2n1

p− 1
Mn1(x1) +

n1

p− 1
Mn1−1(x1)

]
−
[
p(α + n2)

p− 1
Mn2+1(x2)−

n2 + p(n2 + α)

p− 1
Mn2(x2) +

n2

p− 1
Mn2−1(x2)

]
×[

p(α + n1)

p− 1
Mn1+1(x1)−

n1 + p(n1 + α)

p− 1
Mn1(x1) +

n1

p− 1
Mn1−1(x1) + αMn1(x1)

]
.

Working out the algebra, substantial simplifications are revealed in the above expression.
A long but straightforward computation shows that only products of polynomials with
degree n1 + n2 survive. In particular, after simplifications, one is left with

L12D12(n1, n2; ·, ·)(x1, x2) = n1(α + n2) [Mn1−1(x1)Mn2+1(x2)−Mn1(x1)Mn2(x2)]

+ (α + n1)n2 [Mn1+1(x1)Mn2−1(x2)−Mn1(x1)Mn2(x2)]

= L12D12(·, ·, x1, x2)(n1, n2) (VIII.68)

and the self-duality relation with product of Meixner polynomials as orthogonal self-
duality function is proved.
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Orthogonal self-duality of symmetric partial exclusion process, SEP(α). The
structural identities of the Krawtchouk polynomials Kn(x) give [147]

xKn(x) = −p(α− n)Kn+1(x) + (n+ 2pj − 2pn)Kn(x)− n(1− p)Kn−1(x)

xKn(x− 1) = −p(α− n)Kn+1(x) + p(α− 2n)Kn(x) + npKn−1(x)

(α− x)Kn(x+ 1) = p(α− n)Kn+1(x) + (1− p)(α− 2n)Kn(x)−
n

p
(1− p)2Kn−1(x)

(VIII.69)

Inserting these expressions into the generator it is possible to verify the self-duality of the
symmetric partial exclusion process by proceeding similarly to what has been done for
the self-duality of the symmetric inclusion process.

Proof of Theorem VIII.7

Orthogonal duality between the Brownian momentum process and the sym-
metric inclusion process with parameter α = 1

2
. From [147] we know that the

Hermite polynomials Hn(x) satisfy the differential equation

H
′′

n(x)− 2xH
′

n(x) + 2nHn(x) = 0 (VIII.70)

and the recurrence relation

Hn+1(x)− 2xHn(x) + 2nHn−1(x) = 0 . (VIII.71)

It is also possible to define a raising operator

2xHn(x)−H
′

n(x) = Hn+1(x). (VIII.72)

It is convenient to introduce the single site duality function

dn(x) =
1

(2n− 1)!!
H2n(x). (VIII.73)

The action of the 2-site BMP generator on the duality function then reads

L12D12(n1, n2; ·, ·)(x1, x2) =
1

4

(
x1

∂

∂x2
− x2

∂

∂x1

)2

dn1(x1)dn2(x2) (VIII.74)

where we have used the notation ∂xi =
∂
∂xi

. This can be expanded into

4L12D12(n1, n2; ·, ·)(x1, x2) = x21dn1(x1)d
′′
n2
(x2) + d′′n1

(x1)x
2
2dn2(x2)

− x1d
′
n1
(x1)dn2(x2)− dn1(x1)x2d

′
n2
(x2)

− 2x1d
′
n1
(x1)x2d

′
n2
(x2) (VIII.75)

where the prime denotes derivative with respect to the argument. We now need the
identities appropriately rewritten in term of the single site duality function dn(x) in order
to get suitable expression for

x2dn(x), d′′n(x), xd′n(x). (VIII.76)
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From (VIII.70) (VIII.71) (VIII.72) we find

x2dn(x) =
1

4
(2n+ 1)dn+1(x) +

(
2n+

1

2

)
dn(x) + 2ndn−1(x)

d
′′

n(x) = 8ndn−1(x)

xd
′

n(x) = 2ndn(x) + 4ndn−1(x) (VIII.77)

Proceeding with the substitution into the generator we find, after appropriate simplifica-
tion of the terms whose degree is different from n1 + n2,

L12D12(n1, n2; ·, ·)(x1, x2) = n1

(
n2 +

1

2

)
[dn1−1(x1)dn2+1(x2)− d2n1(x1)dn2(x2)]

+ n2

(
n1 +

1

2

)
[dn1+1(x1)dn2−1(x2)− dn1(x1)dn2(x2)]

(VIII.78)

which proves the claimed duality.

Orthogonal duality between the Brownian energy process and the symmetric
inclusion process. From [147] we know that the generalized Laguerre polynomials

L
(α−1)
n (x) satisfy the differential equation

x
d2

dx2
L(α−1)
n (x) + (α− x)

d

dx
L(α−1)
n (x) + nL(α−1)

n (x) = 0 (VIII.79)

and the recurrence relation

xL(α−1)
n (x) = −(n+ 1)L

(α−1)
n+1 (x) + (2n+ α)L(α−1)

n (x)− (n+ α− 1)L
(α−1)
n−1 (x). (VIII.80)

Furthermore one has a raising operator given by

(α− x+ n)L(α−1)
n (x) + x

d

dx
L(α−1)
n (x) = (n+ 1)L

(α−1)
n+1 (x) . (VIII.81)

We define the single site duality function

dn(x) =
n! Γ(α)

Γ(α + n)
L(α−1)
n (x) (VIII.82)

so that, after simple manipulation

xd
′′

n(x) + (α− x)d
′

n(x) + ndn(x) = 0

xdn(x) = −(n+ α)dn+1(x) + (2n+ α)dn(x)− ndn−1(x)

xd
′

n(x) = ndn(x)− ndn−1(x) . (VIII.83)

Using these identities in the writing of generator L of the Brownian Energy Process one
finds

L12D12(n1, n2; ·, ·)(x1, x2) = n1 (n2 + α) [dn1−1(x1)dn2+1(x2)− d2n1(x1)dn2(x2)]

+ n2 (n1 + α) [dn1+1(x1)dn2−1(x2)− dn1(x1)dn2(x2)]

(VIII.84)

which proves the claimed duality.
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Proof of Theorem VIII.10

Self-duality of the Brownian energy process. We define the single site duality
function

dα(v, z) = 0F1

(
−
α
;−vz

4

)
= Γ(α)

(vz
2

)−α
2
+ 1

2
Jα−1(

√
vz) (VIII.85)

We have an identity for the derivative

∂

∂z
dα(v, z) = −1

4

v

α
dα+1(v, z)

∂

∂v
dα(v, z) = −1

4

z

α
dα+1(v, z) (VIII.86)

and a recurrence identity

dα+1(v, z) = dα(v, z) +
1

4

vz

α(α + 1)
dα+2(v, z) (VIII.87)

By using these two identities one can verify that{
−α(z1 − z2)

(
∂

∂z1
− ∂

∂z2

)
+ z1z2

(
∂

∂z1
− ∂

∂z2

)2
}
dα(v1, z1)dα(v2, z2)

=

{
−α(v1 − v2)

(
∂

∂v1
− ∂

∂v2

)
+ v1v2

(
∂

∂v1
− ∂

∂v2

)2
}
dα(v1, z1)dα(v2, z2)

Self-duality of the Brownian momentum process. This case can be treated sim-
ilarly to the previous one by considering the single site duality function specialized to
α = 1/2 with z = x2 and v = y2, which gives

dα(y, x) = 0F1

(
−
1
2

;−y
2x2

4

)
=
√

|xy|J(xy;−1

2
) =

√
2

π
cos(xy) (VIII.88)

Self-duality of the Deterministic Process. This self-duality of the deterministic
process, with single site self-duality function d(v, z) = evz can be immediately verified via
a simple direct computation.

VIII.6 Unitary equivalent representations of Lie al-

gebras

In Chapter I, we have seen that the notion of duality between two operators on an L2

space is intimately connected to that of intertwining in kernel form. In this section we
shall see that an orthogonal duality is associated to a unitary intertwiner.

In the context of representation of algebras, where the two operators arise as repre-
sentations of an element of the algebra, an invertible intertwiner defines the notion of
equivalent representations. Thus, when the intertwiner constructed from orthogonal du-
ality is invertible, then we have that orthogonal duality is associated to unitary equivalent
representations.
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Let us start by recalling the relation between duality of bounded operators, intertwin-
ing and equivalent representations. We have seen in Theorem I.25 that if Â : Ĥ → Ĥ

and A : H → H are two operators on two Hilbert spaces Ĥ = L2(Ω̂, µ̂) and H = L2(Ω, µ)

such that the operators (Â )∗ (= adjoint of Â in Ĥ) and A satisfy a duality relation, i.e.(
(Â )∗D(·, x)

)
(y) =

(
AD(y, ·)

)
(x) ∀(y, x) ∈ Ω̂× Ω, (VIII.89)

then the integral operator Λ : Ĥ → H defined by

(Λf)(x) =

∫
Ω̂

D(y, x)f(y)dµ̂(y) (VIII.90)

is an intertwiner between the two operators A and Â. Indeed, by using the duality relation
(VIII.89), one has

(ΛÂf)(x) =

∫
Ω̂

D(y, x)(Âf)(y)dµ̂(y)

=

∫
Ω̂

(
(Â )∗D(·, x)

)
(y)f(y)dµ̂(y)

=

∫
Ω̂

(
AD(y, ·)

)
(x)f(y)dµ̂(y)

= (AΛf)(x) (VIII.91)

Suppose now that a Lie algebra g is given and consider two representations ρ̂ and ρ of g,
so that to each element X ∈ g there are associated linear operators ρ̂(X) : Ĥ → Ĥ and
ρ(X) : H → H. We recall that two representation are said to be equivalent if there exists

an invertible intertwiner Λ : Ĥ → H such that for all X ∈ g

ρ(X)Λ = Λρ̂(X) (VIII.92)

Thus, if the duality relation (VIII.89) is satisfied, with the same duality function D(·, ·),
for all couples of operators (ρ̂(X))∗ and ρ(X) with X in the set of the generators of the
Lie algebra g, then, when the intertwiner in definition (VIII.90) is invertible, we conclude
that ρ̂ and ρ are equivalent representations of the Lie algebra g.

The novel observation of this section, which is contained in the theorem that follows,
is that if furthermore the duality function satisfies an orthogonality relation then we get
a unitary intertwiner. If this is invertible, we then get unitary equivalent representations
of the Lie algebra g.

THEOREM VIII.13 (Orthogonal dualities and unitary intertwiner). Suppose that Â :

Ĥ → Ĥ and A : H → H are two operators on two Hilbert spaces Ĥ = L2(Ω̂, µ̂) and H =

L2(Ω, µ). We assume Ω̂ is discrete. Then the following two statements are equivalent:

1. A and Â have a unitary intertwiner with a kernel D : Ω̂× Ω → R, i.e.

AΛ = ΛÂ (VIII.93)

and
(Λf)(x) =

∑
y∈Ω̂

D(y, x)f(y)µ̂(y) (VIII.94)
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2. denoting by ∗ the adjoint in Ĥ, then
(
Â
)∗

and A are in duality relation with or-

thogonal duality function D : Ω̂× Ω → R, i.e.

((Â)∗ ⊗ I)D = (I ⊗ A)D (VIII.95)

and ∫
Ω

D(y, x)D(y′, x)dµ(x) = δy,y′
1

µ̂(y)
(VIII.96)

PROOF. We already know from Theorem I.25 the equivalence between intertwining in
kernel form and duality. Thus we just need to check that the intertwining is unitary if an
only if the duality function is orthogonal. For this we consider two function f, g ∈ H̃ and
look at their scalar product. We have:

⟨Λf,Λg⟩H =

∫
Ω

dµ(x) Λf(x) Λg(x)

=

∫
Ω

dµ(x)

∑
y∈Ω̂

µ̂(y)D(y, x)f(y)

 ∑
y′∈Ω̂

µ̂(y′)D(y′, x)g(y)


=

∑
y∈Ω̂

µ̂(y)f(y)
∑
y′∈Ω̂

µ̂(y′)g(y′)

∫
Ω

dµ(x)D(y, x)D(y′, x)

Thus we see that the intetwiner conserves the scalar product

⟨Λf,Λg⟩H = ⟨f, g⟩
H̃

if and only if the orthogonality condition holds∫
Ω

D(y, x)D(y′, x)dµ(x) = δy,y′
1

µ̂(y)
. (VIII.97)

We close this section by showing the orthogonal dualities at the level of the algebra
generators. We collect these dualities in a sequence of propositions, for the Heisenberg
algebra, the su(1, 1) Lie algebra and the su(2) Lie algebra. From these fundamental
dualities one can recover the dualities of the Markov processes described above.

PROPOSITION VIII.14 (Charlier polynomials self-duality of independent random walkers
as a change of representation). Consider a representation of the conjugate Heisenberg
algebra given by operators a, a† defined on functions f : N → R by(

a†f
)
(x) = f(x+ 1)

(af) (x) = xf(x− 1) (VIII.98)

where f(−1) = 0, satisfying [a, a†] = −I. Consider a representation of the Heisenberg
algebra given by operators A,A† defined on functions f : N → R by(

A†f
)
(n) = f(n)− n

λ
f(n− 1)

(Af) (n) = λf(n)− λf(n+ 1) (VIII.99)
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where f(−1) = 0, satisfying [A,A†] = I. Then the operators in (VIII.98) and in (C.63)
are in duality relation

a
d−−→ A, a†

d−−→ A† (VIII.100)

via
d(n, x) = eλCn(x;λ) , (VIII.101)

where Cn(x;λ) are the Charlier polynomials. As a consequence independent random walk-
ers are self-dual, with self-duality function

D(ξ, η) =
∏
x∈V

d(ξx, ηx). (VIII.102)

PROOF. The proof of the dualities a
d−−→ A, a†

d−−→ A† is a consequence of the properties
of Charlier polynomials Cn(x;λ) and is left to the reader. The self-duality of independent
random walkers follows by composition of dualities (similarly to Proposition II.13).

PROPOSITION VIII.15 (Meixner polynomials self-duality of symmetric inclusion process
as a change of representation). Consider a representation of the conjugate su(1, 1) Lie
algebra given by operators K+, K−, K0 defined on functions f : N → R

(K+f) (x) = (α + x)f(x+ 1)

(K−f) (x) = xf(x− 1)

(K0f) (x) = (x+ α
2
)f(x)

(VIII.103)

where f(−1) = 0, satisfying

[K0, K±] = ∓K± and [K+, K−] = 2K0 .

Consider a representation of the su(1, 1) Lie algebra given by operators K +,K −,K 0

defined on functions f : N → R by
(K +f) (n) =

p

p− 1
(α + n)f(n+ 1)− 1

p− 1
(α + 2n)f(n) +

1

p− 1
nf(n− 1)

(K −f) (n) =
p

p− 1
(α + n)f(n+ 1)− p

p− 1
(α + 2n)f(n) +

p

p− 1
nf(n− 1)

(K 0f) (n) =
p

p− 1
(α + n)f(n+ 1)−

(1 + p)(n+ α
2
)

p− 1
f(n) +

n

p− 1
f(n− 1)

(VIII.104)
where f(−1) = 0, satisfying

[K 0,K ±] = ±K ± and [K +,K −] = −2K 0 .

Then the operators in (VIII.103) and in (C.83) are in duality relation

K+ d−−→ K +, K− d−−→ K −, K0 d−−→ K 0 (VIII.105)

via
d(n, x) = (1− p)−αMn(x;α, p) ,
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whereMn(x;α, p) are the Meixner polynomials. As a consequence the symmetric inclusion
process is self-dual, with self-duality function

D(ξ, η) =
∏
x∈V

d(ξx, ηx). (VIII.106)

PROOF. The proof of the dualities (C.84) is a consequence of the properties of Meixener
polynomials Mn(x;α, p) and is left to the reader. The self-duality of the symmetric inclu-
sion process follows by composition of dualities.

PROPOSITION VIII.16 (Krawtchouk polynomials self-duality of symmetric partial exclu-
sion process as a change of representation). Consider a representation of the conjugate
su(2) Lie algebra given by operators J+, J−, J0 defined on functions f : N → R

(J+f) (x) = (α− x)f(x+ 1)

(J−f) (x) = xf(x− 1)

(J0f) (x) = (x− α
2
)f(x)

(VIII.107)

where f(−1) = f(α + 1) = 0, satisfying

[J0, J±] = ∓J± and [J+, J−] = −2J0 .

Consider a representation of the su(2) Lie algebra given by operators J+,J−,J0 defined
on functions f : N → R by

(J+f) (n) = p(α− n)f(n+ 1) + (1− p)(α− 2n)f(n)− n

p
(1− p)2f(n− 1)

(J−f) (n) = p(α− n)f(n+ 1) + p(α− 2n)f(n) + npf(n− 1)

(J0f) (n) = −p(α− n)f(n+ 1) + (n− α
2
)(1− 2p)f(n)− n(1− p)f(n− 1)

(VIII.108)
where f(−1) = f(α + 1) = 0, satisfying

[J0,J±] = ±J± and [J+,J−] = 2J0 .

Then the operators in (VIII.107) and in (C.102) are in duality relation

J+ d−−→ J+, J− d−−→ J−, J0 d−−→ J0 (VIII.109)

via
d(n, x) = (1− p)αKn(x;α, p) ,

where Kn(x;α, p) is the Krawtchouk polynomials. As a consequence the symmetric inclu-
sion process is self-dual, with self-duality function

D(ξ, η) =
∏
x∈V

d(ξx, ηx). (VIII.110)

PROOF. The proof of the dualities (VIII.109) is a consequence of the properties of Meix-
ener polynomials Kn(x;α, p) and is left to the reader. The self-duality of the symmetric
partial exclusion process follows by composition of dualities.
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PROPOSITION VIII.17 (Laguerre polynomials duality between BEP(α) and SIP(α) as a
change of representation). Consider a representation of the conjugate su(1, 1) Lie algebra
given by operators K+, K−, K0 defined on functions f : N → R

(K+f) (n) = −(n+ α)f(n+ 1) + 2(n+ α
2
)f(n)− nf(n− 1)

(K−f) (n) = −nf(n− 1)

(K0f) (n) = (n+ α
2
)f(n)− nf(n− 1)

(VIII.111)

where f(−1) = 0, satisfying

[K0, K±] = ∓K± and [K+, K−] = 2K0 .

Consider a representation of the su(1, 1) Lie algebra given by operators K +,K −,K 0

defined on smooth functions f : (0,∞) → R by
K + = z

K − = z ∂2

∂z2
+ α ∂

∂z

K 0 = z ∂
∂z

+ α
2

(VIII.112)

satisfying
[K 0,K ±] = ±K ± and [K +,K −] = −2K 0 .

Then the operators in (VIII.111) and in (VIII.112) are in duality relation

K+ d−−→ K +, K− d−−→ K −, K0 d−−→ K 0 (VIII.113)

via

d(n, z) =
n! Γ(α)

Γ(α + n)
Ln(z;α− 1) = 1F1

(
−n
α

∣∣∣∣ z) ,

where Ln(z;α) are the Laguerre polynomials. As a consequence there is duality between
the Brownian energy process and the symmetric inclusion process, with duality function

D(ξ, ζ) =
∏
x∈V

d(ξx, ζx). (VIII.114)

PROOF. The proof of the dualities (VIII.113) is a consequence of the properties of La-
guerre polynomials Ln(z;α) and is left to the reader. The duality between the Brownian
energy process and the symmetric inclusion process follows by composition of dualities.

PROPOSITION VIII.18 (Hermite polynomials duality between BMP and SIP(1
2
) as a

change of representation). Consider a representation of the conjugate su(1, 1) Lie algebra
given by operators K+, K−, K0 defined on functions f : N → R

(K+f) (n) = 2n+1
8
f(n+ 1) +

(
n+ 1

4

)
f(n)− nf(n− 1)

(K−f) (n) = 4nf(n− 1)

(K0f) (n) = (n+ 1
4
)f(n) + 2nf(n− 1)

(VIII.115)
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where f(−1) = 0, satisfying

[K0, K±] = ∓K± and [K+, K−] = 2K0 .

Consider a representation of the su(1, 1) Lie algebra given by operators K +,K −,K 0

defined on smooth functions f : (0,∞) → R by
K + =

1

2
z2

K − =
1

2
∂2

∂z2

K 0 =
1

2
z ∂
∂z

+
1

4

(VIII.116)

satisfying
[K 0,K ±] = ±K ± and [K +,K −] = −2K 0 .

Then the operators in (C.131) and in (VIII.116) are in duality relation

K+ d−−→ K +, K− d−−→ K −, K0 d−−→ K 0 (VIII.117)

via

d(n, z) =
H2n(z)

(2n− 1)!!
,

where Hn(z) are the Hermite polynomials. As a consequence there is duality between the
Brownian momentum process and the symmetric inclusion process with parameter 1

2
, with

duality function

D(ξ, ζ) =
∏
x∈V

d(ξx, ζx). (VIII.118)

PROOF. The proof of the dualities (VIII.117) is a consequence of the properties of Hermite
polynomials Hn(z) and is left to the reader. The duality between the Brownian momen-
tum process and the symmetric inclusion process follows by composition of dualities.

VIII.7 Unitary symmetries

A key idea of the algebraic approach to duality theory explained in Chapter I is that
the self-duality property of a Markov process can be related to the existence of some
hidden symmetry of the Markov generator. This occurs for instance when the process
has a reversible measure. In such a case detailed balance can be interpreted as a trivial
self-duality, and by acting with a symmetry of the generator one obtains a non-trivial
self-duality. As a consequence there is a one-to-one correspondence between self-duality
functions and symmetries of the Markov generator.

A natural question that arises is thus what type of symmetries lead to the orthogonal
self-dualities. Combining together Theorem I.9 (which states that in the case of self-
dualities the intertwiner is a symmetry of the generator) with the result of the previous
section (Theorem VIII.13 which states that the intertwiner constructed from orthogonal
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dualities is a unitary operator) we deduce that symmetries leading to orthogonal self-
dualities have to be unitary. In what follows we single out the general expression those
symmetries have for the three particle systems that we often studied in this book, namely
inclusion, generalized exclusion and independent particles.

We start by recalling the form of the cheap (i.e. diagonal) self-dualities for our three
processes. Notice that, up to negligible factors, the elements on the diagonal are the
inverse of the weights of the reversible measure:

dch(x, y) =



y!Γ(α)

Γ(α + y)
p−yδx,y for the SIP(α)

(α− y)!y!

α!

(
1− p

p

)y
δx,y for the SEP(α)

y!λ−yδx,y for the IRW

(VIII.119)

Recall that a linear operator in L2(Ω, µ) is called unitary if UU∗ = U∗U = I, where U∗

is the adjoint of U . In the next theorem we provide the expression for the most general
unitary symmetry that will then yield orthogonal duality functions. We also identify
the special values of the parameters appearing in these symmetries for which the duality
functions reduce to the orthogonal polynomials.

THEOREM VIII.19 (Orthogonal self-duality functions and unitary symmetries.). The
following results holds.

1. For the SIP(α) process consider

K+f(n) = (α + n)f(η + 1),

K−f(n) = nf(n− 1),

K0f(n) =
(
α
2
+ n
)
f(n) (VIII.120)

working on f : N → R. Then we have that:

(a) the symmetry

Sβ,γ = exp

(
β

(
−K+ +

1

p
K−
))

exp
(
iγK0

)
(VIII.121)

is unitary for every choice of β, γ ∈ R. As a consequence Sβ,γ
(
dch (x, ·)

)
(y)

are orthogonal (single site) self-duality functions;

(b) choosing β = β̂ :=
√
p arctanh

(√
p
)
and γ = γ̂ := π we get the Meixner

polynomials up to a constant: Sβ̂,γ̂
(
dch (x, ·)

)
(y) = (p− 1)

α
2M(x, y; p).

2. For the SEP(α) process consider

J+f(n) = (α− n)f(n+ 1)

J−f(n) = nf(n− 1)

J0f(n) = (−α
2
+ n)f(n) (VIII.122)

working on f : {0, 1, . . . , α} → R. Then we have that:
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(a) the symmetry

Sβ,γ = exp

(
β

(
−J+ +

1− p

p
J−
))

exp
(
iγJ0

)
(VIII.123)

is unitary for every choice of β, γ ∈ R. As a consequence Sβ,γ
(
dch (x, ·)

)
(y)

are orthogonal (single site) self-duality functions;

(b) choosing β = β̂ :=
√

p
1−p arctan

(√
p

1−p

)
and γ = γ̂ := π we get the Krawtchouk

polynomials up to a constant: Sβ̂,γ̂
(
dch (x, ·)

)
(y) = (p− 1)

α
2K(x, y; p).

3. For independent random walkers process consider

a†f(n) = f(n+ 1)

af (n) = nf(n− 1) (VIII.124)

working on f : N → R. Then we have that:

(a) the symmetry

Sβ,γ = exp
(
β
(
−pa† + a

))
exp

(
iγ aa†

)
(VIII.125)

is unitary for every choice of β, γ ∈ R. As a consequence Sβ,γ
(
dch (x, ·)

)
(y)

are orthogonal (single site) self-duality functions;

(b) Choosing β = β̂ := 1 and γ = γ̂ := π we get the Charlier polynomials up to a

constant: Sβ̂,γ̂
(
dch (x, ·)

)
(y) = e−

λ
2C(x, y;λ).

PROOF. We only consider the su(1, 1) algebra and the SIP(α) process, for the other two
processes the proof is similar.

The proof of item 1.(a) regarding the unitarity of Sβ,γ amounts to show that S∗
β,γ =

(Sβ,γ)
−1, where S∗

β,γ is the adjoint of Sβ,γ in the Hilbert space L2(N, µ) with µ(x) =
Γ(α + x)

x!Γ(α)
px. One can check that

(K0)∗ = K0, (K+)∗ =
1

p
K− (K−)∗ = pK+.

This implies that

(Sβ,γ)
∗ = exp

(
−iγK0

)
exp

(
β

(
−1

p
K− +K+

))
= (Sβ,γ)

−1 (VIII.126)

and so unitarity of Sβ,γ is proved.
The proof of item 1.(b) can be performed using generating functions. For details we

refer to [40].

REMARK VIII.20. A different expression for the three unitary symmetries Sβ̂,γ̂ of Theorem
VIII.19 can be given: it is a factorized expression for function of the algebra generators
that one can show to be connected to the previous expression via the Baker-Campbel-
Hausdorff formula. More precisely, we have that:
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1. the Sβ̂,γ̂ in equation (VIII.121) can be rewritten as

Sβ̂,γ̂ = eK
−
elog(p−1)K0

epK
+

;

2. the action of Sβ̂,γ̂ in equation (VIII.123) can be rewritten as

Sβ̂,γ̂ = eJ
−
elog(

1
p−1)J0

e
p

1−p
J+

;

3. the action of Sβ̂ in equation (VIII.125) can be rewritten as

Sβ̂,γ̂ = eae−λ/2+iπaa
†
eλa

†
.

For more details, see [40].

VIII.8 Gram-Schmidt orthogonalization

In this section we prove that the Gram-Schmidt procedure can be used to produce or-
thogonal duality functions starting from the “basic” duality function. In particular, for
the self-dualities of the main examples (independent walkers, symmetric inclusion pro-
cess, symmetric partial exclusion process) the Gram-Schmidt procedure applied to the
triangular self-duality functions produces the orthogonal polynomials self-dualities.

We focus here on the case of independent random walkers on a finite set V . From the
proof it will be clear that the extension to the other models is immediate, replacing the
Poisson distribution by the suitable reversible product measure, and the single-site tri-
angular self-duality function of independent walkers by the suitable single-site triangular
self-duality function.

The triangular self-duality functions of independent random walkers are given by

D(ξ, η) =
∏
x∈V

d(ξx, ηx) (VIII.127)

where the single-site triangular duality polynomial equals

d(k, n) = n!
(n−k)!1l{k≤n}

Let us now fix a reversible product measure νρ, which is a product of Poisson distri-
butions with parameter ρ. Let us also call dρ(k, n) the orthogonal polynomials obtained
by Gramm-Schmidt orthogonalization of the single-site triangular self-duality polynomial,
i.e., denoting ⟨·, ·⟩ the inner product in L2(νρ)

dρ(0, n) = 1 (VIII.128)

dρ(k, n) = d(k, n)−
n−1∑
j=0

⟨d(k, ·), dρ(j, ·)⟩
⟨dρ(j, ·), dρ(j, ·)⟩

dρ(j, n), k ≥ 1

We call
∏

x∈V dρ(ξx, ηx) the factorized orthogonal polynomials.
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We consider the following subspaces of L2(νρ)

Vn = vct{D(ξ, ·) : |ξ| ≤ n} (VIII.129)

where the notation vct means the vector space spanned by, and V refers to closure of V
in L2(νρ). The subspaces Vn are increasing, i.e.,

Vn ⊂ Vn+1.

Let us denote PVn the orthogonal projection in L2(νρ) on Vn. We have the following lemma
showing that projections on Vn or V⊥

n commute with the semigroup.

LEMMA VIII.21. Let S(t) denote the semigroup of the configuration process {η(t) : t ≥ 0}
on L2(νρ). Then we have the following.

1. Invariance of the n-particle spaces: S(t)Vn ⊂ Vn

2. Invariance of the orthogonal complement of the n-particle spaces: S(t)V⊥
n ⊂ V⊥

n .

3. Commutation of the semigroup with PVn and PV⊥
n
. We have

[S(t), PVn ] = [S(t), PV⊥
n
] = 0

PROOF. For item 1, by self duality with self-duality function D we have that for ξ ∈ Ω =
NV with |ξ| ≤ n

[S(t)D(ξ, ·)](η) =
∑

ξ′∈Ω:|ξ′|=|ξ|

pt(ξ, ξ
′)D(ξ′, η) ∈ Vn

because the sum in the rhs is convergent in L2(νρ) and thus is a limit of elements of Vn.
For item 2, assume that f ∈ V⊥

n and g ∈ Vn. Then using the self-adjointness of the
semigroup in L2(νρ) we get (remember we denote ⟨·, ·⟩ the inner product in L2(νρ))

⟨S(t)f, g⟩ = ⟨f, S(t)g⟩ = 0

where in the last step we used S(t)g ∈ Vn which follows from item 1.
For item 3, considering an f ∈ L2(νρ) and writing f = PVnf + PV⊥

n
f , we obtain

PVnS(t)f = PVnS(t)[PVnf + PV⊥
n
f ] = PVnS(t)PVnf (VIII.130)

where the last step follows from item 2, i.e., S(t)PV⊥
n
f ∈ V⊥

n .
Similarly, because S(t) leaves Vn invariant we have

S(t)PVnf = [PVn + PV⊥
n
]S(t)PVnf = PVnS(t)PVnf (VIII.131)

and we conclude, combining (VIII.130), (VIII.131) that

PVnS(t) = S(t)PVn

The proof of commutation of S(t) with PV⊥
n
is completely analogous.

Then we have the following theorem showing that the orthogonal duality polynomials
can be obtained from Gram-Schmidt orthogonalization of the triangular duality polyno-
mials.
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THEOREM VIII.22. Define, for ξ ∈ Ω = NV with |ξ| ≤ n

Dρ(ξ, ·) = D(ξ, ·)− PVn−1D(ξ, ·)

Then we have

1. Dρ(ξ, η) is a self-duality function for the process of independent random walkers.

2. Dρ(ξ, η) =
∏
dρ(ξx, η) where dρ(k, ·) are orthogonal polynomials w.r.t. the Poisson

measure, defined via (VIII.128).

PROOF. Item 1 follows because in Lemma VIII.21 we proved that S(t) commutes with
PVn−1 , and therefore also with I −PVn−1 , and therefore (I −PVn−1)D(ξ, ·)(η) is a new self-
duality function (a symmetry applied to a self-duality function yields another self-duality
function).

To prove item 2, i.e., the fact that Dρ(ξ, η) is the factorized orthogonal polynomial,
let us call D̃ρ(ξ, η) the factorized orthogonal polynomial. Then we remark first that for ξ
a configuration with n particles, we have

D̃ρ(ξ, ·) ⊥ Vn−1

This is because Vn−1 also equals the closure of the vector space generated by D̃ρ(ξ, ·)
with |ξ| ≤ n− 1. The latter can be understood from the fact that the triangular duality
polynomials can be written as linear combinations of the factorized orthogonal polynomi-
als, combined with the fact that D̃ρ(ξ, ·) is orthogonal on every polynomial D̃ρ(ξ

′, ·) with
|ξ′| ≤ n− 1.

Next we remark that, by construction, D̃ρ(ξ, ·) is necessarily of the form

D̃ρ(ξ, ·) = D(ξ, ·)− F (ξ, ·)

with F (ξ, ·) ∈ Vn−1. As a consequence,

0 = PVn−1D̃ρ(ξ, ·) = PVn−1D(ξ, ·)− PVn−1F (ξ, ·) = PVn−1D(ξ, ·)− F (ξ, ·)

So we conclude
F (ξ, ·) = PVn−1(D(ξ, ·))

which shows that Dρ and D̃ρ coincide.

VIII.9 Additional notes

Orthogonal dualities were introduced simultaneously in [94] and [193] using different
methodology (three term recurrence relation resp. generating function method). The
proof based on the Gramm-Schmidt method is from [88]. In that paper orthogonal du-
alities are also obtained for particle systems in the continuum. In [120], [95] orthogonal
polynomial duality was obtained from Lie algebra representation theory. In [40] orthog-
onal dualities were obtained via unitary symmetries, the results from section 7 of the
current chapter are based on this paper.
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Orthogonal polynomials play an important role in the study of diffusion processes
see [8], and for examples of diffusion processes in the context of population dynamics see
e.g. [118] for Jacobi polynomials, and [142] for Gegenbauer polynomials. Connection be-
tween orthogonal polynomials and Markov intertwinings are studied e.g. in [175]. In [201]
orthogonal polynomials are used to define generalized Wiener chaos expansions which
in the context of the Wiener process is related to Hermite polynomials. These general-
ized chaos decompositions are also a way to obtain orthogonal polynomial duality in the
continuum, see e.g. [88], [224].

Orthogonal polynomial duality is useful in the study of relaxation to equilibrium (as
we saw in this chapter), but also in the study of macroscopic fields as we will see in chapter
11 where we use orthogonal polynomial duality to obtain a quantitative Boltzmann-Gibbs
principle, and in [7] where orthogonal polynomial dualities are used to define higher order
fluctuation fields, corresponding to “Wick powers” of the infinite-dimensional Ornstein
Uhlenbeck process. Finally, orthogonal dualities can be used in the study of properties
of cumulants of non-equilibrium steady states, see [90]. In the context of asymmetric
processes, representation theory of quantum Lie algebras can be used to obtain orthogonal
dualities see e.g. [41], and also [30], [230] for examples of multi-type particle system
corresponding to a higher rank quantum Lie algebra.



Chapter IX

Consistency

Abstract: In this chapter we introduce the notion of consistency for interacting
particle systems. A system is consistent if the action of removing at random
a particle commutes with the evolution. Beyond considering the problem at
the level of particle configurations we will analyze the notion of consistency
from the point of view of particle positions. We will show that consistent
particle systems satisfy a set of recursive equations for joint factorial moments
of particle occupancies. We discuss the relation between consistency and self-
duality. We show that adding absorbing sites conserves consistency, which
is important in the study of boundary driven systems where the dual is an
absorbing system.

IX.1 Introduction

So far we have considered three basic particle systems – the partial exclusion process
(SEP), the inclusion process (SIP) and independent random walkers (IRW) – and showed
how their self-duality properties are related to symmetries of the generator. By taking
many particle limits and thermalizations, we have linked these particle systems to other
interacting particle systems in continuous variables such as the Brownian energy pro-
cess (BEP) and the Kipnis-Marchioro-Presutti (KMP) model. We have also shown how
dualities are related to intertwinings.

In the interacting particle systems literature, e.g. in the context of the symmetric
exclusion process, self-duality can be inferred from a graphical construction [126] where
particle occupancies are exchanged on the event times of Poisson processes associated to
the edges (stirring construction). This graphical construction provides also a coupling of
the symmetric exclusion process starting from an arbitrary initial configuration. I.e., we
can view the Poisson arrows as a stochastic flow, which, once a realization is fixed, fixes
the evolution of an initial configuration deterministically. In particular, it can be seen
from this graphical representation that a subset of k out of n particles evolves exactly
as k particles in the symmetric exclusion process. Further specifying to k = 1, implies
that a single particle evolves as a symmetric random walk. This property that k out of
n particles move exactly as the original system with k particles is of course satisfied for
independent particles, but for an interacting system it is a remarkable property that is
certainly not satisfied generically. In this chapter, we show that this property, which we
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call consistency, can be reformulated as commutation with the so-called particle removal
operator, or equivalently intertwining between a system of n particles with a system of
n− 1 particles.

As we saw before, the self-duality of the three basic particle systems is a consequence
of the commutation of the process generator L with resp.

∑
x J

−
x , (SEP),

∑
xK

−
x , (SIP),∑

x ax, (IRW). The action of these three operators is however identical and given by

S−f(η) =
∑
x

ηxf(η − δx)

which can be interpreted as (the unnormalized version of) “removing a randomly chosen
particle”. This provides us with a more probabilistic interpretation of the self-duality
property, namely, the Markov semigroup commutes with the operation of randomly re-
moving a particle. In other words, for the three basic systems, the self-duality is equivalent
with the intertwining (or symmetry) which is S−. The commutation of the Markovian dy-
namics with the operation of removing a random particle makes sense in a much broader
context than discrete configuration processes and includes e.g. independent diffusion pro-
cesses and certain classes of interaction Brownian motions see [162]. Therefore, via the
notion of consistency it is possible to study self-duality properties of such processes in the
continuum, see e.g. [88].

IX.2 Definition of consistency

Consider a Markov process {η(t), t ≥ 0} modelling interacting particles moving on a set
of vertices V (which we will assume to be finite in the whole of this chapter). As usual, a
configuration η is a collection of single-site occupancies ηx, x ∈ V and the state space Ω
is a subset of NV . We will assume, moreover, that the process conserves the total number
of particles, i.e. |η(t)| = |η| for all t ≥ 0. We will denote by L the infinitesimal generator
of the process and by {S(t), t ≥ 0} the associated semigroup.

In order to define the notion of consistency for this class of models we recall the
definition of removal operator, that in this chapter we will denote by S−. We define

S−f(η) =
∑
x∈V

axf(η), f : Ω → R (IX.1)

with

axf(η) =

{
ηxf(η − δx) if ηx ≥ 1
0 otherwise.

(IX.2)

DEFINITION IX.1 (Consistency). A particle system {η(t) : t ≥ 0} on the lattice V with
state space Ω is said to be consistent if its generator L commutes with the removal operator:

[L, S−] = 0, (IX.3)

or, equivalently, if the semigroup of the process commutes with the removal operator:[
S(t)(S−f)

]
(η) =

[
S−(S(t)f)

]
(η). (IX.4)
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REMARK IX.2. We notice immediately that the main particle systems studied in the first
chapters of this book, (IRW, SIP, SEP) match the Definition IX.1. For all them, indeed,
the generator commutes with the removal operator S−. This corresponds with what we
called

∑
x ax in Chapter II for the IRW, with

∑
xK

−
x for the SIP in Chapter IV and with∑

x J
−
x for SEP in Chapter VI (included the space-inhomogeneous cases). The fact that

the removal operators are the same for all these processes (this is not the case for the
sum of creation operators a†x, K

+
x and J+

x ) suggests the existence of a common structure.
In Section IX.5 we will come back to these processes and we will see how, in these cases,
consistency is related to the self-duality property.

The commutation relation between the semigroup and the removal operator can be rewrit-
ten as follows. For all functions f : Ω → R, we have∑

x∈V

Eη[ηx(t)f(η(t)− δx)] =
∑
x∈V

ηxEη−δx [f(η(t))]. (IX.5)

In the left hand side we first let evolve the dynamics for a time t, and then, at this time,
we remove a particle chosen uniformly at random. On the right hand side instead, we
remove a particle at random from the initial configuration η, and then let evolve the
dynamics for a time t. Thus a particle system is consistent if the operation of removing
a particle uniformly at random commutes with the dynamics.

In order to better understand this probabilistic interpretation of consistency it is con-
venient to switch to the coordinate description of the motion were the variables are particle
positions. This allows to distinguish between particles that are not distinguishable in the
configuration dynamics. A configuration η ∈ Ω with n particles, can be written in terms
of the positions of its particles x1, . . . , xn as follows:

η =
n∑
i=1

δxi .

If we denote by X(t) = (X1(t), . . . , Xn(t)) the evolution at time t of the positions of the
n particles starting, at time 0, from x := (x1, . . . , xn) ∈ V n, we can write that

η(t) =
n∑
i=1

δXi(t). (IX.6)

In this coordinate representation the action of the removal operator on f can be read as

S−f(η) = S−f

( n∑
j=1

δxj

)
=

n∑
i=1

f

(∑
j ̸=i

δxj

)
. (IX.7)

Throughout this chapter we will assume, for simplicity, that V is a finite set and therefore
all sums in (IX.7) are finite sums. Let now xi ∈ V n−1 be the coordinate vector obtained
from x by removing a particle at site xi. We can then rewrite the consistency relation for
the semigroup given in (IX.4) as a conditio on the process {X(t), t ≥ 0} as follows

n∑
i=1

Ex

[
f

(∑
j ̸=i

δXj(t)

)]
=

n∑
i=1

Exi

[
f

(∑
j ̸=i

δXj(t)

)]
. (IX.8)
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The identity (IX.8) can be further simplified by reinterpreting the function f on the
configuration space Ω as a function g : V n → R on the coordinate space V n, with the
relation between f and g being the following

g(x) = g(x1, . . . , xn) = f
( n∑
i=1

δxi
)
. (IX.9)

Then (IX.8) becomes, for any g : V n−1 → R

n∑
i=1

Ex

[
g
(
X1(t), . . . , Xi−1(t), Xi+1(t), . . . , Xn(t)

)]
=

n∑
i=1

Exi

[
g
(
X1(t), . . . , Xi−1(t), Xi+1(t), . . . , Xn(t)

)]
. (IX.10)

from which the probabilistic interpretation of consistency becomes more transparent.
The passage from the configuration description to the coordinate one involves the

introduction of a particle labelling. While in the configuration representation particles
are undistinguishable, in the coordinate one particles are given a label that make them
distinguishable throughout the dynamics. The choice of the labelling mechanism is not
unique, and then for a given configuration process {η(t), t ≥ 0} it is possible to define
several coordinate processes {X(t), t ≥ 0} compatible with it. If the coordinate process
is consistent in the sense of (IX.10) then the corresponding configuration process is also
consistent in the sense of Definition IX.1.

In the rest of this section we will see how the consistency relation (IX.10) can be re-
garded as a weakening of strong consistency which is explained below in the context of
independent random walker.

IX.2.1 Example: Independent Random Walks

Let {X(t), t ≥ 0} an n-dimensional coordinate process on the lattice V n, i.e. X(t) =
(X1(t), . . . , Xn(t)), with Xi(t) ∈ V being the position of the i-th particle at time t. Then
the process is said strongly consistent if, for all functions g : V n−1 → R and for all
i ∈ {1, . . . , n},

Ex

[
g
(
X1(t), . . . , Xi−1(t), Xi+1(t), . . . , Xn(t)

)]
= Exi

[
g
(
X1(t), . . . , Xi−1(t), Xi+1(t), . . . , Xn(t)

)]
. (IX.11)

This means that, initialising the system with n particles at position x and looking at
time t at the n−1-dimensional marginal law obtained by removing the i-th coordinate, is
the same as initialising the system with n− 1 particles (all particles except the i-th one)
and looking at the evolution of these at time t. Strong consistency implies the identity
(IX.10), and then consistency for the corresponding configuration process. Since it is
a very strong condition, it is not easy to find models of interacting particles satisfying
(IX.11). Nevertheless, if particles are independent from each other, identity (IX.11) is
automatically satisfied. More precisely, we call {X(t), t ≥ 0} the process on V n as the



IX.3. RECURSIVE RELATIONS FOR FACTORIAL MOMENTS 209

collection of n independent copies of the same process {Xi(t), t ≥ 0}, i = 1, . . . , n on V .
For instance we suppose that these are all random walkers on the lattice V moving at a
certain given rate. Then, if we denote by pt(x,y) the transition at time t from x to y, we
have that

pt(x,y) =
n∏
i=1

pt(xi, yi) (IX.12)

where, with a slight abuse of notation we denote by pt(x, y) the transition probability at
time t from site x to site y for the single random walker. As a consequence we have that

∑
y

n∏
j=1

pt(xj, yj) · g
(
y1, . . . , yj−1, yj+1, . . . , yn

)
=
∑
y

n∏
j=1,
j ̸=i

pt(xj, yj) · g
(
y1, . . . , yj−1, yj+1, . . . , yn

)
(IX.13)

that implies (IX.11), i.e. strong consistency. Another example is the symmetric exclusion
process with the stirring construction, where (IX.11) is an obvious consequence of the
graphical representation.

In Section IX.4 we will come back on the relation between the two descriptions of dynamics
and we will give a more rigorous definition of consistency for coordinate processes.

In the rest of the chapter we will proceed as follows. In Section IX.3 we will prove a
many-to-few relation in terms of factorial moments, and we will use this to prove a re-
lation between consistency, reversibility and self-duality. In Section IX.4 we will give
the probabilistic interpretation of consistency in terms of particles removal, whose un-
derstanding requires the introduction of a coordinate description of the dynamics. More
precisely we will define the so-called compatible coordinate processes for which the vari-
ables are the positions of particles at a given time. In Section IX.5 we will go back to the
main processes studied in the previous chapters, namely the Independent Random Walk,
Symmetric Inclusion Process and Symmetric Exclusion Process. We will reconsider their
duality properties in light of the notion of consistency. Finally, in the last two sections, we
will provide some examples of consistent processes that are not reversible with respect to
a product reversible measure. More precisely in section IX.7 we will give an example of a
consistent process with asymmetric interaction, whereas, in section IX.6 we will consider
the case of consistent processes with absorbing sites.

IX.3 Recursive relations for factorial moments

In this section we will see that one of the main consequences of consistency is the possibility
of going from many to few variables. In this context, this means that it is possible to
write specific factorial moments of the system with many particles in terms of transition
probability functions of the system with fewer particles (see Theorem IX.5 below). This
is exactly the same advantage given by duality with the difference that this holds now for
a broader class of processes.
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Example: expected number of particles

For the sake of clarity we start by considering the simplest problem of finding the expec-
tations of the number of particles in a given site v ∈ V at time t ≥ 0. In other words,
let {η(t) : t ≥ 0} be a consistent process on a finite lattice V , we want to compute the
expectation Eη[ηv(t)], for a fixed η ∈ Ω. In order to do this we analyze the consequences
of consistency at the level of the dynamics.

Start from (IX.5) with f(η) := ηv. We then obtain∑
x∈V

Eη(ηx(t)(ηv(t)− δx)) =
∑
x∈V

ηxEη−δx(ηv(t)) (IX.14)

Suppose |η| :=
∑

x∈V ηx = n, then in the left hand side of (IX.14) we obtain, using
the conservation of the total number of particles,( ∑
x∈V,x̸=v

Eη[ηx(t)ηv(t)]

)
+ Eη[ηv(t)(ηv(t)− 1)] = Eη[(n− ηv(t))ηv(t)] + Eη[ηv(t)(ηv(t)− 1)]

= (n− 1)Eη[ηv(t)]. (IX.15)

Thus, from (IX.14) we get

Eη[ηv(t)] =
1

n− 1

∑
x∈V

ηxEη−δx [ηv(t)] (IX.16)

These are recursive relations for the expectation of ηv(t), connecting the system with n
particles to the systems with n − 1 particles. One can then iterate (IX.16) n − 1 times
in order to obtain an expression for Eη(ηv(t)) in terms of the one-particle dynamics, i.e.
in terms of the dynamics of a single random walker. We will explain this in detail in
Corollary IX.7 below.

General case

Here we investigate to which extent consistency can give information about higher order
correlation functions and, more generally, about all the moments of the process. We may
wonder, for instance, whether it is possible to find closed recursive relations of the type
(IX.16) for the k-th moment E[ηkx(t)], and, to this aim, what is the correct function f to
plug in (IX.5). It turns out that the collection of observables that suits best our purpose
is {F (ξ, ·), ξ ∈ Ω} with

F (ξ, η) :=
∏
y∈V

(
ηy
ξy

)
, η ∈ Ω. (IX.17)

Plugging these functions in (IX.5) produces indeed a closed system of equations. The
product of binomial coefficiens (IX.17) can be obtained from the action of the operator
eS

−
on the Kronecker delta functions δξ(·), ξ ∈ Ω:

(eS
−
δξ)(η) = F (ξ, η). (IX.18)
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Recalling the definition af(n) = nf(n− 1) for a function f : N → R, we get

eaf(n) =
n∑
r=0

(
n

r

)
f(n− r), (IX.19)

and, as a consequence, choosing f(n) = δk(n)

eaδk(n) =

(
n

k

)
. (IX.20)

from which follows (IX.18) (cf. also (II.41)).

We will call weighted factorial moments the expectations of functions F (ξ, ·) in (IX.17).

DEFINITION IX.3 (Weighted factorial moments). Let η, ξ ∈ Ω and let {η(t) : t ≥ 0} be a
particle system, we call the expectation: Eη [F (ξ, η(t))] the weighted factorial moment of
order ξ ∈ Ω at time t ≥ 0 for the process starting from η at time 0.

LEMMA IX.4 (Going from an n-particle system to an (n − 1)-particle system). Let
{η(t), t ≥ 0} be a consistent particle system on a lattice V then, for all η, ξ ∈ Ω such that
1 ≤ |ξ| < |η|, we have

Eη [F (ξ, η(t))] =
1

(|η| − |ξ|)
·
∑
x∈V

ηxEη−δx [F (ξ, η(t))] , ∀ t ≥ 0 (IX.21)

with F as in (IX.17).

PROOF. We fix η, ξ ∈ Ω such that |ξ| ∈ {1, . . . , |η| − 1} and apply (IX.5) to the function
f = F (ξ, ·). We get

∑
x∈V

ηxEη−δx [F (ξ, η(t))] =
∑
x∈V

Eη

ηx(t)(ηx(t)− 1

ξx

)∏
y∈V
y ̸=x

(
ηy(t)

ξy

) (IX.22)

The right-hand side of (IX.22) is equal to

∑
x∈V

Eη

[
(ηx(t)− ξx) ·

∏
y∈V

(
ηy(t)

ξy

)]
= (|η| − |ξ|) · Eη [F (ξ, η(t))] (IX.23)

Combining together (IX.22) and (IX.23) we obtain (IX.21).

Via Lemma IX.4 we obtain that consistency implies recursive relations for the factorial
moment of order ξ of a system with n particles in terms of the factorial moments of the
same order of systems with n− 1 particles. This is true for all ξ ∈ Ω with the restriction
|ξ| ≤ n− 1.

In the next Theorem we obtain a relation for the weighted factorial moment of order ξ of
a system with n particles in terms of the transition probabilities of a system with at most
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n− 1 particles. To prove it, instead of directly iterating (IX.21), we will use the relation
(IX.18).

From now on we will denote by Ωn the set of configurations of n particles, i.e.

Ωn =
{
η ∈ Ω : |η| = n

}
, with |η| :=

∑
x∈V

ηx

and we define the ordering between configurations:

ξ ≤ η if and only if ξx ≤ ηx ∀ x ∈ V. (IX.24)

THEOREM IX.5 (Recursion relation for the weighted factorial moments). A particle sys-
tem {η(t), t ≥ 0} on a lattice V is consistent if and only if, for all η, ξ ∈ Ω such that
1 ≤ |ξ| < |η|, we have

Eη [F (ξ, η(t))] =
∑
ς∈Ω|ξ|
ς≤η

F (ς, η) · Pς (ς(t) = ξ) . (IX.25)

PROOF. The process is consistent if and only if eS
−
is a symmetry of the semigroup, i.e.

for all f : Ω → R, [
S(t)(eS

−
f)
]
(η) =

[
eS

−
(S(t)f)

]
(η). (IX.26)

This is in turn true if and only if, for all ξ ∈ Ω,[
S(t)(eS

−
δξ)
]
(η) =

[
eS

−
(S(t)δξ)

]
(η). (IX.27)

Using (IX.18), we have that the l.h.s. of (IX.27) is equal to

Eη[F (ξ, η(t))] = [S(t)F (ξ, ·)] (η) =
[
S(t)(eS

−
δξ)
]
(η). (IX.28)

On the other hand, defining the functions

gξ(η) = Pη(η(t) = ξ), ξ ∈ Ω (IX.29)

and using (IX.19), we have that the r.h.s. of (IX.27) is given by[
eS

−
(S(t)δξ)

]
(η) = [S(t)gξ](η) =

∑
η′≤η

F (η′, η) · Pη−η′(η(t) = ξ) (IX.30)

where η − η′ is the configuration with occupancies ηx − η′x for all x ∈ V . Then (IX.25)
follows by taking the change of variable ς = η − η′.

Theorem IX.5 says that, for a consistent process {η(t), t ≥ 0} it is possible to gain
information in terms of the dynamics with less particles. More precisely, for the n-
particles systems, the factorial moment of order ξ, |ξ| < n, is given as a combination of
the transition probabilities of the processes with |ξ| particles.

Notice that, in the particular case ξ = δx, the relation (IX.21) gives the expectations of
the occupancies in terms of the transition probabilities of a single random walker. To
make this rigorous we first define the random walk associated to the process.
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DEFINITION IX.6. For an interacting particle system {η(t), t ≥ 0} we define the associ-
ated random walk {Xrw(t), t ≥ 0} on V which is identified by the relation η(t) = δXrw(t)

and the initial condition Xrw(0) = u with η(0) = δu.

Then we have that, for a consistent process, it is possible to write, exactly as for self-
dual processes, the occupation number expectations in terms of the single random walk
transition probabilities.

COROLLARY IX.7. Let {η(t), t ≥ 0} a consistent process on a finite lattice V and let
ξ =

∑n
κ=1 δxκ, then, for all y ∈ V we have

Eξ [ηy(t)] =
n∑
κ=1

Pxκ(X
rw(t) = y) (IX.31)

where Px, is the path space measure of the random walk {Xrw(t), t ≥ 0} on V starting
from x ∈ V associated to the process {η(t), t ≥ 0}.

More generally the choice ξ =
∑m

k=1 δxk , with x1, x2, . . . , xm m mutually distinct vertices
in V in Theorem IX.5 will provide information about the m-point correlation functions
Eη[ηx1(t) · . . . · ηxm(t)]. Whereas, taking ξ = mδx, m = 1, . . . , n− 1 yields the moments of
the x-th occupancy of order less than n, i.e. E[ηmx (t)], for m = 1, . . . , n− 1.

Unfortunately the information provided by (IX.25) is not complete. Indeed it is not
possible to recover the full probability distribution of the process at time t from the
collection of weighted factorial moments {Eη[F (ξ, η(t))], 1 ≤ ξ ≤ |η| − 1}. This is due
to the fact that information about moments of order |η| is still missing, because, for the
case |ξ| = |η|, (IX.25) reduces to a tautological statement.

Consistency and self-duality

Theorem IX.5 gives a relation of the type from many to few, as it relates a system with
many particles to systems with fewer particles. It is in that sense very similar to the in-
formation contained in duality relations, especially for the “triangular” duality functions,
where the dual configuration is smaller (in the sense of point-wise order) than the original
configuration. However, we will see below that the consistency assumption is, weaker than
duality, and indeed (IX.25) holds for a larger class of processes than the self-dual ones
considered so far. In the next theorem we will see the precise relation between the two
properties. In particular we will prove that the additional condition to impose in order
to guarantee duality is reversibility. This result is in the spirit of Theorem I.12.

THEOREM IX.8 (Consistency, self-duality and reversibility). Let {η(t), t ≥ 0} be a par-
ticle system with state space Ω, let ν be a strictly-positive measure on Ω and define the
function:

D(ξ, η) =
F (ξ, η)

ν(ξ)
(IX.32)

with F as in (IX.17). If two of the following three statements hold, then also the third
one holds:
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a) the process is consistent,

b) the process is reversible with respect to ν,

c) the process is self-dual with self-duality function D.

PROOF. Assume a) and b), then, using Theorem IX.5 we have

Eη [D(ξ, η(t))] =
1

ν(ξ)
Eη [F (ξ, η(t))]

=
∑
ς∈Ω|ξ|
ς≤η

F (ς, η) · 1

ν(ξ)
Pς (ς(t) = ξ)

=
∑
ς∈Ω|ξ|
ς≤η

F (ς, η) · 1

ν(ς)
Pξ (ξ(t) = ς)

=
∑
ς∈Ω|ξ|
ς≤η

D(ς, η) · Pξ (ξ(t) = ς) = Eξ[D(ξ(t), η)], (IX.33)

which is item c) and where in the third equality we used the assumed reversibility. The
other two implications can be proven in a similar way.

IX.4 Probabilistic interpretation of consistency

In this section we will study the coordinate description (i.e., going from unlabeled to
labeled particle systems) of the dynamics introduced in Section IX.1, with the aim of
giving a more probabilistic interpretation of the notion of consistency.

In this chapter we will call a configuration process on the lattice V , denoted by {η(t) =
{ηx(t), x ∈ V }, t ≥ 0}, a Markov process taking values in Ω ⊆ NV . The variable ηx(t)
represents the number of particles at site x ∈ V at time t.

We switch now to the description via particle positions, where, if the system contains n
particles, the coordinates are n-tuples x = (x1, . . . , xn) ∈ V n where xi is the position of
the i-th particle.

We shall call a coordinate process on V , with n particles, denoted by {X(n)(t), t ≥ 0}, a
Markov process taking values in V n that describes the positions of particles in the course
of time. Namely, for i = 1, . . . , n, the random variable X

(n)
i (t) denotes the position of the

ith particle at time t ≥ 0. We denote by {X(t) : t ≥ 0} a family of coordinate-processes(
{X(n)(t), t ≥ 0}, n ∈ N

)
, labeled by the number of particles n ∈ N.

In order to establish a link between the configuration and coordinate descriptions of the
process, we define a function φ mapping the n-tuples, with arbitrary n, to configurations
in NV , i.e., φ : ∪∞

n=1V
n → NV defined as follows. For x = (x1, . . . , xn) ∈ V n the associated

configuration is denoted by

φ(x) :=
n∑
i=1

δxi . (IX.34)
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Nevertheless the state-space Ω of a configuration process {η(t) : t ≥ 0} is not always
equal to NV , but more generally of the type Ω = ×x∈VΥx, with Υx ⊆ N. Thus, if Υx ̸= N
for some x ∈ V , then not all the elements of V n give rise to allowed configurations of
Ω. For this reason we have to restrict the domain of the map φ by defining the set
Vn of n-tuples x ∈ V n such that the associated configuration φ(x) is an element of
Ωn := {η ∈ Ω : |η| = n}.

Compatibility between labeled and unlabeled particle systems

The configuration notation is, in general, the standard description for particle systems and
is also the one that we use throughout this book. A coordinate process naturally induces,
under suitable conditions, a configuration process via the map φ defined in (IX.34). This
configuration process necessarily conserves the total number of particles. The map is not
one-to-one, so there can be several coordinate processes whose image under the map φ
yields the same configuration process.

This leads us to the following definition.

DEFINITION IX.9 (Compatibility). A family of coordinate processes {X(t), t ≥ 0} and
a configuration process {η(t), t ≥ 0} are compatible if, for all n ∈ N, the following holds:
whenever φ(X1(0), . . . , Xn(0)) = η(0) then

{φ(X(n)(t)), t ≥ 0} = {η(t), t ≥ 0} in distribution.

Notice that, in the coordinate process, particles are labelled, and thus distinguishable
from each other throughout the dynamics. This information is lost when passing to the
configuration process through the map φ. In the latter particles are indistinguishable,
and then φ can be viewed as a projection from Vn to Ωn. Of course it is not guaranteed
that, starting from a coordinate process, that is Markov by definition, the mapping φ
defined in (IX.34) induces a stochastic process that is again Markov. To assure this we
have to impose an additional requirement that is permutation invariance. We are going
to see this in the next paragraph. On the other hand, if a coordinate process admits a
compatible configuration process, then the latter is unique.

From now on we will denote by En the set of functions f : Ωn → R and by Cn the set of
functions g : Vn → R. Moreover we denote by Σn the set of permutations of n elements.

DEFINITION IX.10 (Permutation invariance).

a) A family of coordinate processes {X(t), t ≥ 0} is said to be permutation-invariant
if, for all n ∈ N, σ ∈ Σn,

{(X(n)
1 (t), . . . , X(n)

n (t)), t ≥ 0} = {(X(n)
σ(1)(t), . . . , X

(n)
σ(n)(t)), t ≥ 0} in distribution.

(IX.35)

b) A family of probability measures µ = {µn, n ∈ N}, (µn probability measure on Vn)
is called permutation-invariant if, for all n ∈ N, σ ∈ Σn,

µn(x1, . . . , xn) = µn(xσ(1), . . . , xσ(n)) for all (x1, . . . , xn) ∈ Vn. (IX.36)
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c) A function g ∈ Cn is said to be permutation-invariant if

g(x1, . . . , xn) = g(xσ(1), . . . , xσ(n)) for all (x1, . . . , xn) ∈ Vn.

Equivalently, a function g ∈ Cn is permutation-invariant if there exists f ∈ En such
that g = f ◦ φ.

Notice that, if a family of coordinate processes {X(t), t ≥ 0} is permutation invariant,
then (IX.35) holds true in particular at time 0. This means that, if µ := {µn, n ∈ N}
is the family of initial probability distributions of the process, µn being the probability
distribution of X(n)(0), then also µ is permutation-invariant.

We denote by Ln the infinitesimal generator of the n-particle coordinate process {X(n)(t), t ≥
0}, and by Sn(t) the related semigroup, i.e., for g ∈ Cn

Sn(t)g(x) := Ex[g(X
(n)(t))]

where Ex denotes expectation when the process is started from x ∈ Vn. The following
proposition shows that, to any family of permutation-invariant coordinate-processes one
can naturally associate a compatible configuration process.

PROPOSITION IX.11 (Permutation invariant coordinate process is equivalent to configura-
tion process). Let {X(t), t ≥ 0} be a family of permutation-invariant coordinate processes
and let Ln be the generators of {X(n)(t), t ≥ 0}. Then there exists a unique configuration
process compatible with {X(t), t ≥ 0} and its generator is the operator L whose action on
functions f : Ω → R is given by the following relation. For all f ∈ En,

(Lf) ◦ φ = Lng, with g = f ◦ φ . (IX.37)

.

PROOF. For a permutation σ ∈ Σn and a function g ∈ Cn we define the operator

Tσg(x1, . . . , xn) = g(xσ(1), . . . , xσ(n)). (IX.38)

From the permutation invariance of the family of coordinate processes {X(t), t ≥ 0} it
follows that

[Ln, Tσ] = 0 for all n ∈ N and σ ∈ Σn (IX.39)

where [·, ·] denotes the commutator. Let f : Ω → R then, by definition, g := f ◦ φ is a
permutation-invariant function. Hence, from (IX.39) it follows that

TσLng = LnTσg = Lng. (IX.40)

This means that Lng is permutation-invariant, hence there exists a function f̃ : Ωn → R
such that

Lng(x) = f̃(φ(x)) ∀x ∈ Vn

namely Lng = f̃ ◦ φ. Then it is possible to define the operator L acting on functions
f : Ω → R such that Lf = f̃ , and then (IX.37) is satisfied. From (IX.40) we have that

TσSn(t)g = Sn(t)g (IX.41)
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and then also Sn(t)g is a permutation-invariant function at all times. Now, if we denote
by S(t) the semigroup associated to L, it follows that

S(t)f(η) = Sn(t)g(x) for all η ∈ Ωn and x ∈ Vn : φ(x) = η (IX.42)

namely

(S(t)f) ◦ φ = Sn(t)g for all f ∈ En. (IX.43)

From this it follows that L is the generator of a Markov process that is then the unique
configuration process compatible with {X(t), t ≥ 0}.

Consistency for coordinate processes

At the level of configuration processes, one has consistency whenever the generator L
commutes with the particle removal operator S− (see Definition IX.1). In order to trans-
port the notion of consistency to the coordinate level, we introduce a coordinate version
of the particle removal operator in (IX.1). We use here the notation [n] = {1, . . . , n} for
the set of the first n natural numbers.

DEFINITION IX.12 (Particle removal operators). For n ∈ N, i ∈ [n] we denote by π
(n)
i :

Cn−1 → Cn the removal operator of the ith labeled particle, acting on functions g ∈ Cn−1

as follows:

(π
(n)
i g)(x1, . . . , xn) = g(x1, . . . , xi−1, xi+1, . . . , xn) for all xi ∈ V (IX.44)

and we denote by Π(n) : Cn−1 → Cn the operator acting on g ∈ Cn−1 via

Π(n)g =
n∑
i=1

π
(n)
i g. (IX.45)

In the next lemma we show that the commutation relation of the generator L with the
operator S− corresponds, in this new description, to an intertwining relation between the
coordinate process with n particles and the coordinate process with n− 1 particles.

LEMMA IX.13 (Intertwining an n-particle system to an (n− 1)-particle system). Let Ln,
n ∈ N be the generators of a family of permutation-invariant coordinate processes and let
L be the Markov generator defined by the relation (IX.37), then the following statements
are equivalent:

a) for all n ∈ N, Ln and Ln−1 are intertwined via Π(n), i.e.

(LnΠ
(n))(g) = (Π(n)Ln−1)(g) ∀ g ∈ Cn−1 permutation-invariant; (IX.46)

b) [L, S−] = 0.
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PROOF. Let x = (x1, . . . , xn) and η := φ(x) =
∑n

i=1 δxi , then we have

φ(x1, . . . , xl−1, xl+1, . . . , xn) =

(
n∑
i=1

δxi

)
− δxl = η − δxl

As a consequence:

(Π(n)(f ◦ φ))(x) =
n∑
l=1

f(η − δxl)

=
∑
x∈V

ηxf(η − δx) (IX.47)

where the last step follows because every x ∈ V is counted exactly ηx times in the sum∑n
l=1 f(η − δxl). This proves that, for all η ∈ Ωn and x ∈ Vn such that φ(x) = η,

(Π(n)(f ◦ φ))(x) = S−f(η) . (IX.48)

Suppose now that [L, S−] = 0, then on En we have that, for g = f ◦ φ,

Ln−1Π
(n)g(x) = Ln−1

[
(S−f)

( n∑
i=1

δxi
)]

= (LS−f)
( n∑
i=1

δxi
)

= (S−Lf)
( n∑
i=1

δxi
)

= Π(n)Lf
( n∑
i=1

δxi
)
= Π(n)Lng(x) (IX.49)

where the equalities follow from (IX.48), (IX.37) and the commutation relation. Then
(IX.46) follows since, for all g ∈ Cn permutation-invariant, g = f ◦ φ for some f ∈ En.
The reverse implication is proved analogously.

The meaning of the previous result is the following. On the left-hand side of (IX.46) we
remove a particle chosen at random at time 0, then evolve the process for a time t ≥ 0,
then evaluate a permutation-invariant function and take expectation. On the right-hand
side, instead, we first evolve the process for a time t, then remove a randomly chosen
particle, evaluate the same permutation-invariant function and take expectation. Then
the intertwining relation (IX.46) says that these two sequences of actions are equivalent.
In other words, the operations “removing a randomly chosen particle” and “time evolution
in the process followed by expectation” commute as long as we restrict to permutation-
invariant functions. This suggests to give the following definition of consistent coordinate
processes.
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DEFINITION IX.14 (Consistency). A family of coordinate processes {X(t), t ≥ 0} is said
to be consistent if, for all n ∈ N, n ≥ 2, and i ∈ [n],

{(X(n)
1 (t), . . . , X

(n)
i (t), X

(n)
i+1(t), . . . , X

(n)
n (t)), t ≥ 0}

= {(X(n−1)
1 (t), . . . , X

(n−1)
n−1 (t)), t ≥ 0} in distribution.

Remark that, if {X(t), t ≥ 0} is a consistent coordinate process and µ = {µn, n ∈ N} is
the family of its initial distributions, then µ is necessarily a consistent family of probability
measures in the sense that, for all n ∈ N, n ≥ 2, i ∈ [n] and x = (x1, . . . , xn) ∈ Vn,∑

x

µn(x1, . . . , xi, x, xi+1, . . . , xn) = µn−1(x1, . . . , xi, xi+1, . . . , xn). (IX.50)

If {X(t), t ≥ 0} is also permutation-invariant, then also µ is permutation invariant. In
that case one has that every m-dimensional marginal of µn, m ≤ n, coincides with µm,
and, more generally, any m-dimensional marginal of {X(n)(t), t ≥ 0}, m ≤ n, is equal in
distribution to {X(m)(t), t ≥ 0}, i.e., for all 1 ≤ i1 < . . . < im ≤ n,

{X(n)
i1

(t), . . . , X
(n)
im

(t), t ≥ 0} = {X(m)
1 (t), . . . , X(m)

m (t), t ≥ 0} in distribution.
(IX.51)

Notice that one can simply find an example of such consistent permutation-invariant
family µ = {µn, n ∈ N} by taking

µn =
1

n!

∑
σ∈Σn

δ(xσ(1),...,xσ(n)) for some x ∈ Vn.

In the following theorem we show the relation between the two notions of consistency,
respectively in the configuration and in the coordinate variables.

THEOREM IX.15 (Consistency of the configuration process implies consistency of the
coordinate process). Let {X(t), t ≥ 0} be a family of permutation-invariant coordinate
processes initially distributed according to a consistent family of measures µ. If the unique
compatible configuration process {η(t), t ≥ 0} is consistent, then also {X(t), t ≥ 0} is
consistent.

PROOF. Since {X(t), t ≥ 0} is permutation-invariant we have that also µ = {µn, n ∈ N}
is permutation-invariant. Assume that {η(t), t ≥ 0} is consistent, then [L, S−] = 0,
hence, from Lemma IX.13 we know that the intertwining relation (IX.46) holds true.
Since {X(t), t ≥ 0} is permutation-invariant, in order to show that it is also consistent,
it is sufficient to prove that for all n ∈ N, i ∈ [n] and g ∈ Cn−1 permutation-invariant,

E(n)
µn

[
g(X

(n)
1 (t), . . . , X

(n)
i−1(t), X

(n)
i+1(t), . . . , X

(n)
n (t))

]
= E(n−1)

µn−1

[
g(X

(n−1)
1 (t), . . . , X

(n−1)
n−1 (t))

]
(IX.52)

where E(n)
µn denotes expectation with respect to the coordinate process {X(n)(t), t ≥ 0},

started with distribution µn. Again from the hypothesis of permutation-invariance of the
process it is sufficient to prove (IX.52) for i = n. Fix g ∈ Cn−1 permutation-invariant, then
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we have π
(n)
l g = π

(n)
k g for all k, l ∈ {1, . . . , n}. Hence, by consistency and permutation

invariance of µ one has∫
πlg(x1, . . . , xn)µn(dx1 . . . dxn) =

∫
g(x1, . . . , xn−1)µn−1(dx1 . . . dxn−1)

for all n ∈ N and all l ∈ {1, . . . , n}. Therefore we have that

E(n)
µn

[
g(X

(n)
1 (t), . . . , X

(n)
n−1(t))

]
= E(n)

µn

[
(π(n)

n g)(X
(n)
1 (t), . . . , X

(n)
n−1(t), X

(n)
n (t))

]
=

∫
[Sn(t)(π

(n)
n g)](x1, . . . , xn)µn(dx1 . . . dxn)

=
1

n

∫
Sn(t)(Π

(n)g)(x1, . . . , xn)µn(dx1 . . . dxn)

(IX.53)

now, from (IX.46), we have that Sn(t)(π
(n)
n g) = Sn(t)(Π

(n)g) and, as a consequence, we
have that (IX.53) is equal to

1

n

∫
(Π(n)Sn−1(t)g)(x1, . . . , xn)µn(dx1 . . . dxn)

=

∫
(Sn−1(t)g)(x1, . . . , xn−1)µn−1(dx1 . . . dxn)

= E(n−1)
µn−1

[
g(X

(n−1)
1 (t), . . . , X

(n−1)
n−1 (t))

]
. (IX.54)

This proves that also {X(t), t ≥ 0} is consistent.

REMARK IX.16. One can wonder whether the inverse implication in Theorem IX.15 holds
true, i.e. if the consistency of a family of permutation-invariant coordinate processes
{X(t), t ≥ 0} implies the consistency of the compatible configuration process {η(t), t ≥
0}. This is not exactly the case. Indeed, assuming that (IX.52) holds true for all g ∈ Cn−1

permutation-invariant, one can repeat the reasoning used in the previous proof to deduce
that∫
Sn(t)(Π

(n)g)(x1, . . . , xn)µn(dx1 . . . dxn) =

∫
(Π(n)Sn−1(t)g)(x1, . . . , xn)µn(dx1 . . . dxn)

then, differentiating with respect to t and evaluating at time 0 one gets∫
Ln(Π

(n)g)(x1, . . . , xn)µn(dx1 . . . dxn) =

∫
(Π(n)Ln−1g)(x1, . . . , xn)µn(dx1 . . . dxn)

for all g ∈ Cn−1 permutation-invariant. This is not sufficient to get (IX.46) that is the
condition needed to guarantee consistency of {η(t), t ≥ 0}.

IX.4.1 Combinatorial interpretation of consistency

In this section we will analyse the combinatorial meaning of the weighted factorial mo-
ments defined in Section IX.3. At this aim it is useful to rewrite the function F (ξ, η)
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defined in (IX.17) in terms of the coordinate notation. Let m,n ∈ N with m ≤ n we
define the set Cm,n of combinations of m elements chosen in [n] := {1, . . . , n},

Cm,n := {(i1, . . . , im) : ij ∈ [n], ∀ j ∈ [m] s.t. i1 < i2 < . . . < im} ⊂ [n]m. (IX.55)

Let now I := (i1, . . . , im) be an element of [n]m, and let x ∈ Vn the vector of positions of
n particles in the lattice V , then we denote by xI the m-tuple:

xI := (xi1 , . . . , xim) ∈ Vm (IX.56)

i.e. the vector of the positions of the subset of particles whose label is in I.Then the
value F (ξ, η) can be interpreted as the number of ways to choose, for each site x ∈ V , ξx
particles out of ηx. Then, for any fixed particles labelling of the configuration η, i.e. for
any x ∈ V|η| such that φ(x) = η, we can write

F (ξ, η) =
∣∣{I ∈ C|ξ|,|η| : φ(xI) = ξ}

∣∣ · 1ξ≤η. (IX.57)

In other words, for any fixed labelling x of particles in the configuration η, F (ξ, η) is the
number of ways to select |ξ| particles out of |η| in such a way that the corresponding
configuration in Ω is ξ.

Alternatively we can define the following ordering between elements of the coordinate
state spaces. For y ∈ Vm, and x ∈ Vn we say that

y ≤ x if and only if m ≤ n and ∃ I ∈ Cm,n s.t. y = xI . (IX.58)

In view of this, we can rewrite (IX.57) as follows:

F (ξ, η) =
∣∣{y ∈ V|ξ| : y ≤ x, φ(y) = ξ}

∣∣ · 1ξ≤η, ∀x : φ(x) = η . (IX.59)

This suggests that, in summations of the following type:∑
ξ∈Ωm

F (ξ, η)f(ξ) (IX.60)

the term F vanishes when switching from configurations to coordinate variables, indeed,
for any x ∈ V|η| such that φ(x) = η we have that (IX.60) is equal to∑

ξ∈Ωm

F (ξ, φ(x))f(ξ) =
∑
ξ∈Ωm

ξ≤φ(x)

∣∣{I ∈ Cm,n : φ(xI) = ξ}
∣∣ · f(ξ)

=
∑
ξ∈Ωm

ξ≤φ(x)

∑
I∈Cm,n:
φ(xI)=ξ

f(φ(xI)) =
∑

I∈Cm,n

f(φ(xI)) =
∑
y∈Vm
y≤x

f(φ(y)). (IX.61)

With the help of the coordinate notation it is possible, using (IX.60), to further simplify
the consistency relation proven in Theorem IX.5. Indeed by applying (IX.61) with f(ς) =
Pς (ς(t) = ξ) we obtain an expression for the weighted factorial moments of a consistent
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particle system {η(t), t ≥ 0} on a lattice V . For all η, ξ ∈ Ω such that 1 ≤ |ξ| < |η|, we
have

Eη [F (ξ, η(t))] =
∑
y∈V|ξ|
y≤x

Pφ(y) (ξ(t) = ξ) for all x : φ(x) = η. (IX.62)

In other words we have that the ξ-th order factorial moment of a process with |η| particles
at time t, is equal to a sum of transition probabilities for a system with |ξ| particles, with
|ξ| < |η|. Notice that, choosing ξ = δy we obtain again the result for expectations of
occupancies obtained in Proposition IX.7.

IX.5 The reference processes

In this section we summarize in a definition the class of processes studied in Chapters II,
III, IV and VI, using a unique notation for the three of them. These processes share the
consistency property and are all reversible with respect to homogeneous product measures.
Then, using Theorem IX.8 a self-duality property can be deduced as a consequence of these
two facts. We use the parameter θ ∈ {−1, 0, 1} to identify the type of interaction: θ = 0
corresponds to the IRW class, θ = −1 to the SEP class and θ = −1 to the SIP class. The
other parameters of the processes are fixex by the vector α = {αx, x ∈ V }. While for
θ ∈ {0, 1}, (IRW, SIP), we can let αx vary in the set of positive real numbers (0,+∞),
for θ = −1 (SEP), the parameter αx has also the meaning of maximal occupancy at site
x, as a consequence it must be N-valued (in such a way to have positive jump rates). So
we define

Aθ =

{
(0,∞) for θ ∈ {0, 1}
N for θ = −1.

(IX.63)

that is the set where the parameters αx take values in the different cases.

DEFINITION IX.17. Let V be a finite lattice, θ ∈ {−1, 0, 1} and α = {αx, x ∈ V } with
αx ∈ Aθ. Moreover we fix a symmetric irreducible transition function p : V ×V → [0,∞).
We say that an interacting particle system {η(t) : t ≥ 0} on the lattice V is a reference
process with parameters (θ,α, p) if it has generator

L(θ,α,p) =
1

2

∑
x,y∈V

p(x, y)L(θ,α)
x,y , (IX.64)

with

L(θ,α)
x,y f(η) = ηx(θηy + αy)[f(η

x,y)− f(η)] + ηy(θηx + αx)[f(η
y,x)− f(η)] (IX.65)

and state space
Ωθ,α = ⊗x∈VΥ

(θ)
x (IX.66)

where Υ
(θ)
x is the space of occupation numbers of the x-th site, i.e.

Υ(θ)
x =

{
N for θ ∈ {0,+1}
{1, 2, . . . , αx} for θ = −1

(IX.67)



IX.5. THE REFERENCE PROCESSES 223

The reference processes are nothing else than the self-dual processes studied in Chapters
II, III, IV and VI, accordingly to the following scheme:

L(θ,α,p) =


LIRW(α,p) for θ = 0
LSIP(α,p) for θ = +1
LSEP(α,p) for θ = −1 .

(IX.68)

Consistency

All the processes belonging to the class of reference processes defined above are consistent.
This is due to the fact that, in all cases, the infinitesimal generator L(θ,α,p) commutes with
the removal operator S− =

∑
x∈V ax, i.e.

[L(θ,α,p), S−] = 0 . (IX.69)

Reversibility

The reference process {η(t) : t ≥ 0} of parameters (θ,α, p) as in Definition IX.17 is
reversible w.r. to the one-parameter family of product probability measures

{νρ,θ,α, ρ ∈ Rθ} with Rθ :=

{
[0,+∞) for θ ∈ {0, 1}
[0, 1] for θ = −1.

(IX.70)

νρ,θ,α = ⊗x∈V νρ,θ,αx with marginals given by:

νρ,θ,α(n) =



(ρα)n

n!
· e−ρα for θ = 0, Pois(ρα)

1
(1+ρ)α

·
(

ρ
1+ρ

)n
· Γ(α+n)
n!Γ(α)

for θ = +1, DGamma
(
α, ρ

1+ρ

)
(1− ρ)α ·

(
ρ

1−ρ

)n
· Γ(α+1)
n!Γ(α+1−n) for θ = −1, Bin (α, ρ) .

(IX.71)

The parameter ρ ∈ Rθ labelling the reversible measures has the meaning of a weighted
density, indeed, for all sites x ∈ V , it is equal to the expected number of particles in that
site divided by the corresponding intensity parameter αx:

ρ = Eνρ,θ,α

[
ηx
αx

]
for all θ ∈ {−1, 0,+1}.

Self-duality

As a consequence of Theorem IX.8 it follows that the references processes are self-dual
with self-duality functions of the form D(ξ, η) = F (ξ, η)/ν(ξ) with F as in (IX.17) and
νρ is one of its reversible measures defined in (IX.71). In this way, we obtain that the
duality function of the reference process with parameters (θ,α, p) are (modulo a factor
depending only on the total number of dual particles |ξ|) given by:

Dθ,α(ξ, η) =
∏
i∈V

dθ,αi
(ξi, ηi), (IX.72)
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with

dθ,α(k, n) =
n!

(n− k)!
1k≤n ·



1
αk for θ = 0

Γ(α)
Γ(α+k)

for θ = +1

Γ(α+1−k)
Γ(α+1)

for θ = −1

(IX.73)

Consistently with the scheme (IX.68), the function (IX.72)-(IX.73) reproduces, depending
on θ, the triangular duality functions introduced in the previous chapters for the IRW
(θ = 0), for the inhomogeneous exclusion process (θ = −1) and for the inhomogeneous
inclusion process (θ = +1).

Coordinate reference processes

In this section we want to obtain a coordinate description of the reference process by
labeling particles in such a way to have permutation-invariance. Then Theorem IX.15
assures the consistency of the latter also at the level of the coordinate process.

For the reference process of parameters (θ,α, p) we define the set Ωn,θ,α = {η ∈ Ωθ,α :
|η| = n}, i.e. the set of configurations of the state space consisting of n particles. We
denote by Vn,θ,α the subset of n-tuples of V n such that φ(Vn,θ,α) = Ωn,θ,α.

DEFINITION IX.18. We define the coordinate reference process with parameters (θ,α, p)
and n ∈ N particles the process {X(n)(t), t ≥ 0} on Vn,θ,α whose generator is given by:

L(θ,α,p)
n g(x) =

∑
j∈V

n∑
ℓ=1

p({xℓ, j})

(
αj + θ

n∑
m=1

1xm=j

)(
g(xℓ→j)− g(x)

)
(IX.74)

where x = (x1, . . . , xn) ∈ Vn,θ,α and xℓ→j is obtained from x by moving the ℓ-th particle
from its position xℓ to the site j. Moreover we call the collection ({X(n)(t), t ≥ 0}, n ∈
N) := {X(t) : t ≥ 0} the family of coordinate reference processes with parameters
(θ,α, p).

In the next proposition we will see that the family of coordinate reference processes is
compatible with the corresponding reference process. Indeed projecting the particles jump
rates appearing in the generator (IX.74) to the configuration space, one clearly obtains
the reference process jump rates given in (IX.65). In the dynamics generated by (IX.65)
particles are indistinguishable. When there is a jump from a site x to a site y, the particle
that makes the jump is uniformly chosen among all the particles hosted at site x. Thanks
to this symmetry of the dynamics we can prove permutation-invariance. Even though
(IX.74) is not the only possible coordinate process compatible with the reference process,
thanks to permutation-invariance, it seems to be the most natural choice for guaranteeing
consistency.

PROPOSITION IX.19. The family of coordinate reference processes {X(t), t ≥ 0} with
parameters (θ,α, p) is compatible with the reference process with the same parameters.
Moreover {X(t), t ≥ 0} is a family of permutation-invariant consistent processes provided
that the family of its initial distributions is consistent and permutation-invariant.
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PROOF. The compatibility statement immediately follows from the fact that the relation
(IX.37) holds true. In order to prove permutation-invariance, it is sufficient to show that

Eµn
[
g(X

(n)
1 (t), . . . , X(n)

n (t))
]
= Eµn

[
g(X

(n)
σ(1)(t), . . . , X

(n)
σ(n)(t))

]
(IX.75)

for all σ ∈ Σn and g ∈ Cn. This amounts to prove that∫
[Sn(t)g](x1, . . . , xn)µn(dx1 . . . dxn) =

∫
[Sn(t)σg](x1, . . . , xn)µn(dx1 . . . dxn) (IX.76)

where σ is the map σ : Cn → Cn acting as follows:

σg(x1, . . . , xn) = g(xσ(1), . . . , xσ(n)). (IX.77)

The relation (IX.76) is true at time 0 by hypothesis, while, for positive times it immedi-
ately follows from the permutation-invariance of the generator:

Lng = Ln(σg) (IX.78)

that can be verified using the definition in (IX.74). This concludes the proof of permutation-
invariance. Then, using Theorem IX.15, we have that the consistency of {X(t), t ≥ 0}
follows as a consequence of permutation-invariance, compatibility with the reference pro-
cess and the consistency of the latter.

IX.6 Consistency for systems with absorbing sites

In this section we will see that the consistency property can be preserved when adding
absorbing sites in the system, if the absorption rates are properly chosen. We will see
how, for systems with absorbing sites, the recursive relations (IX.62) can be used to get
informations about the absorption probabilities. Notice that, in the presence of absorbing
sites, the process does not admit a strictly-positive reversible measure. The hypothesis of
Theorem IX.8 are, thus, not met, and, as a consequence, we lack a strategy to produce a
self-duality function in this context. Therefore the consistency property is fundamental
here to obtain recursive relations without passing through duality.

The interest for processes with absorbing sites arises primarily from their use in the
context of non-equilibrium systems. In Chapter X we will see that systems with absorbing
boundaries emerge as duals of systems with boundary reservoirs. As a consequence, in this
setting, factorial moment relations of the type (IX.25) will provide a lot of information
about multivariate moments and correlation functions in non-equilibrium stationary state
of boundary driven systems.

Before analysing the factorial moments, we will give an alternative description of consis-
tent systems with absorbing sites that passes through the particle addition and removal
operators a and a† introduced in Chapter II.

Fix a finite lattice V and an operator Lbulk that is the generator of a configuration process
on V , with state space Ω. We then consider an extended lattice V ∗ := V ∪ V abs, with
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V ∩ V abs = ∅, where V abs is a set of absorbing sites. We want to define a configuration
process {η(t) : t ≥ 0} on V ∗ for which

lim
t→∞

Pη(η(t) ∈ V abs) = 1. (IX.79)

To do that we define the generator L as follows:

L = Lbulk + Labs (IX.80)

acting on functions f : Ω∗ → R, where

Ω∗ := Ω× Ωabs with Ωabs := NV abs

. (IX.81)

While Lbulk only works on variables {ηx, x ∈ V }, Labs, the absorption part of the generator,
works on the whole Ω∗ as follows

Labsf(η) =
∑
x∈V
y∈V abs

p(x, y) ηx [f(η
x,y)− f(η)] (IX.82)

where we extended the definition of the function p to the domain V ×V ∗. More precisely
the transition function p is a function p : V × V ∗ → [0,∞), whose restriction to the
domain V × V is symmetric and irreducible.

The dynamics for the process {η(t), t ≥ 0} with generator L is then the following:
inside V particles move according to the generator Lbulk, and additionally a particle at site
x ∈ V jumps at rate p(x, y) to an absorbing site y ∈ V abs, independently from the other
particles. Once a particle reaches the set V abs it is absorbed and does not move anymore.
We thus obtain what we call the process with absorbing sites V abs and absorption rates
p(x, y). We call such process an absorbing extension of the process in the bulk:

DEFINITION IX.20. A configuration process on V ∗ = V ∪V abs with generator L = Lbulk+
Labs (Labs as in (IX.80)) is called an absorbing extension of the configuration process on
V with generator L.

We remark that it is possible to rewrite the absorption operator Labs in terms of the
creation and annihilation operators a† and a of the Heisenberg algebra introduced in
Chapter II. We have the following expression:

Labs =
∑
x∈V
y∈V abs

p(x, y)[axa
†
y − axa

†
x] (IX.83)

where a†x and ax are, respectively, the particle addition and particle removal operators at
site x defined in (II.9)-(II.8).

This has an important consequence in the context of consistent processes:

LEMMA IX.21. Let {η(t), t ≥ 0} be a consistent configuration process on a lattice V ,
then every absorbing extension to a lattice V ∗ ⊃ V is a consistent process.
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PROOF. Let S−
bulk be the particle removal operator in the bulk and S−

abs the particle
removal operator in V abs, i.e.

S−
bulk :=

∑
x∈V

ax and S−
abs :=

∑
x∈V abs

ax (IX.84)

then we need to prove that

[L, S−
bulk + S−

abs] = 0. (IX.85)

By assumption we already know that [Lbulk, S−
bulk] = 0. We also know by construction

that [Lbulk, S−
abs] = 0 then it only remains to prove that

[Labs, S−
abs + S−

bulk] = 0.

Using (IX.83) and the fact that operators working on variables at different sites commute,
it is sufficient to show that for all x, y ∈ V ∗

[axa
†
y − axa

†
x, ax + ay] = ax[a

†
y, ay]− ax[a

†
x, ax]

= ax − ax = 0

Here we used the commutation relations [ax, ay] = 0, [a†y, ax] = δx,y.

Factorial moments in absorbing systems

In what follows we denote by Pη(η(∞) = ς) the probability that eventually η(t) settles in
the absorbing configuration ς ∈ Ωabs starting from the initial configuration η ∈ Ω∗, i.e.,

Pη(η(∞) = ς) := lim
t→∞

Pη(η(t) = ς). (IX.86)

Similarly,

Eη[f(η(∞))] = lim
t→∞

Eη[f(η(t))]. (IX.87)

As an immediate consequence of Lemma IX.21 and Theorem IX.5 we have the following
formula for the factorial moments as t→ ∞.

THEOREM IX.22. Let {η(t), t ≥ 0} be a consistent configuration process on a finite lattice
V ∗ with generator L = Lbulk + Labs. Let η ∈ Ω∗ and ξ ∈ Ωabs with 1 ≤ |ξ| ≤ |η| − 1, then

Eη [F (ξ, η(∞))] =
∑
ς∈Ω|ξ|
ς≤η

F (ς, η) · Pς (ς(∞) = ξ) . (IX.88)

Here the ξ-th order factorial moment of absorption probabilities for a system with |η|
particles is a sum of absorption probabilities for systems with less than |ξ| particles, if |ξ| <
|η|. Although these equations are not sufficient to determine the absorption probabilities
in closed form, they are still considerably simplifying the problem of computing them, as
they imply severe restrictions.
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Notice that, choosing ξ = δy, y ∈ V abs in (IX.88) gives a statement for the expectations
of occupation numbers:

Eφ(x) [ηy(∞)] =
n∑
k=1

Pxk(X
rw(∞) = y) (IX.89)

where Px is the path-space measure of the random walk {Xrw(t), t ≥ 0} on V ∗ starting
from x ∈ V ∗ associated to the “absorbed” configuration process {η(t), t ≥ 0} as in
Definition IX.6.

Two absorbing sites

In case the system is in contact with only two absorbing sites, say ℓ and r, the long run
distribution is completely determined by one random variable, that is the occupancy at
just one of the two absorbing sites, say ξr(∞). For this reason we can say that, in the long
run, the system has, in a sense, one degree of freedom. Hence, in this case the problem
of finding absorption probability drastically simplifies and equations (IX.88) provide us
with a considerable share of information.

We consider a consistent configuration process {η(t), t ≥ 0} on the extended lattice
V ∗ = V ∪ V abs with V finite and absorbing set V abs = {ℓ, r}. The generator of the
process L is of the form (IX.80) and the state space is Ω∗ as in (IX.81).

In order to give some physical meaning to this setting we can think the bulk lattice
as a one-dimensional chain V = {1, . . . , N} where particles can jump only to nearest-
neighbouring sites, with interactions of the type “reference process” of Definition IX.17.
We now extend the lattice with two extra sites ℓ, at the left of site 1 and r at the right of
site N . These extra sites are absorbing and can be reached only from boundary sites, i.e.
ℓ can be reached only from site 1 and r can be reached only from site N . This construction
defines an absorbing extension of the reference process with absorbing set V ∗ = ℓ, r. The
generator of this process is given by:

L = Lbulk + Labs, (IX.90)

with

[Lbulkf ](η) =
N−1∑
x=1

{
ηx(αx+1 + θηx+1)[f(η

x,x+1)− f(η)] + ηx+1(αx + θηx)[f(η
x+1,x)− f(η)]

}
and

[Labsf ](η) = αℓ η1
[
f(η1,ℓ)− f(η)

]
+ αr ηN

[
f(ηN,r)− f(η)

]
.

For the process above we can apply Theorem IX.22 with the choice ξ = mδr, to obtain
a formula for the mth factorial moment of the r-th occupancy ηr(∞). Let η ∈ Ω∗

n and
x ∈ V ∗

n be such that φ(x) = η then

Eη
[(
ηr(∞)

m

)]
=

∑
ς∈Ωm
ς≤η

F (ς, η) · Pς (ςℓ(∞) = 0) (IX.91)

=
∑

x∈Cm,n

Pφ(xI) (ηℓ(∞) = 0) for m ∈ {1, . . . , |η| − 1}.
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This can be viewed as a linear system of n − 1 independent equations in the n + 1
variables {Pη (ηℓ(∞) = m) , m = 0, . . . , n}. Complementing these with the normalization
condition

∑n
m=0 Pη (ηℓ(∞) = m) = 1 we obtain n independent equations. This is still not

sufficient to get a closed-form expression for the absorption probabilities (which are n+1
unknowns), since, at each level, one independent equation is still missing.

Notice that the result above does not depend on the specific choice of the generator, but
holds true for all absorbing extensions of consistent processes with only two absorbing
sites.

IX.7 A consistent non-reversible particle system

The processes with generator of the form (IX.64)-(IX.65) do not cover the whole class of
consistent processes. To give an example, in this section we will see that it is possible to
define an asymmetric version of the inclusion process which is still consistent. Because
this system is not reversible (in fact its invariant measure is unknown and probably
complicated), the consistency does not lead to a simple self-duality relation. We consider
V = {1, . . . N} and define a process with nearest-neighbor jumps whose generator is given
by:

L =
N−1∑
x=1

Lx,x+1 (IX.92)

where, for all bonds {x, x+ 1},

Lx,x+1f(η) = ηx(ηx+1 + α)[f(ηx,x+1)− f(η)] + ηx+1(ηx + β)[f(ηx+1,x)− f(η)] (IX.93)

for some α, β > 0. For α = β this coincides with the symmetric inclusion process on
V with nearest-neighbour jumps. For α ̸= β this defines an asymmetric version of the
inclusion process. The asymmetry parameters p and q are not introduced in the standard
way, i.e. as factors multiplying respectively the right and the left jump rates. On the
contrary they affect only the diffusive term of the rates and not the inclusion part of
the interaction. We have that this is the correct choice for the asymmetry in order to
guarantee a consistency property.

In order to prove consistency, it is convenient to rewrite the generator in terms of the
operators K+, K− and K0 that have been defined in (IX.94). We recall here their action,
making sure, this time, to keep track of the dependence on the parameter α. For all
α > 0 we denote by K+,α, K− and K0,α the operators working on functions f : N → R as
follows:

K+,αf(n) = (α + n)f(η + 1),

K−f(n) = nf(n− 1),

K0,αf(n) =
(
α
2
+ n
)
f(n). (IX.94)

Notice that, differently from K+,α and K0,α, the operator K− does not depend on the
parameter α. To prove consistency, we have to show that the generator L commutes with
the removal operator S− =

∑
x∈V K

−
x .
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Analogously to what we have seen in Chapter IV, we write the single-edge generator
Lx,x+1 in its abstract form as follows:

Lx,x+1 = K+,α
x K−

x+1 +K−
x K

+,β
x+1 − 2K0,α

x K0,β
x+1 +

αβ

2
. (IX.95)

We recall the commutation relations:

[K0,α
y , K−

x ] = K−
x · δx,y,

[K+,α
x , K−

y ] = 2K0,α
x · δx,y. (IX.96)

In order to prove the consistency, i.e., [L, S−]=0, it is sufficient to prove that, for all
x ∈ {1, . . . , N − 1},

[Lx,x+1, K
−
x +K−

x+1] = 0. (IX.97)

This is obtained via the following computation[
K+,α
x K−

x+1 +K−
x K

+,β
x+1 − 2K0,α

x K0,β
x+1 +

αβ

2
, K−

x +K−
x+1

]
= [K+,α

x , K−
x ]K

−
x+1 − 2[K0,α

x , K−
x ]K

0,β
x+1

+ K−
x [K

+,β
x+1, K

−
x+1]− 2K0,α

x [K0,β
x+1, K

−
x+1]

= 2K0,α
x K−

x+1 − 2K−
x K

0,β
x+1 + 2K−

x K
0,β
x+1 − 2K0,α

x K−
x+1 = 0. (IX.98)

It is possible to prove that the process with generator (IX.92)-(IX.93) does not admit
a strictly-positive product reversible measure. As a consequence, it does not fit into
the scheme of Theorem IX.8 and then it is not possible to use consistency to deduce a
self-duality property with duality functions factorizing over the sites.

IX.8 Additional notes

The original idea of consistency comes from an isomorphism property between the m-
marginals transition probabilities of a system with n particles (n > m) and the transition
probabilities of the system with m particles. This property is equivalent to consistency
and was shown in Proposition 3.1 of [145] through combinatorial arguments. It is proven
for the dual of the Kipnis-Marchioro-Presutti model that is an instantaneous-particle-
redistribution-model with absorbing boundaries. The property is used there to show
local equilibrium for the KMP. The dual process of the KMP is what we refer to as
Th-SIP(1) with absorbing boundaries in Appendix C. The model fits in the su(1, 1) Lie
algebra scheme and it is nothing else than the instantaneous-thermalization limit of the
SIP(1) with absorbing boundaries. As a consequence its consistency property immediately
follows, in our setting, from the consistency of the inclusion process.

In [45] the authors characterize the interacting particle systems exhibiting consistency,
find recursive relations for factorial moments and investigate the link with duality. The
work has a top-down perspective to the study of duality aiming to detect the whole class of
processes satisfying a given property. Then self-dual processes with factorized triangular
duality function emerge as a subclass of the class of consistent processes. The method
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recalls the approach used in [193] to characterize the class of self-dual interacting particle
systems with factorized duality function.

An analogous notion of consistency has been developed in [131] for diffusion processes,
and more precisely for a stochastic flow of kernels [6, 162] consisting of a family of sticky
Brownian motions. Here the authors characterize the process via martingale problems. A
consistency property for the same class of processes was proven in [161,162] via a Dirichlet
forms approach. The emergence of sticky Brownian motions in the scaling limit, in the
condensation regime, of two SIP particles [6], raises the question of the relation between
the two notions of consistency, i.e. consistency for families of sticky Brownian motions
and consistency for interacting particle systems. The latter represents an open problem,
as well as the understanding of consistent particle systems in terms of Dirichlet forms.
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Chapter X

Duality for non-equilibrium systems

Abstract: In this chapter we extend the duality results obtained so far to the
setting of boundary-driven non-equilibrium systems, i.e. systems that are
driven out of equilibrium via the action of multiple reservoirs. We will see
that in this context, the processes are no longer self-dual, but dual to processes
with absorbing sites. In the first section we consider the simple setting of
independent random walkers moving on a one-dimensional chain, in contact
with two external reservoirs, one at the left and the other at the right of the
system. In Section X.3 we will broaden the analysis to the whole class of in-
teracting particle systems studied in the previous chapters. This class includes
independent random walkers, symmetric inclusion process and symmetric ex-
clusion process, in their inhomogeneous version. For all these models we will
prove duality relations both with “triangular” and with “orthogonal” duality
functions. As applications of these duality results, we will prove existence and
uniqueness on the so-called non-equilibrium steady state. In Section X.4 we
will see how to add reservoirs in the “continuous” setting. We will study in
particular two models: the Brownian energy process with reservoirs, that we
will prove to be dual to the symmetric inclusion process with absorbing sites,
and a deterministic process that we will show to be dual to independent random
walkers with absorbing sites. Finally we will show what we call a continuous-
continuous duality property, between continuous models with reservoirs and
continuous models with absorbing sites.

X.1 Introduction

In equilibrium statistical mechanics, stationary states are described by a common proba-
bility distribution. Namely, the Boltzmann-Gibbs probability distribution is the station-
ary measure of a system connected to a (infinitely large) reservoir with a fixed inverse
temperature β. The effect of the reservoir on the system under study with some Hamil-
tonian H is usually modeled via a Glauber dynamics, whose stationary measure is indeed
the Boltzmann-Gibbs distribution e−βH/Z.

The state of affairs is very different for systems which are in contact with multiple
reservoirs, that we will call non-equilibrium systems. If the parameters β1, β2, . . . of these
multiple reservoirs are all equal then we are effectively back to the situation of a single

233
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reservoir. However, as soon as the reservoir parameters are not all equal, then the system
loses reversibility and develops non-zero currents. A universal recipe for the stationary
measure of a non-equilibrium system is not known. Furthermore, new properties arise,
such as long-range correlations [210] and non-local large deviation functions [22,71]. The
field that is concerned with the emergence of the macroscopic law of transport (e.g.
Fourier’s law, or some other PDE) is nowadays a huge area which is known under the
name of hydrodynamic limits. The use of duality for the emergence of macro-laws, and
the study of fluctuations around the hydrodynamic limit, will be illustrated in Chapter
XI. Here we discuss the use of duality to study the microscopic system and characterize
the non-equilibrium steady state. For systems which combine a duality property with an
integrability property an explicit characterization of the non-equilibrium steady state is
possible, see Section XII.9.

While in this chapter we consider non-equilibrium systems that are obtained by having
multiple reservoirs, i.e., the non-equilibrium is created by boundary driving, it is important
to mention that there are several other possibilities to create a non-equilibrium setup.
One can create bulk-driving by considering asymmetric hopping of particles such as in
the asymmetric exclusion process [74]. Another extensively studied example of a non-
equilibrium system is active particles, i.e., particles which have their own source of energy,
such as e.g. molecular motors. In all these settings, non-equilibrium is characterized by
the absence of time reversibility, the presence of currents and entropy production.

General structure of the models

In this chapter we consider particles moving on a finite set and we select a subset of sites
where particles interact with the external reservoirs. The infinitesimal generator of the
Markov process associated with models of this type can be generically expressed as the
sum of two terms

L = Lbulk + Lres , (X.1)

where Lbulk is the bulk dynamics part of the generator and Lres models the action of the
reservoirs.

Our focus is on finding non-equilibrium models which have a duality property. These
duality properties will then be exploited to gain insight on the structural properties of non-
equilibrium system. Having this in mind, it is convenient to start with a bulk dynamics
that is self-dual (such as those studied in the previous chapters SIP, SEP, IRW). Then
we investigate the conditions on the entrance and exit rates of the particles from the
reservoirs under which we still have the existence of a simpler dual process.

For the sake of clarity, we will start by analyzing, in the next section, the simplest case
of independent particles, i.e. particles performing nearest-neighbour independent random
walks. We will also assume that particles move on a one-dimensional chain that is in
contact with only two reservoirs, coupled to the boundary sites, one at the left and
the other at the right end of the chain. This example serves as an illustration of the
method of associating to a boundary-driven system an absorbing system in the simplest
possible setting where the invariant measure is explicit and in fact a product measure.
In Section X.3 we will consider the more general setting of interacting particles moving
on a graph that is in contact with a set of reservoirs. We will study in details the case
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of symmetric inclusion process, symmetric exclusion process and independent random
walkers, including their inhomogeneous versions. In the Section X.4 we will extend the
analysis to the Brownian energy process with reservoirs.

X.2 Independent random walkers with reservoirs

We consider a linear chain V = {1, . . . , N} put in contact, at its left and right boundaries,
with two particle reservoirs, say reservoir ℓ coupled to site 1 and reservoir r coupled to
site N . Particles can thus leave or enter the system only through the boundary sites 1 and
N . The interesting case is the one where the reservoirs impose on the boundary sites two
different fixed particle densities, say ρr > ρℓ ≥ 0. This generates, throughout the chain, a
current of particles flowing from right to left. In this situation we say that the system is
driven out of equilibrium by the boundary reservoirs which act as external driving forces.

In this section we start with the simplest setting of independent random walker with
nearest-neighbour jumps. From Section III.7 we know that, for independent particles, it
is possible to allow for an asymmetry in the jump rates, and still have duality. We fix
then two jump rates p, q ≥ 0 and define a Markov generator L consisting, as in (X.1), of
two terms:

Lbulk = Lp,q and Lres = pLℓ + qLr (X.2)

where Lp,q describes independent particles in {1, . . . , N} hopping at rate p to the right
neighbour and at rate q to the left neighbour, i.e.

[Lp,qf ](η) =
N−1∑
x=1

{
pηx(f(η

x,x+1)− f(η))) + qηx+1(f(η
x+1,x)− f(η))

}
(X.3)

while Lℓ and Lr describe the action of the reservoirs ℓ and r on the boundaries, where
particles can leave and enter the system:

Lℓ = η1(f(η
1,ℓ)− f(η)) + ρℓ(f(η

ℓ,1)− f(η))

Lr = ηN(f(η
N,r)− f(η)) + ρr(f(η

r,N)− f(η)). (X.4)

Notice that both Lbulk and Lres work on functions f : NN → R, then the state space
of the process {η(t) : t ≥ 0} is Ω = NN . The dynamics is not affected by the actual
number of particles contained in the reservoirs. The latter act in such a way to “impose”
to the boundary sites two fixed particle densities, ρℓ at the left and ρr at the right. This
is a consequence of the following fact. The stationary distribution of Lℓ (resp. Lr) is the
Poisson distribution of parameter ρℓ (resp. ρr), as can be seen from the detailed balance
relation:

ρnℓ
n!

e−ρℓ n =
ρn−1
ℓ

(n− 1)!
e−ρℓ ρℓ for all n ∈ N, n ≥ 1.

As a consequence we can say that, throughout the evolution, each of the two reservoirs
imposes on the corresponding boundary site, a number of particle that is distributed as
a Poisson random variable with parameter ρℓ at the left and ρr at the right.
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From the analysis done in Section III.7 we know that the bulk generator Lp,q can be
written in abstract form in terms of the addition and removal operators

a†xf(η) = f(η + δx)

axf(η) = ηxf(η − δx) (X.5)

in the following way

Lp,q =
N−1∑
x=1

{
p(axa

†
x+1 − axa

†
x) + q(ax+1a

†
x − ax+1a

†
x+1)

}
. (X.6)

A similar rewriting can be done for the reservoir generators

Lℓ = (a1 − a1a
†
1) + ρℓ(a

†
1 − I),

Lr = (aN − aNa
†
N) + ρr(a

†
N − I), (X.7)

where I denotes the identity, i.e., If = f .

Our aim is to extend here, to this new setting, the duality result found in Section III.7
for asymmetric IRW at equilibrium. From Theorem III.24 we know that the bulk term
of the generator Lbulk = Lp,q is dual to the generator Lq,p of the process with exchanged
jump rates, and with the duality function

D(ξ, η) =
N∏
x=1

d(ξx, ηx), with d(k, n) =
n!

(n− k)!
1l{k≤n}. (X.8)

We will see that the addition of reservoirs preserves a duality property. However the
process with reservoirs is no longer self-dual, but it has a dual process with absorbing
sites of the type described in Section IX.6. In other words the duality relation turns
reservoirs into sinks. More precisely we will have an absorbing site corresponding to each
reservoir, so V abs = V res = {ℓ, r}, where now ℓ and r have to be considered as real sites
to be added to the set V , so that the dual particle system will be a Markov process on
the extended set V ∗ = V ∪ V abs with space state Ω∗ = NV ∗

(where we use the notation
introduced in Section IX.6). We denote by {ξ(t) : t ≥ 0} the dual process and we will
show that it has generator Ldual of the form

Ldual = Lq,p + Labs with Labs = pL̂ℓ + qL̂r, (X.9)

working on functions f : Ω∗ → R, where the bulk dynamics is governed by Lq,p that is
obtained from (X.3) by switching the roles of p and q. Notice that Lq,p works only on the
bulk coordinates ξ1, . . . , ξN of a configuration ξ. The generator Labs works instead on the
boundary sites and the corresponding reservoirs, i.e. L̂ℓ works on (ξℓ, ξ1) and L̂r works
on (ξN , ξr) in the following way

[L̂ℓf ](ξ) = ξ1
(
f(ξ1,ℓ)− f(ξ)

)
and [L̂rf ](ξ) = ξN

(
f(ξN,r)− f(ξ)

)
(X.10)

or, in abstract form

L̂ℓ = a1a
†
ℓ − a1a

†
1 and L̂r = aNa

†
r − aNa

†
N . (X.11)
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The generator Labs is exactly of the form considered in (IX.83): a particle jumps at rate p
from 1 to ℓ and at rate q from N to r. When a particle hits V abs, it remains there forever.

In the following lemma we give a duality result for the boundary term Lℓ of the
generator. An analogous property holds for Lr.

LEMMA X.1 (Duality at the boundaries). Define the function

D((ξℓ, ξ1), η1) = ρξℓℓ · η1!

(η1 − ξ1)!
1l{η1≥ξ1}

then we have

[LℓD((ξℓ, ξ1), ·)](η1) = [L̂ℓD((·, ·), η1)](ξℓ, ξ1). (X.12)

PROOF. We have

[LℓD((m, k), ·)](n) = ρmℓ

{(
n!

(n− k − 1)!
− (n+ 1)!

(n− k)!

)
+

(
(n+ 1)!

(n+ 1− k)!
− n!

(n− k)!

)
ρℓ

}
=

n!

(n− k)!
· ρmℓ ·

{
((n− k)− n) +

(
n+ 1

n+ 1− k
− 1

)
ρℓ

}
=

n!

(n− k)!
· ρmℓ ·

{
−k + k

n+ 1− k
ρℓ

}
= k ·

{
n!

(n− k + 1)!
· ρm+1

ℓ − n!

(n− k)!
· ρmℓ

}
= [L̂ℓD((·, ·), n)](m, k) (X.13)

from which follows the result.

We are ready now to give the duality relation between the system with reservoirs and the
system with absorbing boundaries. This is a consequence of the self-duality property of
the system without reservoirs and the “boundary duality” result proven in the previous
lemma. The result is given in terms of generator duality, then semigroup duality follows
from Theorem I.3.

THEOREM X.2 (Duality for a chain with reservoirs). The generators L and Ldual defined
in (X.2) and (X.9) are dual with duality function

D(ξ, η) = ρξℓℓ ρ
ξr
r

N∏
x=1

ηx!

(ηx − ξx)!
. (X.14)

PROOF. The duality of the bulk generators follows from Theorem III.24, and the duality
of the boundary generator follows from Lemma X.1.

We want to use now the above duality result to gain information about the stationary
measure of the process with reservoirs.
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PROPOSITION X.3. (Stationary measure.) The process of independent random walkers
with reservoirs with generator given in (X.1)-(X.2) admits a unique stationary measure
that is a inhomogeneous product of Poisson measures:

µst
ρℓ,ρr

= ⊗x∈VPois(ρx), (X.15)

where the density profile is given by

ρx := ρℓ + (ρr − ρℓ)
x

N + 1
, ∀ x ∈ V (X.16)

for the symmetric case p = q and by

ρx = ρr − (ρr − ρℓ)


(
p
q

)N+1

−
(
p
q

)x
(
p
q

)N+1

− 1

 , ∀ x ∈ V (X.17)

for the asymmetric case p ̸= q.

PROOF. We prove the statement for the symmetric case p = q, since the proof of the
asymmetric case is analogous. Since the particle number is not conserved, and all sites
of the set are connected, the process is irreducible. As a consequence, if there exists a
stationary probability measure, it is unique, and we denote it by µst = µst

ρℓ,ρr
. Moreover

from the ergodicity we have that

lim
t→∞

Eη[D(ξ, η(t))] =

∫
D(ξ, η)µst(dη). (X.18)

On the other hand, using the duality relation (X.14), and since the dual particles are all
eventually absorbed at sites ℓ and r, we have that

lim
t→∞

Eη[D(ξ, η(t))] = lim
t→∞

Eξ[D(ξ(t), η)]

= lim
t→∞

Eξ[ρξℓ(t)ℓ ρξr(t)r ] := Eξ[ρξℓ(∞)
ℓ ρξr(∞)

r ] (X.19)

It remains to compute the r.h.s. of (X.19). Dual particles move, in the bulk, as symmetric
independent random walkers until they reach the absorbing sites ℓ and r. The probability
that a dual particle starting from x is absorbed at ℓ is then equal to 1− x

N+1
. Therefore,

for any initial dual configuration ξ, using the independence of all particles, we have

Eξ[ρξℓ(∞)
ℓ ρξr(∞)

r ] =

|ξ|∑
n=1

Pξ (ξℓ(∞) = n) ρnℓ ρ
|ξ|−n
r

=
∏
x∈V ∗

ξx∑
nx=0

(
ξx
nx

)[(
1− x

N+1

)
ρℓ
]nx
[

x
N+1

ρr
]ξx−nx

=
∏
x∈V ∗

(
ρℓ + (ρr − ρℓ)

x
N+1

)ξx
. (X.20)

Defining the single-site densities as in (X.16) and using (X.18), we deduce that∫
D(ξ, η)µst(dη) =

∏
x∈V ∗

ρξxx .
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As we have seen in the previous chapters, this is a property characterizing products of
Poisson measures. We can then conclude that the unique stationary measure µst = µst

ρℓ,ρr

is a inhomogeneous product of Poisson measures whose site-x marginal has density ρx.
This concludes the proof of (X.15) for q = p.

REMARK X.4. The measure µst is what one usually calls the non-equilibrium steady state.
The linear density profile ρx is the solution of the boundary-value problem associated to
the discrete Dirichlet Laplacian in V = {ℓ, 1, . . . , N, r} associated to the dual process,
with boundary conditions ρℓ and ρr, i.e.

q(ρx+1 − ρx) + p(ρx−1 − ρx) = 0, ∀ 2 ≤ x ≤ N − 1

q(ρ2 − ρ1) + p(ρℓ − ρ1) = 0,

q(ρr − ρN) + p(ρN−1 − ρN) = 0.

The linear density profile (X.16) obtained for the symmetric case will appear quite often in
non-equilibrium steady states of symmetric systems with duality. On the other hand, the
fact that the measure is product is exceptional and peculiar of zero-range processes [27].
A process is called “zero-range” if the jump rate of a particle only depends on the number
of particles at the departure site. Finally we notice that, if we put ρℓ = ρr = ρ in (X.16)
we obtain exactly the Poisson product measure with constant density ρ, i.e. the reversible
product measure of independent random walkers at equilibrium.

X.3 Interacting particle systems with reservoirs

In this section we generalize the duality result obtained for the IRW on a chain, by
extending the analysis in several directions. We will restrict to considering systems with
symmetric interaction. As we have seen in the previous chapters, duality properties of
symmetric processes do not depend on the geometry of the system. This is due to the
fact that they are derived via duality of the “single edge” generator, which is then copied
along the edges of a general graph. Thus, as a first generalization, we will consider here
particles moving on an arbitrary graph. This is put in contact with a set of reservoirs
V res. Each reservoir is in contact with a subset of bulk sites, through which particles can
leave or enter the system.

Furthermore, we want to broaden the analysis done in the previous section by also
introducing an interaction component in the dynamics. To this aim it is natural to assume
that particles, when in the bulk, jump with symmetric exclusion/inclusion rates. This
guarantees the existence of a self-duality property, at least for what concerns the bulk
term of the generator.

X.3.1 Set-up

We fix a finite set V and, as in Definition IX.17, a set of parameters (θ,α, p). Here
θ ∈ {−1, 0,+1} is the parameter determining the nature of the interaction and α =
{αx, x ∈ V } is a vector taking values in NV when θ = −1 and in RV

+ when θ ∈ {0,+1}.
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Moreover we fix a symmetric, irreducible transition function p : V × V → [0,+∞) (as
defined at the beginning of Section II.1). We consider a particle system {η(t) : t ≥ 0} on
the set V , with generator L = L(θ,α,p) of the type

L := Lbulk + Lres , (X.21)

where Lbulk, resp. Lres, denote the bulk and the reservoir terms of the generator. We
recall that the state space is

Ωθ,α = ⊗x∈VΥ
(θ)
x (X.22)

where Υ
(θ)
x is the space of occupation numbers of the x-th site, i.e.

Υ(θ)
x =

{
N for θ ∈ {0,+1}
{1, 2, . . . , αx} for θ = −1 .

(X.23)

Bulk system

We will assume that the bulk term Lbulk is the generator of the reference process with
parameters (θ,α, p) (see Definition IX.17), i.e.

Lbulk :=
1

2

∑
x,y∈V

p(x, y)Lbulk
x,y with (X.24)

Lbulk
x,y f(η) := ηx(αy + θηy)[f(η

x,y)− f(η)] + ηy(αx + θηx)[f(η
y,x)− f(η)]

acting on functions f : Ωθ,α → R. Here we remind that θ ∈ {−1, 0,+1} is the parameter
fixing the type of interaction. More precisely Lbulk is, depending on whether θ is equal
to −1, 0 or 1, respectively the generator of the symmetric exclusion process, independent
random walkers or inclusion process as described in the scheme (IX.68).

Reservoirs

For what concerns the second term of the generator Lres, we want it to model the action of
reservoirs placed at external sites contained in a finite set V res disjoint from V , V ∩V res =
∅. We also define the extended set V ∗ = V ∪ V res. The generator Lres reads

Lres =
∑
x∈V
y∈V res

p(x, y)αy Lx,y (X.25)

where, for (x, y) ∈ V × V res,

Lx,yf(η) = ηx(1 + θρy)[f(η − δx)− f(η)] + ρy(αx + θηx)[f(η + δx)− f(η)] (X.26)

acting on functions f : Ωθ,α → R.

Notice the analogy between (X.26) and the jump rates in the bulk (X.24). Comparing
the two it seems that the parameter ρx can be interpreted as the particle (weighted)
density imposed by the reservoir x ∈ V res. This is kept fixed throughout the dynamics
and, in order to have reversibility, it has to be the same for all reservoirs, as we will see
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below. We collect the “reservoir (weighted) densities” in a vector that we will denote by
ρres = {ρx, x ∈ V res}. The reason for which we use the expression weighted densities and
not simply densities will be clarified later on.

Here we have extended to the set V ∗ the vector of α = {αx, x ∈ V ∗}. In the same
way, the transition function p : V × V ∗ → R appearing in (X.25) is an extended version
of the one appearing in the bulk generator. In order to assure the irriducibility of the
Markov process, we assume that p is an “allowed transition function” as in the definition
below.

DEFINITION X.5. We say that a function p : V × V ∗ → [0,∞) is an allowed transition
function if its restriction to the domain V × V is symmetric and irreducible, and for all
y ∈ V res there exists at least a x ∈ V such that p(x, y) > 0. Moreover, let x ∈ V be a bulk
site and y ∈ V ∗ a site of the extended set, we say that they are connected, x ∼ y, if and
only if p(x, y) > 0.

Notice that the relation ∼ is not an equivalence relation. Indeed the transition function
p(x, y) is not defined on a couple of reservoir sites, i.e. for (x, y) ∈ V res × V res. This
choice has the meaning that different reservoirs are not connected with each other. This
is reasonable because reservoirs will have the role of sites whose densities are kept constant
during the dynamics, so they are assumed not to interact with each other. Nevertheless
the relation ∼ can be viewed as an equivalence relation if restricted to the bulk set V .

Bulk sites that are in contact with one of the reservoirs, i.e. the sites x ∈ V so that
x ∼ y for some y ∈ V res, can then be viewed as boundary sites. Reservoir and bulk regions
have different natures because jump rates between a bulk site x ∈ V and a reservoir site
y ∈ V res only depend on the number of particles in x.

We conclude here by resuming the definition of the process with reservoirs introduced
so far and that we are going to study in more details in the course of this section. We
remind the definitions of the sets

Rθ :=

{
[0,+∞) for θ ∈ {0, 1}
[0, 1] for θ = −1

and Aθ =

{
(0,∞) for θ ∈ {0, 1}
N for θ = −1.

(X.27)

DEFINITION X.6. Let V, V res be two disjoint sets, with V finite, fix θ ∈ {−1, 0, 1}, α =
{αx, x ∈ V ∗}, αx ∈ Aθ, and ρres = {ρy y ∈ V res}, ρy ∈ Rθ. Fix moreover an allowed
transition function p : V × V ∗ → [0,∞). We say that a process {η(t) : t ≥ 0} on the set
V is a reference process in contact with reservoirs V res with (weighted) density reservoir
profile ρres if it has state space Ωθ,α as in (IX.66) and generator

L = Lbulk + Lres (X.28)

with

Lbulk =
1

2

∑
x,y∈V

p(x, y)Lx,y, Lres =
∑
x∈V
y∈V res

p(x, y)αy Lx,y

where, for x, y ∈ V ,

Lx,yf(η) = ηx(αy + θηy)[f(η
x,y)− f(η)] + ηy(αx + θηx)[f(η

y,x)− f(η)] (X.29)
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and, for (x, y) ∈ V × V res,

Lx,yf(η) = ηx(1 + θρy)[f(η − δx)− f(η)] + ρy(αx + θηx)[f(η + δx)− f(η)] (X.30)

acting on functions f : Ωθ,α → R.

For the sake of simplicity, in this section, we will often omit the dependence on the
parameters (θ,α,ρres, p) in the notation for generator, duality function, and space state.

Equilibrium systems

The system without reservoirs, i.e. the reference process with generator Lbulk, obtained by
choosing p(x, y) = 0 for all (x, y) ∈ V × V res, admits a one-parameter family of reversible
product measures

{νρ,θ,α, ρ ∈ Rθ} with (X.31)

νρ,θ,α = ⊗x∈V νρ,θ,αx with marginals given by:

νρ,θ,α(n) =



(ρα)n

n!
· e−ρα for θ = 0, Pois(ρα)

1
(1+ρ)α

·
(

ρ
1+ρ

)n
· Γ(α+n)
n!Γ(α)

for θ = +1, DGamma
(
α, ρ

1+ρ

)
(1− ρ)α ·

(
ρ

1−ρ

)n
· Γ(α+1)
n!Γ(α+1−n) for θ = −1, Bin (α, ρ) .

(X.32)
In the next proposition we show that, when adding reservoirs with equal reservoir param-
eters, i.e. ρx = ρ for all x ∈ V res the system will have, as its unique stationary measure,
the reversible product measure νρ,θ,α i.e. the reversible product measure of the bulk gen-
erator having parameter that is equal to the reservoir density ρ. Moreover the system will
satisfy detailed balance and is therefore referred to as equilibrium system.

PROPOSITION X.7. The probability measure νρ,θ,α is reversible for the reference process
in Definition X.6 with constant (weighted) reservoir density profile ρres = {ρx, x ∈ V res},
ρx = ρ for all x ∈ V res.

PROOF. We prove the statement for the case θ = 1 as the proof is analogous for other
cases. We know that νρ,1,α satisfies the detailed balance condition for Lbulk. Then, in
order for it to be a reversible measure for the entire process, we have to verify the detailed
balance condition for the reservoir term of the generator:

αyρ(αx + θn)νρ,1,αx(n) = αy(n+ 1) (1 + ρ) νρ,1,αx(n+ 1), ∀ n ∈ Υx . (X.33)

This immediately follows from the definition of νρ,1,α. Indeed,

νρ,1,αx(n+ 1)

νρ,1,αx(n)
=

ρ

n+ 1
· 1

1 + ρ
· Γ(αx + n+ 1)

Γ(αx + n)
=

ρ

n+ 1
· αx + n

1 + ρ
(X.34)

for all x ∈ V , y ∈ V res. This concludes the proof.
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We recall that, according to the reversible measure νρ,θ,α the parameter ρ has the
meaning of single-site particle density divided by the attraction intensity of the site:

ρx = Eνρ,θ,α

[
ηx
αx

]
(X.35)

this is the reason why we refer to this value as to the weighted density imposed by the
reservoirs. In the equilibrium set-up this is homogeneous throughout V .

Non-equilibrium systems

We say that the process {η(t), t ≥ 0} is a non-equilibrium system if the reservoir densities
are not all equal, i.e., if there exist at least two different reservoirs x, y ∈ V res having dif-
ferent densities ρx ̸= ρy. Typically in this set-up reversibility is lost and the system carries
currents of particles flowing between reservoirs. In the long run, the system approaches
a stationary measure that is called non-equilibrium stationary steate (NESS) that we will
denote by µst. Assuming, for the moment, the existence and uniqueness of µst (which will
be proven below), we define the (weighted) stationary density profile as follows:

ρst = {ρx, x ∈ V } with ρstx := Eµst
[
ηx
αx

]
. (X.36)

We have seen that, if all the reservoirs impose the same density ρ, then the system is
reversible with reversible measure νρ, and then also the bulk density profile is flat, i.e.
ρx = ρ for all x ∈ V . Thus, in order to produce a non-homogeneous ρ we need to impose
a non-homogeneous reservoir density profile

ρres := {ρy, y ∈ V res} with ρy ∈ Rθ. (X.37)

In this way each reservoir y ∈ V res has its own reversible measure νρy ,θ,α and then it
tries to induce, to every bulk site to which it is connected, a weighted density ρy. In
Section X.3.2 below we will see that for any choice of the reservoir rates ρres we have an
absobing dual process. Then, in Section X.3.3 we will use duality to prove the existence
and uniqueness of the stationary measure µst.

The simplest geometrical setting of non-equilibrium is the one that we have seen in
Section X.2 for independent random walkers. Namely, a one-dimensional finite chain
{1, . . . , N} is put in contact with a left reservoir, only interacting with site 1, and with
a right reservoir, only interacting with site N , kept at fixed different densities ρℓ and ρr.
Of course this is not the only way to induce a current in a system, but still the easiest
to treat. In the last few years an increasing interest has emerged for non-equilibrium
models considering a system interacting with many (eventually infinite) reservoirs, non
locally interacting with the bulk sites [18–21]. The duality results do not depend on the
number of reservoirs and on the way they are coupled to the bulk sites, for this reason we
keep the setting as general as possible. The case of the chain in contact with two local
reservoirs will then simply be a particular case of this more general setting. We will treat
the one-dimensional set up with two reservoirs in Section X.3.5.
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X.3.2 Triangular duality

Bulk self-duality

We remind the reader that the system without reservoirs is self-dual with respect to the
duality function

Dbulk
θ,α (ξ, η) =

∏
x∈V

dθ,αx(ξx, ηx), (X.38)

with

dθ,α(k, n) =
n!

(n− k)!
1l{k≤n} ·



1
αk for θ = 0

Γ(α)
Γ(α+k)

for θ = +1

Γ(α+1−k)
Γ(α+1)

for θ = −1

(X.39)

in other words Dbulk is a self-duality for the bulk-term of the generator Lbulk. In this
chapter we will denote this function by Dbulk(·, ·) in order to distinguish it from the
duality function of the entire generator L that we are going to introduce below.

Duality with a system with absorbing sites

With the addition of reservoirs the reference process is no longer self-dual but we will see
that it is dual to a process with absorbing sites of the type of those studied in Section
IX.6. We start by defining the dual process.

We consider a Markov process {ξ(t) : t ≥ 0} modelling particles moving on the extended
set V ∗ = V ∪ V res where now the sites in the set V res are absorbing sites. In other
words, V res has now the role of what we denoted by V abs in Section IX.6. Particles can
reach the absorbing sites only passing through the bulk sites connected to them, i.e. only
through the bonds (x, y) ∈ V × V res, with x ∼ y, where the relation ∼ is induced by the
allowed transition function p : V × V ∗ → [0,∞) that is the same of the one appearing in
Definition X.6. Particles hitting V res are now absorbed and do not move anymore. The
process depends on the parameters (θ,α, p) as in the previous section and it has generator
given by:

Ldual := Lbulk + Labs (X.40)

with Lbulk as in (X.24) and

Labs :=
∑
x∈V
y∈V abs

p(x, y)αy L
abs
x,y , Labs

x,yf(ξ) := ξx [f(ξ
x,y)− f(ξ)] . (X.41)

Notice that, differently from the reference process with reservoirs, this process has a
generator that acts also on the absorbing sites variables ξy, y,∈ V res. As a consequence,
{ξ(t) : t ≥ 0} has, as state space, the extended space Ω∗

θ,α = Ωθ,α×Ωres with Ωres = NV res

(see also (IX.81)), that is different from the state space Ωθ,α of the reference process with
reservoirs.

In what follows we will often omit, for the sake of simplicity, the dependence on the pa-
rameters (θ,α, p) in the notation of the generators, state spaces and functions depending
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on them. Nevertheless we will keep stressing the dependence of some of the parameters
when we think it is necessary.

We are ready now to prove the duality result that we announced at the beginning of this
section.

THEOREM X.8 (Triangular duality for non-equilibrium systems). The reference process
on the set V , in contact with reservoirs V res and with reservoir density profile ρres is dual
to the process with absorbing sites V res defined above with generator(X.40)-(X.41) with
respect to the duality function Dρres,θ,α : Ω∗

θ,α × Ωθ,α → R given by

Dρres,θ,α(ξ, η) = Dbulk
θ,α (ξ, η) ·

∏
y∈V res

ρξyy (X.42)

where Dbulk
θ,α is the function defined in (X.38)-(X.39).

PROOF. We know that the process generated by the operator Lbulk is self-dual with duality
function Dbulk. This means that the action of Lbulk on Dbulk(·, η) and on Dbulk(ξ, ·) is the
same. Thus, since Lbulk does not act on the V res-components of ξ, we have that

[LbulkDbulk(·, η)](ξ) = [LbulkDbulk(ξ, ·)](η). (X.43)

It remains to verify that the actions, on the duality function, of the boundary components
of L and Ldual are the same. In other words we have to verify that

Lres
x,yD(ξ, ·)(η) = Labs

x,yD(·, η)(ξ) for all x ∈ V, y ∈ V res. (X.44)

Fix (x, y) ∈ V × V res, we have

[Lres
x,yD(ξ, ·)](η) = ρy(αx + θηx)[D(ξ, η + δx)−D(ξ, η)] + ηx(1 + θρy)[D(ξ, η − δx)−D(ξ, η)]

= D(ξ, η)
(ηx − ξx)!

ηx!
·

{
ρy(αx + θηx)

[
(ηx + 1)!

(ηx + 1− ξx)!
− ηx!

(ηx − ξx)!

]

+ ηx(1 + θρy)

[
(ηx − 1)!

(ηx − 1− ξx)!
− ηx!

(ηx − ξx)!

]}
= D(ξ, η)

ξx
(ηx + 1− ξx)

· {ρy(αx + θηx)− (1 + θρy)(ηx + 1− ξx)}

= D(ξ, η)
ξx

(ηx + 1− ξx)
· {ρy(αx + θξx − θ)− (ηx + 1− ξx)}

= ξx

[
ρy

(αx + θξx − θ)

(ηx + 1− ξx)
D(ξ, η)− D(ξ, η)

]
= ξx[D(ξx,y, η)−D(ξ, η)] = [Labs

x,yD(·, η)](ξ) (X.45)

This concludes the proof.
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REMARK X.9. We notice that the dual process belongs to the class of consistent processes
with absorbing sites studied in Section IX.6. The bulk-term generator Lbulk is indeed the
generator of a reference process that we know to be consistent, and {ξ(t) : t ≥ 0} is
nothing else than an absorbing extension of this to the set V ∗. This is then consistent as
a consequence of Lemma IX.21.

X.3.3 Non-equilibrium steady state

In this section we use duality to prove existence and uniqueness of the stationary measure
µst for all values of the parameter θ and to infer some of its properties. In particular we
will analyze the shape of the stationary density profile and we will study the two-point
correlations proving that these are non-zero whenever θ ̸= 0.

Existence and uniqueness

When the process has a finite state space, the existence of a unique stationary measure µst

if assured under the condition of irreducibility, that follows, in turn, from the condition
of irreducibility of the transition function p restricted to the bulk sites.

PROPOSITION X.10. Let {η(t), t ≥ 0} be the reference process on a finite set V defined
in Definition X.6, then the process is irreducible.

Assuming that p(·, ·) is an allowed transition function, the proof of existence and unique-
ness of µst is then immediate for the exclusion process (θ = −1), which is an irreducible
Markov chain on the finite state space Ω−1,α. It remains to study the cases of IRW (θ = 0)
and SIP (θ = 1), which are still irreducible Markov chains, but on the infinite state space
Ω0,α. The final result is the object of the next theorem whose proof relies on the duality
property shown in the previous section.

In what follows we will show that for the boundary-driven systems under study there is
a unique stationary measure and moreover, from any initial condition there is convergence
in the course of time to that unique stationary measure. I.e., for all bounded functions
f : Ω → R and for all probability measures µ on Ω we have

lim
t→∞

Eµ [f(η(t))] = Eµst [f(η)] . (X.46)

We will prove that this is true, for our reference process with reservoirs, when choosing
f equal to the duality polynomials: f(·) = D(ξ, ·), for all ξ ∈ Ω∗. The duality moments
{Est

µ [D(ξ, η)], ξ ∈ Ω∗} are then sufficient to characterize the stationary distribution µst.

In order to prove our existence and uniqueness result we use the following:

LEMMA X.11. Let µ be a probability measure on Ω. If there exists ρ ∈ Rθ = [0,∞) such
that

Eµ [D(ξ, η)] ≤ ρ|ξ| (X.47)

for all ξ ∈ Ω∗, then µ is uniquely determined by the expectations (X.47).
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PROOF. We start by expressing the moments of the occupancies ηx, x ∈ V , in terms of
single-site triangular duality functions defined in (X.42)-(X.38)-(X.39). Defining

wx(m) =

{
αmx for θ = 0
Γ(αx+m)
Γ(αx)

for θ = 1
(X.48)

we have that, for all x ∈ V , and for all k, n ∈ N0,

nk =
k∑

m=0

{
k

m

}
n!

(n−m)!
=

k∑
m=0

{
k

m

}
dαx(m,n)wx(m), (X.49)

where
{
k
m

}
denotes the Stirling number of the second kind given by{

k

m

}
=

1

m!

m∑
j=0

(−1)m−j
(
m

j

)
jk . (X.50)

In view of (X.47), we obtain

Eµ
[
ηkx
]
=

k∑
m=0

{
k

m

}
Eµ [D(mδx, η)]wx(m)

≤
k∑

m=0

wx(m)

m!
Eµ [D(mδx, η)]

m∑
j=0

(
m

j

)
jk

≤ kk
k∑

m=0

(2ρ)m

m!
wx(m) .

In both cases with θ = 0 and θ = 1, we get

Eµ
[
ηkx
]

≤ (cxk)
k , (X.51)

for all k ∈ N, with cx = (1 + 2ραx) for θ = 0 and cx = ⌊αx⌋!(1 + 2ρ)⌊αx⌋+1 for θ = 1.
Therefore (X.51) yields

∞∑
k=1

(
Eµ
[
η2kx
])− 1

2k ≥ 1

cx

∞∑
k=1

1

2k
= ∞ .

Because the above condition holds for all x ∈ V , the multidimensional Carleman condi-
tion (see e.g. Theorem 14.19 [200]) applies. Hence, µ is completely characterized by the
moments {Eµ

[
ηkx
]
: x ∈ V, k ∈ N}.

THEOREM X.12 (Existence and uniqueness of the non-equilibrium steady state). Let
{η(t) : t ≥ 0} be a reference process with reservoirs, on the extended set V ∗ = V ∪ V res,
with V finite and with p : V × V ∗ → [0,∞) an allowed transition function. Then the
process admits a unique stationary measure µst.
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PROOF. By means of duality, we observe that, for all η ∈ Ω and ξ ∈ Ω∗ with |ξ| = k,

lim
t→∞

Eη [D(ξ, η(t))] = lim
t→∞

Eξ [D(ξ(t), η)] = Eξ
[ ∏
y∈V res

ρξy(∞)
y

]
. (X.52)

We note that the expression above does not depend on η ∈ Ω and, moreover,

lim
t→∞

Eη [D(ξ, η(t))] ≤
(
max
y∈V res

ρy

)|ξ|

≤ ρ|ξ|∗

for all ξ ∈ Ω∗ and for some ρ∗ ∈ Rθ. Therefore, by Lemma X.11, there exists a unique
probability measure µst on Ω such that

Eµst [D(ξ, η)] = Eξ
[ ∏
y∈V res

ρξy(∞)
y

]

then, from (X.52) it follows that µst is the unique stationary probability measure.

In what follows we will assume that the hypothesis of Theorem X.12 are satisfied and we
will denote by µst the stationary measure of a generic reference process with reservoirs,
keeping in mind that it depends on the parameters ρres, θ and α. If the reservoir density
profile ρres is flat, i.e. if ρy = ρ for all y ∈ V res, then the stationary measure µst = νρ,θ,α
is also a reversible measure.

If there exist at least two reservoirs y, y′ ∈ V res with different densities ρy ̸= ρy′ , none of
the measures in the set {νρ,θ,α, ρ ∈ Rθ} is stationary. Moreover, as we will see in the
course of this section, µst is no longer a product measure, except for the case of IRW
(θ = 0).

The stationary weighted density profile: 1 dual particle

The external reservoirs induce, in the long-time limit, a weighted density profile ρst =
{ρstx , x ∈ V } in the bulk. We show below that this density profile solves a discrete Dirichlet
problem, which corresponds to the absorption probabilities of a single dual particle. In
the simplest setting of the chain with nearest neighbor jumps, this is a linear profile. On a
general graph with multiple reservoirs, one can not expect to have a closed-form formula
for the weighted density profile. We show below that it can even occur that in the bulk
the stationary weighted density profile is constant, and the corresponding non-equilibrium
steady state is not an equilibrium product measure.

From the duality relation we can extract relevant information about the stationary
weighted density profile. To obtain this, we compute the duality moments plugging in
one-particle dual configurations, i.e. ξ = δx, for some x ∈ V . Using (X.38)-(X.39), we
have

Dθ(δx, η) =
ηx
αx

for all θ ∈ {−1, 0,+1} (X.53)
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and, as a consequence, from the duality relation we have

Eµstθ

[
ηx
αx

]
=

∫
Dθ(δx, η)µ

st
θ (dη)

=
∑
y∈V res

ρy ·Px(X
rw(∞) = y) = Ex

[
ρXrw(∞)

]
(X.54)

where {Xrw(t), t ≥ 0} is the random walker on V ∗ associated to the configuration process
{ξ(t) : t ≥ 0} corresponding to a single dual particle which is eventually absorbed in the
set V res. Then, recalling the definition of local stationary density ρstx , x ∈ V , given in
(X.36), from (X.54) we deduce that

ρstx = Ex

[
ρXrw(∞)

]
, for all x ∈ V ∗. (X.55)

We remark that the random walker {Xrw(t), t ≥ 0} has jump rates that do not depend on
θ, hence it can be thought of as one of the random walkers of the system of independent
random walkers corresponding to the case θ = 0. As a consequence we have that the bulk
density profile ρst = {ρstx , x ∈ V } is the same for the three cases θ ∈ {−1, 0, 1}, and it
only depends on the geometry of the system (determined by the parameters p and α) and
on the reservoirs density profile ρres.

Starting from (X.55) and using that the dual random walk moves form x ∈ V to
y ∈ V ∗ at rate αyp(x, y) we get the equation satisfied by ρst∑

y∈V ∗

p(x, y)αy (ρ
st
y − ρstx ) = 0, x ∈ V. (X.56)

This is the discrete analogue of the boundary-value problem associated to the Dirichlet
Laplacian. Notice that the bulk densities ρst = {ρstx , x ∈ V } are the unknown of the sys-
tem, whereas the reservoir densities ρres = {ρx, x ∈ V res} can be thought of as boundary
conditions.

In the proposition below, we derive sufficient conditions on the parameters of the process
and the reservoir parameters such that in the bulk the stationary weighted density profile
is constant. Notice that this is of course the case when the reservoir densities are constant,
but as the proposition shows it can happen that also in a non-equilibrium setting, i.e., for
non-constant reservoir densities the profile is constant.

PROPOSITION X.13. The stationary weighted density profile ρst is homogeneous if and
only the reservoir density profile ρres = {ρy, y ∈ V res} satisfies∑

y∈V res

αy p(x, y)∑
v∈V res αv p(x, v)

ρy = ρ for all x ∈ V, (X.57)

for some ρ ∈ Rθ.

The term in the r.h.s. of (X.57) is the average density imposed to the bulk site x ∈ V
by the whole set of reservoirs to which it is connected. According to (X.57), this average
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density imposed from outside has to be the same for all bulk sites x ∈ V . Notice that, in
general, the condition (X.57) is weaker than the condition for reversibility with respect to
a strictly positive product reversible measure that requires a flat reservoir density profile
ρy = ρ for all y ∈ V res. As a consequence, we have that an inhomogeneous reservoir
density profile ρres can still induce a homogeneous bulk density profile ρst, even if it can
not induce reversibility. Only in the case of two reservoirs, that will be treated in Section
X.3.5, a homogeneous bulk density profile can be produced if and only if the two reservoir
densities are equal.

Non-product nature of the stationary measure

In this subsection we prove that the non-equilibrium steady state is a product measure
only in the case θ = 0 (independent random walkers) or in the case that the reservoir
density profile is constant, in which case we have a reversible equilibrium measure. I.e., in
all interacting cases θ ∈ {−1, 1} and non-constant reservoir density, the non-equilibrium
steady state is not a product measure.

DEFINITION X.14 (Product measures associated to the reference process). The product
measure associated to the reference process is defined as

νρst = νρst,θ,α := ⊗x∈V νρstx ,θ,αx , (X.58)

where ρst := {ρstx : x ∈ V } is the stationary weighted density profile of the process and
νρ,θ,αx is the measure defined in (X.32).

THEOREM X.15 (Non-product nature of the stationary measure). Let {η(t) : t ≥ 0} be
a reference process with reservoir density profile ρres = {ρy, y ∈ V res}. Suppose moreover
that the conditions of Theorem X.12 are satisfied and let µst be the unique stationary
measure of the process. Then

a) for θ = 0,

µst = νρst , (X.59)

b) for θ ∈ {−1,+1}, µst is a product measure if and only if ρres is constant, i.e. ρresy = ρ
for all y ∈ V res; in this case, µst = νρres which is then also a reversible measure.

PROOF. We first prove item a). Fix θ = 0, we have to prove that, for all ξ ∈ Ω∗,∫
Ω

[Lf ](η) νρst(dη) = 0 (X.60)

for all measurable f . For simplicity we will denote by dx(·, ·) the one-site duality function
defined in (X.39) and by νx,ρx the marginal νρx,0,αx defined in (X.32) that is a Poisson
measure of parameter αxρx. Then the following relation holds∑

n∈Υx

dx(k, n) νx,ρx(n) = ρkx , for all k ∈ Υx. (X.61)
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Then, using duality we obtain, for all ξ ∈ Ω∗,∫
Ω

[LD(ξ, ·)] νρst(dη)

=

∫
Ω

[LdualD(·, η)](ξ) νρst(dη)

=
1

2

∑
x,y∈V

p(x, y)

∫
Ω

{ξx(αy + θξy)[D(ξx,y, η)−D(ξ, η)]} νρst(dη)

+
1

2

∑
x,y∈V

p(x, y)

∫
Ω

{ξy(αx + θξx)[D(ξy,x, η)−D(ξ, η)]} νρst(dη)

+
∑
x∈V
y∈V res

p(x, y)

∫
Ω

ξx [D(ξx,y, η)−D(ξ, η)] νρst(dη).

Hence, using the fact that∫
Ω

D(ξx,y, η) νρst(dη) = ρy

∫
Ω

D(ξ − δx, η) νρst(dη)∫
Ω

D(ξ, η) νρst(dη) = ρx

∫
Ω

D(ξ − δx, η) νρst(dη)

(X.62)

we obtain ∫
Ω

[LD(ξ, ·)] νρst(dη)

=
∑
x∈V

(∫
Ω

D(ξ − δx, η) νρst(dη)

){ ∑
y∈V res

p(x, y) ξx(ρy − ρx)

+ 1
2

∑
y∈V

p(x, y) [(ρy − ρx)ξx(αy + θξy) + (ρx − ρy)ξy(αx + θξx)]

}
=
∑
x∈V

(∫
Ω

D(ξ − δx, η) νρst(dη)

)
ξx ·

∑
y∈V ∗

p(x, y)αy (ρy − ρx) = 0 ,

where in the last identity we used the equations (X.56). Then (X.60) follows because the
products of Poisson distributions are completely characterized by their factorial moments∫

Ω

D(ξ, η) νρst(dη), ξ ∈ Ω∗. (X.63)

We prove now item b). Let θ ̸= 0, from Proposition X.7 we know that if ρres is a flat
profile equal to ρ everywhere, then νρ is a the unique stationary measure that is product
and also reversible. Suppose now that µst is product, then, in particular, all two-point
correlations are zero, i.e. for all x, y ∈ V with x ̸= y,

Eµst
[
ηx
αx

· ηy
αy

]
= Eµst [D(δx + δy, η)] = ρxρy. (X.64)
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then, using the following shortcut,

ρ′′x := Eµst [D(2δx, η)] ,

by stationarity, duality and (X.64), we obtain, for all x ∈ V ,∫
Ω

L[D(2δx, ·)](η)µst(dη) =

∫
Ω

[LdualD(·, η)](2δx)µst(dη)

= 2
∑
y∈V ∗

p(x, y)αy (ρy ρx − ρ′′x) = 0.

By adding and subtracting 2
∑

y∈V ∗ p(x, y)αyρ
2
x to the identity above and using equation

(X.56), we get

2
(
ρ2x − ρ′′x

) ∑
y∈V ∗

p(x, y)αy = 0 for all x ∈ V.

Then, since αy > 0 for all y ∈ V ∗, from the fact that p(·, ·) is an allowed transition
function, we deduce that

ρ′′x = ρ2x , for all x ∈ V . (X.65)

Fix now x, y ∈ V , x ̸= y. Using (X.64), (X.65), stationarity of µst and duality, we get

0 =

∫
Ω

[LD(δx + δy, ·)](η)µst(dη) =

∫
Ω

[LdualD(·, η)](δx + δy)µ
st(dη)

= ρy
∑
u∈V ∗

p(x, u)αu (ρu − ρx) + ρx
∑
u∈V ∗

p(y, u)αu (ρu − ρy) + θ p(x, y) (ρx − ρy)
2

= θ p(x, y) (ρx − ρy)
2 for all x, y ∈ V (X.66)

where in the last identity we used (X.56). Since θ ̸= 0, then the identity above implies,
in particular, that for all fixed x ∈ V ,∑

y∈V

p(x, y) (ρx − ρy)
2 = 0 (X.67)

then, from the fact that p(·, ·) is an allowed transition function, we have that (X.67) can
be true if and only if

ρx = ρy , for all x, y ∈ V. (X.68)

This concludes the proof.

Higher order moments: n dual particles

When θ ̸= 0 and the reservoirs impose non-homogeneous densities, the stationary measure
µst is not of a product form. This makes it difficult to compute it explicitly. Nevertheless,
thanks to duality, it is possible to find an analytic expression for the stationary moments
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in terms of the absorption probabilities of the dual process. Using duality and (X.46) we
obtain ∫

Dθ(ξ, η)µ
st
θ (dη) = lim

t→∞
Eµ [Dθ(ξ, η(t))] = Eξ

[ ∏
y∈V res

ρξy(∞)
y

]
. (X.69)

Here we stress only the dependence on the parameter θ, in order to underline the different
properties of the cases θ = 0 (IRW) and θ ̸= 0 (SEP and SIP). For θ ̸= 0 and ρres non-
homogeneous, we know that µst is no longer a product measure and then the correlation
functions do not factorize. Nevertheless for ξ =

∑n
i=1 δxi with xi mutually different

vertices from (X.69) we have that

Eµstθ

[
n∏
x=1

ηxi
αxi

]
= Eξ

[ ∏
y∈V res

ρξy(∞)
y

]
. (X.70)

In Section X.3.5 below we will see that, when there are only two reservoirs, thanks to
the consistency of the dual process, it is possible to write these multivariate moments in
terms of the probability that all the dual particles are absorbed in one of the two sinks.

X.3.4 Orthogonal duality

As we saw in the previous subsection, duality between systems driven by reservoirs and
systems with absorbing boundaries with triangular duality functions allows to express
multivariate moments in the non-equilibrium steady state in terms of absorption proba-
bilities of dual particles. Besides moment, we are also interested in correlation functions
and cumulants, which measure the deviation between the non-equilibrium steady state
and a product measure, and whose scaling behavior can quantify the deviation from local
equilibrium. In order to understand the behavior of cumulants, it is natural to turn to
orthogonal duality functions, and to search for the analogue of (X.42) where in the bulk
instead of triangular duality functions we have orthogonal ones. This naturally leads to an
extra parameter associated to these duality functions, namely the density of the reversible
measure w.r.t. which they are orthogonal. A proper choice of this density parameter, in
particular in the case of two reservoir parameters, leads to relevant information about
correlations in the non-equilibrium steady state, as we will see e.g. in Theorem X.29
below.

In Chapter VIII we have seen that the triangular functions (X.38)-(X.39) are not
the only self-dualities of the reference processes without reservoirs, as they admit also
a class of orthogonal self-duality functions. These are the functions Dρ, ρ ∈ Rθ, found
in Theorem VIII.5. In this section we investigate the possibility to preserve a duality
relation of the same type when adding reservoirs to a reference process. We want the
dual process to be again the process with absorbing sites (X.40)-(X.41). Here we will
use the notation Dbulk

ρ = Dbulk
ρ,θ,α for the bulk duality functions of Theorem VIII.5, where,

when necessary, we will stress also the dependence on the parameters θ ∈ {−1, 0,+1}
determining the process and α = {αx, x ∈ V }. We recall the explicit expression of the
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function Dbulk
ρ,θ,α : Ω× Ω → R:

Dbulk
ρ,θ,α(ξ, η) =

∏
x∈V

dorρ,θ,αx
(ξx, ηx) (X.71)

with dorρ,θ,α(k, n) = (−ρ)k ·


2F0

[
−k − n

−
;− 1

ρα

]
θ = 0,

2F1

[
−k − n

θα
;−θ

ρ

]
θ ∈ {−1, 1},

(X.72)

that is thus a self-duality function for the reference process (without reservoirs) with
parameters (θ,α, p). We recall, moreover, that the set of functions {Dbulk

ρ,θ,α(ξ, ·), ξ ∈ Ω} is
an orthogonal basis of L2(Ω, νρ,θ,α), where νρ,θ,α is the reversible product measure defined
in (X.32).

We want to find now orthogonal polynomial duality functions between the reference pro-
cess with reservoirs and the reference process with absorbing boundaries. As we did for
triangular duality functions in Section X.3.2 we look in the class of functions obtained by
multiplying the bulk orthogonal dualities Dbulk

ρ,θ,α by a term depending only on absorbing
sites occupancies, ξy, y ∈ V res. In other words we look for functions Dρ,θ,α : Ω∗ × Ω → R
of the type

Dρ,θ,α(ξ, η) = Dbulk
ρ,θ,α(ξ, η) ·

∏
y∈V res

dresy (ξy) (X.73)

for some dresy : N → R, y ∈ V res.

The idea is to derive it from the triangular duality Dθ,α given in (X.42), by acting with
a suitable symmetry of the generator, in the spirit of item 2) of Theorem I.11. We start
by considering the bulk terms of the duality functions Dbulk and Dbulk

ρ and looking for
a symmetry of the bulk generator, Lbulk, intertwining between them. The hint is given
by the following equation relating the single-site orthogonal duality function and the
triangular ones:

dorρ,θ,α(k, n) = [e−ρadθ,α(·, n)](k) =
k∑

m=0

(
k

m

)
dθ,α(m,n) (−ρ)k−m, for all ρ ∈ Rθ.

(X.74)

where a is the single site removal operator (see also (IX.19)). As a consequence we have
that

Dbulk
ρ,θ,α(ξ, η) = [e−ρS

−
Dbulk
θ,α (·, η)](ξ) (X.75)

where S− :=
∑

x∈V ax is the removal operator on V that, from consistency, is a symmetry
of Lbulk. From item 2 of Theorem I.7 and (X.75) we can deduce that Dbulk is a self-duality
for Lbulk from the fact thatDbulk and e−ρS

−
are, respectively, a self-duality and a symmetry

of Lbulk.

The fact that absorbing extensions preserve the commutation with the removal operator,
as proved in Lemma IX.21, allows to apply the argument above to the duality between
the system with reservoirs and the system with absorbing sites, as shown in the proof of
the next theorem.
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THEOREM X.16 (Orthogonal duality for non-equilibrium systems). The reference process
with parameters (θ,α, p) and reservoir density profile ρres = {ρy, y ∈ V res} is dual to the
reference process with absorbing sites V res and same parameters, with respect to the duality
function Dρ,ρres,θ,α : Ω∗

θ,α × Ωθ,α → R given by

Dρ,ρres,θ,α(ξ, η) = Dbulk
ρ,θ,α(ξ, η) ·

∏
y∈V res

(ρy − ρ)ξy (X.76)

for all ρ ∈ Rθ.

PROOF. From Lemma IX.21 we know that the removal operator S− :=
∑

x∈V ∗ ax is

a symmetry of Ldual, then, for any fixed ρ ∈ Rθ, also e−ρS
−

is a symmetry of Ldual.
Moreover from Theorem X.8 we know that D is a duality function between L and Ldual,
then, form item 2) of Theorem I.11 it follows that also the function Dρ defined by

Dρ(ξ, η) := [e−ρS
−
D(·, η)](ξ). (X.77)

is a duality between L and Ldual. It remains to compute the r.h.s. of (X.77) and show
that it coincides with the expression in (X.76). To this aim we split the removal operator
in its bulk and absorbing parts:

S− = S−
bulk + S−

abs, with S−
bulk :=

∑
x∈V

ax, S−
abs :=

∑
x∈V res

ax (X.78)

then, recalling that also D factorizes in a bulk and in a reservoir term (see (X.42)), we
have that the r.h.s. of (X.77) is equal to

[e−ρS
−
bulkDbulk(·, η)](ξ) · e−ρS

−
abs

∏
y∈V res

ρξyy . (X.79)

From (X.75) we know that the first factor in (X.79) is equal to Dbulk(ξ, η). In order to
compute the second factor, it is sufficient to use the factorized form of the symmetry
e−ρS

−
abs and verify that

e−ρayρky =
k∑

m=0

(
k

m

)
ρmy (−ρ)k−m = (ρy − ρ)k for y ∈ V res. (X.80)

This concludes the proof.

REMARK X.17. Notice that, in case there exists a reservoir y ∈ V res with density ρ, i.e.
with ρy = ρ, then the duality function (X.76) is zero for all dual configurations admitting
particles in y. More generally, if V res

ρ ⊆ V res is the set of reservoirs with density ρ,
V res
ρ := {y ∈ V res : ρy = ρ}, then

Dρ,ρres(ξ, η) = Dbulk
ρ (ξ, η) ·

∏
y∈V res\V res

ρ

(ρy − ρ)ξy · 1l{ξ|V res
ρ

=0}. (X.81)
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We stress here the fact that, referring to the duality functions in (X.76) as to orthogonal,
is not meant in the sense of orthogonality with respect to the stationary measure µst. We
have rather orthogonality with respect to the product measure νρ defined in (X.32) with
the corresponding parameter ρ. More precisely, for each fixed ρ ∈ Rθ, the set of duality
functions

{Dρ(ξ, ·) : ξ ∈ Ω̂} with Ω̂ = Ω× {0}V res

(X.82)

is an orthogonal basis of L2(Ω, νρ). This will be fully exploited in Theorem X.24 below.

The measure νρ is, in general, not stationary, except for the case in which the reservoirs
density profile ρres is constant with ρx = ρ for all x ∈ V res. Only in this case we can
say that the duality functions are orthogonal with respect to the stationary measure.
Nevertheless, due to the uniqueness of the stationary measure µst, it is possible to get
informations about it from the orthogonality (X.82) by initializing the system with the
measure νρ and letting time go to infinity. It is possible to further generalize this idea
thanks to the following equation:∑

n∈Υx,θ,α

dorρ,θ,α(k, n) νρ̄,θ,α(n) = (ρ̄− ρ)k for all x ∈ V, and ρ, ρ̄ ∈ Rθ (X.83)

relating the single-site orthogonal duality function with parameter ρ to the marginal
reversible measure with a different parameter, νρ̄, ρ̄ ̸= ρ (see e.g. Sect. 4 of [193] for
the proof). This suggests that it is still possible to obtain an expression for orthogonal
duality moments when the system is initialized with an inhomogeneous product measure
of the form:

νρ̄,θ,α := ⊗x∈V νρ̄x,θ,αx , for some ρ̄ = {ρ̄x, x ∈ V } (X.84)

where the densities ρ̄x can take any values in Rθ and the marginals νρ,θ,α are the marginal
measures defined in (X.32). Notice that, if ρ̄x = ρ for all x ∈ V , then νρ̄ coincides
with the measure νρ, that is reversible for the system at equilibrium. Whereas, choosing
ρ̄ = ρst = {ρstx , x ∈ V } the stationary density profile, we have that νρ̄ recovers the product
measure νρst defined in Definition X.14. The duality moments can be written in terms of
suitable generating functions of the dual process, as we will see in the next proposition.

PROPOSITION X.18. Let {η(t) : t ≥ 0} be a reference process with reservoir density profile
ρres = {ρy, y ∈ V res} satisfying the hypothesis of Theorem X.12 and let {ξ(t) : t ≥ 0} be
its dual. Then, for all ρ ∈ Rθ, ρ̄ = {ρ̄x, x ∈ V }, ρ̄x ∈ Rθ, ξ ∈ Ω∗, we have

Eνρ̄ [Dρ(ξ, ηt)] = Eξ

[ ∏
y∈V res

(ρy − ρ)ξy(t) ·
∏
x∈V

(ρ̄x − ρ)ξx(t)

]
, for all t ≥ 0 (X.85)

and

Eµst [Dρ(ξ, η)] = Eξ

[ ∏
y∈V res

(ρy − ρ)ξy(∞)

]
. (X.86)
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PROOF. Let ξ ∈ Ω∗, then, by duality we have

Eνρ̄ [Dρ(ξ, ηt)]

=
∑
ξ′∈Ω∗

pt(ξ, ξ
′)Eνρ̄ [Dρ(ξ

′, η)] .

with

Eνρ̄ [Dρ(ξ
′, η)] =

∏
y∈V res

(ρy − ρ)ξ
′
y ·
∏
x∈V

∑
ηx∈Υx,θ,α

dorρ,αx
(ξx, ηx) νρ̄x,αx(ηx)

=
∏

y∈V res

(ρy − ρ)ξ
′
y ·
∏
x∈V

(ρ̄x − ρ)ξx (X.87)

where this last identity is a consequence of (X.83). Then (X.85) follows immediately and,
taking the limit as t → ∞, we obtain (X.86) as a consequence of the uniqueness of the
stationary measure µst (that is a consequence of the fact that we are under the hypothesis
of Theorem X.12).

REMARK X.19. Notice that, specializing (X.85) to the case ρ̄x = ρ for all x ∈ V one
obtains the duality moments for the system started with the homogeneous measure νρ:

Eνρ [Dρ(ξ, ηt)] = Eξ

[ ∏
y∈V res

(ρy − ρ)ξy(t) · 1l{ξ(t)|V =0}

]
(X.88)

while, taking ρ̄ = ρst = {ρstx , x ∈ V } one gets

Eνρst [Dρ(ξ, ηt)] = Eξ

[∏
x∈V ∗

(ρstx − ρ)ξx(t)

]
. (X.89)

X.3.5 Systems with two reservoirs

The simplest geometrical setting is the one introduced in Section X.2 for independent
particles, i.e. particles moving on a one-dimensional chain V = {1, . . . , N} in contact at
its right and left end with two reservoirs V res = {ℓ, r} kept at different particle densities
ρℓ ̸= ρr. Here ℓ is the reservoir at the left, exchanging particles only with the leftmost
site 1 and r is the right reservoir in contact with the rightmost bulk site N . In Section
X.2 we assumed moreover that particles could jump only to nearest-neighbouring sites.

In order to specialize to this situation our reference process with reservoirs, it is suffi-
cient to choose V and V res as above and the transition function p as follows:

p(x, y) = 1l{|x−y|=1}, for x, y ∈ V = {1, . . . , N},
p(x, ℓ) = 1l{x=1} and p(x, r) = 1l{x=N}. (X.90)

Notice that this is an allowed transition function (see Definition X.5). If we further fix the
parameters θ = 0 and αx = 1, ∀ x ∈ V ∗, we recover the symmetric version of the system
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of independent random walkers on a chain studied in Section X.2. For general θ and α
we simply get a system of reference processes on a chain in contact with two reservoirs.
Processes with this geometry have been thoroughly studied as models of non-equilibrium.
A paradigmatic case is the standard symmetric exclusion process (obtained for θ = −1
and αx = 1 for all x ∈ V ) for which a full characterization of the stationary measure µst

has been found in terms of a matrix formulation (see e.g. [74] and [165, Part III. Section
3]).

In view of these reasons we decide to continue our analysis specializing to the case
|V res| = 2, but keeping the geometry as general as possible. Systems on a chain will be
then treated as a particular case, for which we will say something more specific in the
course of the section.

We thus consider a reference process {η(t) : t ≥ 0} on a set V in contact with two
reservoirs V res = {ℓ, r}. If (θ,α, p) are the parameters of the process and ρres = {ρℓ, ρr},
ρℓ, ρr ∈ Rθ, α

res = {αr, αℓ}, αr, αℓ > 0 are the parameters of the reservoirs, the generator
is given by:

L = Lbulk + Lres, Lbulk = 1
2

∑
x,y∈V

p(x, y)Lbulk
x,y , Lres =

∑
x∈V

y∈{ℓ,r}

p(x, y)αy L
res
x,y

Lbulk
x,y f(η) = ηx(αy + θηy)[f(η

x,y)− f(η)] + ηy(αx + θηx)[f(η
y,x)− f(η)]

Lres
x,yf(η) = ηx(1 + θρy)[f(η − δx)− f(η)] + ρy(αx + θηx)[f(η + δx)− f(η)].

Here for simplicity we keep calling ℓ and r the two reservoirs even if this notation doesn’t
have a geometric connotation anymore. Particles can perform now long jumps, and each
reservoir can interact with an arbitrary set of bulk sites. A generalization of the chain
system (X.90) preserving the geometric interpretation of left and right reservoirs, but
allowing long range jumps, can be obtained, for instance, by taking V = {1, . . . , N},
ℓ = 0, r = N + 1 and p(x, y) = p(|x − y|) for some decreasing function p of the sites
distance.

We denote by {ξ(t), t ≥ 0}, the dual process with absorbing sites V res = {ℓ, r} whose
generator is given by:

Labs = Lbulk + Labs, Labs =
∑
x∈V

y∈{ℓ,r}

p(x, y)αy L
abs
x,y

Labs
x,yf(η) = ξx [f(ξ

x,y)− f(ξ)] . (X.91)

These two processes are dual with respect to the triangular and orthogonal duality func-
tions:

D(ξ, η) = ρξℓℓ ·Dbulk(ξ, η) · ρξrr , Dρ(ξ, η) = (ρℓ − ρ)ξℓ ·Dbulk
ρ (ξ, η) · (ρr − ρ)ξr . (X.92)
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Hence, in this case, using (X.55), we have that, for all x ∈ V ∗,

Eµst
[
ηx
αx

]
= ρstx

= Ex

[
ρXrw(∞)

]
= ρr + (ρℓ − ρr) ·Px (X

rw(∞) = ℓ) (X.93)

where {Xrw(t) : t ≥ 0} is the random walk absorbed in {ℓ, r}, associated to the dual
process. Moreover from (X.56) we know that the stationary weighted density profile
ρst = {ρstx , x ∈ V } is the solution of the system of equations:

p(x, ℓ)αℓ(ρℓ − ρstx ) +

(∑
y∈V

p(x, y)αy (ρ
st
y − ρstx )

)
+ p(x, r)αr(ρr − ρstx ) = 0, x ∈ V

(X.94)

that is the analogue of the boundary-value problem associated to the Dirichlet Laplacian.
This system, in general, is not trivial to solve, except for the special case of a chain (X.90)
that we discuss next.

Non-equilibrium systems on a chain

Density Profile. In the particular case of a chain, i.e. choosing V = {1, . . . , N} and
the transition function p as in (X.90) the solution of (X.94) can be explicitly computed
and is given by:

ρstx = ρr +

∑N
y=x

1
p({y,y+1})αyαy+1∑N

y=0
1

p({y,y+1})αyαy+1

(ρℓ − ρr) .

where we identified the site ℓ with 0 and the site r with N + 1. Assuming moreover that
αx = α, for all x ∈ V ∗ and p(x, x+ 1) = p(1, ℓ) = p(N, r) = 1 for all x ∈ {1, . . . , N − 1},
then the profile x 7→ ρx is linear:

ρstx = ρr +

(
1− x

N + 1

)
(ρℓ − ρr) . (X.95)

This is consistent with what we found in Section X.2 for the case of IRW (see (X.16)).
Notice that, using (X.93), we can deduce that the factor between brackets multiplying
(ρℓ − ρr) is, in both formulas above, exactly equal to the dual-process absorption proba-
bility Px (X

rw(∞) = ℓ).

Two-Point Covariance. The two-point correlations are known, instead, only for the
homogeneous case, i.e. for αx = α for all x ∈ V ∗. These have been found in [226],
via duality, by computing the absorption probabilities of two dual particles. The non-
equilibrium covariance is given by:

covµstθ (ηx, ηy) = (ρr − ρℓ)
2 θ x (N + 1− y)

(N + 1)2(α(N + 1) + θ)
, for y ≥ x. (X.96)
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In the next two subsections we will show some applications of the duality relations ob-
tained so far. We will look at certain observables and, first using the triangular dualities
and then using the orthogonal ones, we will obtain expressions for suitable moments in
terms of the dual absorption probabilities. The analysis will give, in particular, the exact
nature of the dependence of these moments on the reservoir densities ρℓ and ρr.

Triangular duality and correlations

As we have seen in the previous analysis, if p is an allowed transition function, then a
stationary measure µst

θ = µst
ρℓ,ρr,θ

exists and is unique and, consistently with Theorem
X.15, it is not a product measure if ρℓ ̸= ρr. This is true, of course, with the exception of
the IRW case (θ = 0) for which µst = µst

0 coincides with the local equilibrium measure νρst .
Here we want to gain more informations about the n-points stationary correlations, or,
more generally, about the stationary expectation of the triangular duality function that
are a slight modification of the factorial moments. In this section we will often stress the
dependence on θ of the stationary measure and the duality function, in order to underline
the peculiar role of the case θ = 0.

We start by observing that, for all θ ∈ {−1, 0, 1},

∫
Dθ(ξ, η)µ

st
θ (dη) = ρ

|ξ|
ℓ · Eξ

[(
ρr
ρℓ

)ξr(∞)
]
= ρ

|ξ|
ℓ · Eξ

[(
ρr
ρℓ

)ξr(∞)
]
. (X.97)

In the next theorem we give a formula for the difference between the ξ-th order stationary
expectation of the triangular duality function of the process with parameter θ ∈ {−1,+1}
and the one of the IRW (θ = 0). We will show that this is, as a function of the reservoir

densities ρℓ and ρr, equal to ρ
|ξ|
ℓ times a polynomial in the variable (ρr

ρℓ
− 1). For this

polynomial the coefficients of the terms of degree 0 and 1 are zero. The coefficients of the
polynomial are given in terms of the factorial moments of the dual process.

THEOREM X.20. Let ξ ∈ Ω∗, then∫
Dθ(ξ, η) µ

st
θ (dη)−

∫
D0(ξ, η) µ

st
0 (dη) (X.98)

=

|ξ|∑
κ=2

(
Eξ
[(
ξr(∞)

κ

)]
− Eirw

ξ

[(
ξr(∞)

κ

)])
· (ρr − ρℓ)

κ ρ
|ξ|−κ
ℓ

for all κ ∈ {2, . . . , |ξ|}.

PROOF. Putting z := ρr
ρℓ
, we have that the l.h.s. of (X.98) is equal to

ρ
|ξ|
ℓ

(
E(θ)
ξ [zξr(∞)]− E(0)

ξ [zξr(∞)]
)
.
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To prove the result we write

E(θ)
ξ

[
zξr(∞)

]
= E(θ)

ξ

[
(z − 1 + 1)ξr(∞)

]
= E(θ)

ξ

ξr(∞)∑
κ=0

(z − 1)κ ·
(
ξr(∞)

κ

)
=

|ξ|∑
κ=0

(z − 1)κ · E(θ)
ξ

[(
ξr(∞)

κ

)]
(X.99)

where we denoted by E(θ)
ξ the expectation with respect to the process with parameter

θ started from ξ. Then in particular E(0)
ξ = Eirw

ξ . The terms κ = 0 and κ = 1 of the
summation in (X.99) are the same for all values of θ, indeed,

E(θ)
ξ

[(
ξr(∞)

0

)]
= 1 and E(θ)

ξ

[(
ξr(∞)

1

)]
= E(θ)

ξ [ξr(∞)] = E(0)
ξ [ξr(∞)] (X.100)

for all θ, where the second identity follows from (IX.89) i.e. the fact that, from the con-
sistency of the dual process, the expectation of ξr(∞) is a sum of absorption probabilities
of the random walk {Xrw(t), t ≥ 0} associated to {ξ(t), t ≥ 0} (as in Definition IX.6),
that is the same for all values of θ. As a consequence, when taking the difference of the
generating functions one can start the summation from κ = 2, i.e.

E(θ)
ξ

[
zξr(∞)

]
− E(0)

ξ

[
zξr(∞)

]
=

|ξ|∑
κ=2

(z − 1)κ ·
(
E(θ)
ξ

[(
ξr(∞)

κ

)]
− E(0)

ξ

[(
ξr(∞)

κ

)])
from which follows the statement.

REMARK X.21. Notice that, thanks to the consistency of {ξ(t) : t ≥ 0}, we can also write:

Eξ
[(
ξr(∞)

κ

)]
− Eirw

ξ

[(
ξr(∞)

κ

)]
=

∑
ς∈Ωκ
ς≤ξ

F (ς, ξ) ·
(
Pς (ςℓ(∞) = 0)− Pirw

ς (ςℓ(∞) = 0)
)

(X.101)

for all κ = 2, . . . , |ξ|. This further simplifies the formula as, in order to compute (X.98) one
only needs to know the deviation (from the case θ = 0) of the probability that all the dual
particles are absorbed in the left reservoirs, and not the whole probability distribution of
ξr(∞).

Specializing Theorem X.20 to the case of dual configurations in which particles occupy
different vertices one obtains a result for the stationary correlation functions.

COROLLARY X.22. For every x = (x1, . . . , xn) ∈ Vn such that xi ̸= xj for all i, j ∈
{1, . . . , n}, i ̸= j, we have

Eµstθ

[ n∏
x=1

ηxi
αxi

−
n∏
i=1

ρxi

]
=

n∑
κ=2

(
Eξ
[(
ξr(∞)

κ

)]
− Eirw

ξ

[(
ξr(∞)

κ

)])
· (ρr − ρℓ)

κ ρn−κℓ (X.102)
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with ξ = φ(x) and ρ = {ρx, x ∈ V } the stationary density profile.

PROOF. For all θ, we have that

Eµstθ

[ n∏
x=1

ηxi
αxi

]
=

∫
Dθ(φ(x), η)µ

st
θ (dη) (X.103)

then, in particular, for θ = 0, from the product-nature of µst
0 = νρst , we have∫

D0(φ(x), η)µ
st
0 (dη) =

n∏
x=1

Eµst0
[
ηxi
αxi

]
=

n∏
i=1

ρstxi . (X.104)

Then the result follows immediately from Theorem X.20.

REMARK X.23. Specializing the corollary to n = 2, and using (X.101), we obtain infor-
mation about the stationary covariance. The dependence on the boundary densities is, in
this case, exactly a quadratic function of their difference: for x ̸= y,

covµstθ

(
ηx
αx
,
ηy
αy

)
= (ρr − ρℓ)

2 ·
(
Pφ(x,y)(ξℓ(∞) = 0)− Pirw

φ(x,y)(ξℓ(∞) = 0)
)
(X.105)

The multiplying factor here is the difference of the two absorption probabilities in the left
reservoir. This does not depend on ρℓ and ρr and is non-positive for exclusion particles,
θ = −1 (by Liggett’s inequality [167], Chapter 8) and non-negative for inclusion particles,
θ = +1 (by the analogue of Ligget’s inequality from [112]).

Orthogonal duality and centred moments

In (X.105) we have seen that the two-point correlations are proportional to (ρr−ρℓ)2. This
is not true for higher order correlations, i.e. the n-point correlations are not proportional
to (ρr − ρℓ)

n (see Corollary X.22). We wonder now what is the correct observable of the
dynamics that we have to look at in order to have this property for n ≥ 3. An hint to
answer this question is provided by the orthogonal duality relation. Using (X.86) indeed,
and specializing it to the case of two reservoirs, we know that for any fixed ρ ∈ R, the
duality moment with parameter ρ can be written as Eξ[(ρℓ − ρ)ξℓ(∞)(ρr − ρ)ξr(∞)]. Then,
choosing ρ = ρℓ+ρr

2
, one obtains the desired property.

From (X.72) we know that

dorρ,α(1, n) =
n

α
− ρ, (X.106)

and then, choosing ξ = φ(x), x = (x1, . . . , xn), with xi ̸= xj for i ̸= j, in (X.86), one
obtains an expression for the moments:

Eµst
[
m∏
x=1

(
ηxi
αxi

− ρ

)]
, with xi ̸= xj (X.107)
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where ρ is a fixed parameter. It is natural then to ask whether it is possible to “center”
these moments and get a formula for:

Eµst
[
m∏
x=1

(
ηxi
αxi

− ρstxi

)]
, with xi ̸= xj. (X.108)

The idea is then to “modulate” the single-site duality function with the local stationary
density ρstx .

In this section we are going to prove the following main theorem that provides expres-
sion for these centred moments, as a consequence of a more general result.

THEOREM X.24. For the reference process we have

Eνρst

[
n∏
i=1

(
ηxi(t)

αxi
− ρstxi

)]
= (ρℓ − ρr)

n ψt(φ(x)) , (X.109)

with

ψt(φ(x)) = Pirw
φ(x)(ξℓ(∞) = 0) ·

∑
ς≤φ(x)

Eς

[
(−1)|ς|−ςr(t) ·

Pirw
ς(t)(ςℓ(∞) = 0)

Pirw
ς (ςℓ(∞) = 0)

]
. (X.110)

Moreover, in the stationary state we have

Eµst
[

n∏
i=1

(
η(xi)

αxi
− ρstxi

)]
= (ρℓ − ρr)

n ψ(φ(x)) , (X.111)

where

ψ(φ(x)) = Pirw
φ(x)(ξℓ(∞) = 0) ·

∑
ς≤φ(x)

Pς (ςℓ(∞) = 0)

Pirw
ς (ςℓ(∞) = 0)

. (X.112)

REMARK X.25. Notice that the centred stationary moments (X.111) are, in general, dif-
ferent from the correlation functions obtained in (X.102), while the two coincide for the
case |ξ| = 2 (see (X.105)).

The proof of Theorem X.24 is given at the end of this section. The main idea in the
proof is the introduction of the functions Hρ̄ = Hρ̄,θ,α

Hρ̄(ξ, η) :=
∏
x∈V

dorρ̄x,αx
(ξx, ηx) · 1l{ξ∈Ω̂} (X.113)

where Ω̂ is the set of dual configurations with no particles in the reservoirs defined in
(X.82).

Specializing these functions to the case ξ = φ(x), where x = (x1, . . . , xn) ∈ Vn, with
xi ̸= xj for i ̸= j, for which one has the centred moments that we want:

Hρ(φ(x), η) =
n∏
i=1

(
ηxi
αxi

− ρxi

)
. (X.114)
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The functions (X.113) show some advantages compared to Dρ. Choosing ρ̄ = ρst,
the expectation with respect to µst of Hρ(φ(x), η), with x = (x1, . . . , xm), xx ̸= xj, are
exactly the centred moments (X.108). The other advantage lies in the fact that they are

orthogonal with respect to the non-homogeneous measure νρ̄, i.e. {Hρ̄(ξ, η), ξ ∈ Ω̂} is an
orthogonal basis of L2(Ω, νρ̄). Choosing ρ̄ = ρst this means orthogonality with respect to
the local equilibrium measure νρst . The disadvantage is, on the other hand, the fact that
(X.113) is no longer a duality function. Nevertheless, as we will see in the next lemma, it
is possible to expand Hρ̄(ξ, ·) in terms of {Dρ(ς, ·), ς ≤ ξ}, where the ordering is in the
sense of (IX.24).

LEMMA X.26. For all ρ ∈ R, ρ̄ = {ρ̄x, x ∈ V }, ρ̄x ∈ R, we have, for all configurations

η ∈ Ω and ξ ∈ Ω̂,

Hρ̄(ξ, η) =
∑
ς≤ξ

Dρ(ς, η) ·
∏
x∈V

(
ξx
ςx

)
(ρ− ρ̄x)

ξx−ςx . (X.115)

PROOF. For ξ ∈ Ω̂ we have that ξy = 0 for all y ∈ V res and then, by (X.77), we have

Dρ(ξ, η) = Dbulk
ρ (ξ, η) = [e−

∑
x∈V ρaxDbulk(·, η)](ξ)

where ax is the one-particle removal operator at site x. On the other hand, using (X.74),
we have that

dorρ̄x,αx
(k, n) = [e−ρ̄xaxdαx(·, n)](k), for all x ∈ V, (X.116)

and, as a consequence, we can write

Hρ̄(ξ, η) = [e−
∑

x∈V ρ̄xaxDbulk(·, η)](ξ)
= e−

∑
x∈V (ρ̄x−ρ)ax [e−ρS

−
Dbulk(·, η)](ξ)

= [e−
∑

x∈V (ρ̄x−ρ)axDbulk
ρ (·, η)](ξ).

Now, using that

[e−(ρ̄x−ρ)axdorρ,αx
(·, n)](k) =

k∑
ℓ=0

(
k

ℓ

)
dorρ,αx

(ℓ, n) (ρ− ρ̄x)
k−ℓ, for x ∈ V (X.117)

we can write

Hρ̄(ξ, η) =
∑
ς∈Ω

Dbulk
ρ (ς, η) ·

∏
x∈V

(
ξx
ςx

)
(ρ− ρ̄x)

ξx−ςx (X.118)

then (X.115) follows because, for ς ∈ Ω̂, Dbulk
ρ (ς, ·) = Dρ(ς, ·).

The idea is now that combining Proposition X.18 and Lemma X.26, one can get an
expression for the centred moments (X.108). We will do this in full details, restricting for
simplicity, to the case of systems in contact with only two reservoirs.
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In this section we will go beyond the stationary result and use the orthogonal duality to
compute time-dependentHρ̄-moments in terms of suitable observables of the dual process.
Here Hρ̄ is the function defined in (X.113), with ρ̄ a general density profile. Choosing
ρ̄ = ρst i.e. the stationary density profile, we will obtain the centred moments (X.108)
that we will see to be equal to powers of (ρℓ−ρr) times a function of the other parameters.

In view of this aim, we combine Proposition X.18 and Lemma X.26 where we choose the
parameter ρ ∈ R of the orthogonal duality function Dρ to be of the form

ρ = ρ(β) := ρr + β(ρℓ − ρr) (X.119)

for some fixed β ∈ (0, 1), independent on the reservoir densities ρℓ and ρr. In a similar
way we fix a vector

β := {βx, x ∈ V } for some βx ∈ (0, 1), x ∈ V and βℓ = 1, βr = 0 (X.120)

and choose

ρ̄ = ρ̄(β) = {ρ(βx), x ∈ V }, ρ(βx) := ρr + βx(ρℓ − ρr) ∈ Rθ (X.121)

as the vector labelling the measure νρ̄ in Proposition X.18 and the function Hρ̄ in Lemma
X.26. Here the values βx, x ∈ V have to be thought of as independent of ρℓ and ρr and the
boundary values βℓ and βr have been chosen in such a way that ρ(βℓ) = ρℓ and ρ(βr) = ρr,
so that ρ(βx) can be interpreted as an interpolation between the two reservoir densities.

Notice that, independently from the geometry of the system, the stationary density vector
ρst = {ρstx , x ∈ V } is a particular case of (X.121), indeed, from (X.93), we know that,
choosing

βx = Px(X
rw(∞) = ℓ), (X.122)

with {Xrw(t) : t ≥ 0} the random walker associated to the dual process, one has ρ(βx) =
ρstx .

With these choices we can prove that the duality moments for the system initialized with
νρ̄, as functions of the reservoir densities, are equal to powers of the difference between
the reservoir densities, times suitable functions.

PROPOSITION X.27. Let {η(t) : t ≥ 0} be a reference process with reservoirs {ℓ, r} and
densities {ρℓ, ρr} and let {ξ(t) : t ≥ 0} be its dual proces. Let β ∈ (0, 1)V and ρ̄ = ρ̄(β)
as in (X.121), then, for all ξ ∈ Ω∗, we have

Eνρ̄ [Dρ(ξ, η(t))] = (ρℓ − ρr)
|ξ| · Eξ

[∏
x∈V ∗

(βx − β)ξx(t)

]
, ∀ t ≥ 0 (X.123)

and

Eµst [Dρ,θ(ξ, η)] = [(ρℓ − ρr)(1− β)]|ξ| · Eξ

[(
β

β − 1

)ξr(∞)
]

(X.124)

for all β ∈ (0, 1).
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The proposition is an immediate consequence of Proposition X.18. It claims that the
ξ-th order orthogonal duality moment, under the measure νρ̄, is, at any time, equal to
(ρℓ − ρr)

|ξ| times a function of β, β, θ and the underlying geometry of the system.

REMARK X.28. For the choice βx = β = 1
2
for all x ∈ V and, thus, ρβx = ρ1/2 = ρℓ+ρr

2
,

(X.123) and (X.124) further simplify as

Eνρ [Dρ,θ(ξ, η(t))] =

(
ρr − ρℓ

2

)|ξ|

Eξ
[
(−1)ξr(t) 1l{ξℓ(t)+ξr(t)=|ξ|}

]
(X.125)

and

Eµst [Dρ,θ(ξ, η)] =

(
ρr − ρℓ

2

)|ξ|

Eξ
[
(−1)ξr(t)

]
. (X.126)

We want to use now the previous result to compute the Hρ̄-moments and, as a conse-
quence, obtain an expression for the m-points centred moments.

Let us fix β ∈ (0, 1), then combining (X.123) and (X.115) we obtain

Eνρ̄ [Hρ̄(ξ, η(t))] =
∑
ς∈Ω̂

Eνρ̄ [Dρ(ς, η(t))] ·
∏
x∈V

(
ξx
ςx

)
(ρ− ρ̄x)

ξx−ςx

=
∑
ς∈Ω̂

(ρℓ − ρr)
|ς| · Eς

[∏
y∈V ∗

(βy − β)ςy(t)

]
·
∏
x∈V

(
ξx
ςx

)
(β − βx)

ξx−ςx(ρℓ − ρr)
ξx−ςx

= (ρℓ − ρr)
|ξ| ·
∑
ς∈Ω̂

Eς

[∏
y∈V ∗

(βy − β)ςy(t)

]
·
∏
x∈V

(
ξx
ςx

)
(β − βx)

ξx−ςx

:= ψβ,β,t(ξ). (X.127)

Since the l.h.s. of (X.127) does not depend on β, also the function ψβ,β,t(ξ) must be
independent on this parameter, then, in particular we have

d

dβ
ψβ,β,t(ξ) = 0 for all β ∈ RV , ξ ∈ Ω∗, t ≥ 0. (X.128)

This equation gives information on the absorption probabilities of the dual process. This
information is of the type of the recurrence relations obtained in Section IX.6 for factorial
moments of consistent systems with absorbing boundaries. The following result follows
immediately from the computation above.

THEOREM X.29. Let {η(t) : t ≥ 0} be a reference process with reservoirs {ℓ, r} and
densities {ρℓ, ρr} and let {ξ(t) : t ≥ 0} be its dual proces. Let β ∈ (0, 1)V and ρ̄ = ρ̄(β)

as in (X.121), then, for any ξ ∈ Ω̂, t ≥ 0, we have

Eνρ̄ [Hρ̄,θ(ξ, ηt)] = (ρℓ − ρr)
|ξ| ψβ,t(ξ) , (X.129)
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where

ψβ,t(ξ) =
∑
ς∈Ω̂

Eς

[
1l{ςℓ(t)=0} ·

∏
y∈V

(βy − 1)ςy(t)

]
·
∏
x∈V

(
ξx
ςx

)
(1− βx)

ξx−ςx . (X.130)

Moreover

Eµst [Hρ̄,θ(ξ, ηt)] = (ρℓ − ρr)
|ξ| ψβ(ξ) , (X.131)

with

ψβ(ξ) = lim
t→∞

ψβ,t(ξ) =
∑
ς∈Ω̂

Pς (ςℓ(∞) = 0) ·
∏
x∈V

(
ξx
ςx

)
(1− βx)

ξx−ςx . (X.132)

PROOF. The statement follows from (X.129) by choosing β = 1 and defining ψβ,t = ψ1,β,t.

Notice that the functions ψβ,t(ξ) ∈ R and ψβ(ξ) ∈ R depend neither on ρℓ nor on ρr, but
only on θ ∈ {−1, 0, 1} and the underlying geometry of the system (i.e. on the parameters
p, α and αres).

We want to obtain now, suitably specializing Theorem X.29, an expression for the centred
moments (X.108). This is achieved by choosing βx equal to the absorption probabilities
in (X.122) for which we have ρ̄(β) = ρst = {ρstx , x ∈ V } the stationary density profile.
Under this choice the measure νρ̄ coincides with the local equilibrium measure νρst . The
result is given in the following corollary.

COROLLARY X.30. Under the hypothesis of Theorem X.29, let ξ ∈ Ω̂, then

Eνρst [Hρ(ξ, η(t))] = (ρℓ − ρr)
|ξ| ψt(ξ) , (X.133)

where

ψt(ξ) = Pirw
ξ (ξℓ(∞) = 0) ·

∑
ς∈Ω̂

F (ς, ξ) · Eς

[
(−1)|ς|−ςr(t) ·

Pirw
ς(t)(ςℓ(∞) = 0)

Pirw
ς (ςℓ(∞) = 0)

]
. (X.134)

Then, in particular,

Eµst
[

n∏
i=1

(
ηxi
αxi

− ρstxi

)]
= (ρℓ − ρr)

|ξ| ψ(ξ) , (X.135)

where

ψ(ξ) = lim
t→∞

ψt(ξ) = Pirw
ξ (ξℓ(∞) = 0) ·

∑
ς∈Ω̂

F (ς, ξ) · Pς (ςℓ(∞) = 0)

Pirw
ς (ςℓ(∞) = 0)

. (X.136)
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PROOF. The function ψt above is equal to the function ψβ,t defined in (X.130) with
β = {βx, x ∈ V }, βx = Px(X

rw(∞) = ℓ) where {Xrw(t) : t ≥ 0} is the random walker
associated to the dual process. Then

ψt(ξ) =

=
∑
ς∈Ω̂

Eς

[
(−1)|ς|−ςr(t)1ςℓ(t)=0 ·

∏
y∈V

Py(X
rw(∞) = r)ςy(t)

]
·
∏
x∈V

(
ξx
ςx

)
Px(X

rw(∞) = r)ξx−ςx

=
∑
ς∈Ω̂

∏
x∈V

(
ξx
ςx

)
· Eς

[
(−1)|ς|−ςr(t)1ςℓ(t)=0 · Pirw

ς(t)(ςℓ(∞) = 0)
]
·
Pirw
ξ (ξℓ(∞) = 0)

Pirw
ς (ςℓ(∞) = 0)

(X.137)

from which we obtain (X.134). Then (X.136) follows from the fact that

Eς

[
(−1)|ς|−ςr(t) ·

Pirw
ς(t)(ςℓ(∞) = 0)

Pirw
ς (ςℓ(∞) = 0)

]
=

1

Pirw
ς (ςℓ(∞) = 0)

Eς
[
(−1)ςℓ(t) · Pirw

ς(t)(ςℓ(∞) = 0)
]

(X.138)
and then, by taking the limit as t→ ∞,

lim
t→∞

Eς
[
(−1)ςℓ(t) · Pirw

ς(t)(ςℓ(∞) = 0)
]
= lim

t→∞
Eς
[
(−1)ςℓ(t)1l{ςℓ(t)=0} · Pirw

ς(t)(ςℓ(∞) = 0)
]

= Eς
[
(−1)ςℓ(∞)1l{ςℓ(∞)=0}

]
= Pς(ςℓ(∞) = 0) . (X.139)

This concludes the proof.

Proof of Theorem X.24. It immediately follows by specializing Corollary X.30 to the
case ξ = φ(x), where x = (x1, . . . , xn) ∈ Vn, with xi ̸= xj for i ̸= j, for which one has

Hρ(φ(x), η) =
n∏
i=1

(
ηxi
αxi

− ρx

)
. (X.140)

X.4 Brownian energy process with reservoirs

In this section we see how to model the action of reservoirs in a diffusion process while
preserving a duality property. We analyze, in particular, the case of the Brownian energy
process introduced in Chapter V that we know to be dual, in the absence of reservoirs,
to the inclusion process. In order to be consistent with the notation used in the previous
section, we rewrite the generator of the BEP(α) including the parameter θ introduced in
the previous chapter (see e.g. the scheme in (IX.68)) for particle systems. This allows to
study, in a unique treatment, both the BEP and the system of linear ODE that has been
introduced in Section III.1 as the scaling limit and dual of IRW. The latter is, in this way
recovered choosing θ = 0, while the BEP is obtained for θ = 1.

In the spirit of the previous sections, we fix a finite set V = and a set of reservoirs
V res disjoint from it. We put V ∗ = V ∪ V res and fix an allowed transition function
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p : V × V ∗ → [0,∞) as in Definition X.5. Moreover we set (α,αres) = {αx, x ∈ V ∗},
with αx ∈ (0,∞) and θ ∈ {0,+1}, we define the diffusion process {ζ(t), t ≥ 0} on the
set V with reservoirs V res, as the process with state space Ω := [0,∞)V and generator
L = L(θ,α,p) given by

L := Lbulk +Lres (X.141)

acting on functions f : Ω → R as follows

Lbulk :=
1

2

∑
x,y∈V

p(x, y)Lbulk
x,y with (X.142)

Lbulk
x,y = θζxζy

(
∂

∂ζy
− ∂

∂ζx

)2

+ (αyζx − αxζy)

(
∂

∂ζy
− ∂

∂ζx

)
and

Lres :=
∑
x∈V
y∈V res

p(x, y)αyL
res
x,y with (X.143)

Lres
x,y := (Tyαx − ζx)

∂

∂ζx
+ θ Tyζx

∂2

∂ζ2x

where Ty ∈ [0,∞) is the temperature imposed by the reservoir y ∈ V res to the bulk
sites connected to it. We will use the notation T res = {Ty, x ∈ V res} for the reservoir
temperature profile. As done in the previous sections for particle systems, the reservoir
action Lres has been chosen in such a way to preserve a duality property and, only in the
equilibrium set-up (i.e. when the external temperatures are all the same: Ty = T for all
y ∈ V res), also the reversibility.

X.4.1 Continuous-discrete duality

For all values of the parameters (θ,α, p), the operator L = L(θ,α,p) defined in (X.141)-
(X.142)-(X.143) is dual to the generator Ldual = Ldual,(θ,α,p) (defined in (X.40)-(X.41)) of
the reference process on V with absorbing sites V res and parameters (θ,α, p). The duality
function D = Dθ,α is given by:

Dθ,α(ξ, ζ) = Dbulk
θ,α (ξ, ζ) ·

∏
y∈V res

T ξyy , Dbulk
θ,α (ξ, ζ) =

∏
x∈V

dθ,αx(ξx, ζx)

with dθ,α(k, n) = zk ·


1
αk for θ = 0

Γ(α)
Γ(α+k)

for θ = +1
(X.144)

where the duality property is meant in the sense that

[LDbulk(ξ, ·)](ζ) = [LdualDbulk(·, ζ)](ξ), ∀ζ ∈ Ω, ξ ∈ Ω∗, (X.145)

where Ω∗ is the extended state space Ω∗ = Ω× Ωabs defined in (IX.81).

This duality result extends the duality relation already known for the system without
reservoirs. The bulk duality function Dbulk

θ,α is indeed the duality between the processes
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without reservoirs. More precisely, for θ = 1, Dbulk
θ,α is the duality function between the

BEP(α) and the SIP(α) on V introduced in Section V.4, while, for θ = 0, Dbulk
θ,α is the

duality function between IRW(α) and the deterministic system introduced in Section
III.1.

The BEP(α) with reservoirs V res, say {ζ(t), t ≥ 0}, is dual to the SIP(α) on the extended
set V ∗ = V ∪ V res with absorbing sites V res. In other words, the set of absorbing sites
in the dual process coincides with the set of reservoirs in the BEP(α). Analogously, the
result for θ = 0, tells us that the IRW(α) on the extended set V ∗ = V ∪ V res, with
absorbing set V res, is dual to the deterministic system with reservoirs set V res = V res

whose evolution is governed by a transport equation with transport operator L(0,α,p).

Proof of the duality relation. From the duality between the processes without reser-
voirs we know that

[LbulkDbulk(ξ, ·)](ζ) = [LbulkDbulk(·, ζ)](ξ). (X.146)

Then, in order to prove the statement, we only need to verify that

Lres
x,yD(ξ, ·)(ζ) = Labs

x,yD(·, ζ)(ξ) for all (x, y) ∈ V × V res. (X.147)

We have

Lres
x,yD(ξ, ·)(ζ) =

= D(ξ, ζ) · ξx
{
Ty ·

αx + θ(ξx − 1)

ζx
− 1

}
= ξx {D(ξx,y, ζ)−D(ξ, ζ)}
= Labs

x,yD(·, ζ)(ξ) (X.148)

that concludes the proof.

Strictly speaking, for θ = 0, L is not a stochastic operator, nevertheless, as we will see,
the study of this degenerate and simpler case will be instrumental to understand the
more interesting case θ = +1. As we will see in the next paragraphs, indeed, it is possible
to extract information about the stationary correlation functions of the BEP(α) with
reservoirs by treating the case θ = 0 as a term of comparison.

Reversible measure at equilibrium

The process with generator Lbulk has a one-parameter family of reversible measures νT =
νT,θ,α, α = {αx, x ∈ V }, T > 0 that are, for θ = 0, products of Dirac-delta measures and,
for θ = 1, products of Gamma distributions:

νT,1,α ∼ ⊗x∈V Gamma
(
αx,

1
T

)
and νT,0,α ∼ ⊗x∈V δTαx (X.149)

i.e. the measures

νT,1,α(dζ) =
∏
x∈V

1

Tαx
· ζ

αx−1
x

Γ(αx)
e−ζx/T dζx and νT,0,α(dζ) =

∏
x∈V

δTαx(dζx) (X.150)
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Notice that in both cases the expectation of the energy at site x is given by∫
ζx
αx

· νT,θ,α(dζ) = T, θ ∈ {0, 1} (X.151)

this enables us to interpret the parameter T as a weighted single-site temperature.

The reservoir terms of the generator are chosen in such a way that they still satisfy the
detailed-balance condition. Indeed it is possible to verify that, for both θ ∈ {0, 1}, and
for all fixed (x, y) ∈ V × V res, the single-edge generator Lres

x,y is self-adjoint with respect
to the measure νTy ,θ,αx . Equation (X.151) provides an explanation for the interpretation
of Ty as the (weighted) temperature of the y-th reservoir.

Analogously to what we had for particle systems, if all the reservoirs are kept at the same
temperature, i.e. if Ty = T for all y ∈ V res, the system eventually reaches the stationary
measure νT,θ,α that is reversible, and, due to irreducibility (if p(·, ·) is an allowed transition
function), also the unique stationary measure of the process. Out of equilibrium, i.e. when
the reservoir temperature profile T res is not homogeneous, the process still admits a unique
stationary measure µst = µst

T res,θ,α,αres . While for θ = 0 this is still a product measure, for
θ = 1 this is no longer the case.

Correlation functions in the non-equilibrium stationary state

Suppose from now on that p : V ×V ∗ → [0,∞) is an allowed transition function. Suppose
moreover that T res is not homogeneous. Then, analogously to what we have seen for the
reference process in Theorem X.15, there exists a unique stationary measure µst, that is
in product form if and only if θ = 0. More precisely, we have that

µst
T res,0,α = ⊗x∈V δTxαx (X.152)

where T = {Tx, x ∈ V } is the bulk stationary temperature profile induced by T res. The
local stationary temperatures Tx, x ∈ V can be computed using duality as we will see
below.

For both cases θ ∈ {0, 1}, we can write the duality moments under µst
θ in terms of the

absorption probabilities of the dual process:∫
Dθ(ξ, ζ)µ

st
θ (dζ) = Eξ

[ ∏
y∈V res

T ξy(∞)
y

]
for θ ∈ {0, 1} (X.153)

Choosing the dual configuration to be ξ = δx, x ∈ V we get

Dθ(δx, ζ) =
ζx
αx
, for θ ∈ {0, 1} (X.154)

and then we have that the local stationary temperatures are given by:

Tx = Eµstθ

[
ζx
αx

]
=

∫
Dθ(δx, ζ)µ

st(dζ) (X.155)

=
∑
y∈V res

Ty ·Px(X
rw(∞) = y) = Ex [T (X

rw(∞))]
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where {Xrw(t), t ≥ 0} is the single random walker associated to the dual process in the
sense of Definition IX.6. This performs a random walk on V ∗ = V ∪ V res with rates that
are compatible with the ones of Ldual and is eventually absorbed in one of the reservoirs
in V res. We remark that the generator of the random walker appearing in (X.155) does
not depend on the value of θ, and, as a consequence, the bulk temperature profile only
depends on the geometry of the system and on the external reservoirs:

T = T (T res,α,αres, p). (X.156)

Let us take now the dual configuration ξ = φ(x) where x = (x1, . . . , xn) and all xi are
mutually different sites of V , then we have

Dθ(ξ, ζ) =
n∏
i=1

ζxi
αxi

, for all θ ∈ {0, 1} (X.157)

thus, from the product nature of µst
0 we have

Eµst0

[
n∏
i=1

ζxi
αxi

]
=

∫
D0

( n∑
i=1

δxi , ζ
)
µst
0 (dζ) =

n∏
i=1

Eµst0

[
ζxi
αxi

]
=

n∏
i=1

Txi . (X.158)

while, for θ > 0,

Eµstθ

[
n∏
i=1

ζxi
αxi

]
=

∫
Dθ

(
φ(x), ζ

)
µst
θ (dζ)

=
∑
ς∈Ωabs

∏
y∈V res

T ςyy ·Pφ(x)(ξ(∞) = ς)

= Eφ(x)

[ ∏
y∈V res

T ξy(∞)
y

]
. (X.159)

In view of these considerations, we can obtain, as we did for particle systems, substantial
information. In particular we consider the case of systems with only two reservoirs.

Two reservoirs

Here we assume that the set V is in contact with only two reservoirs that we denote by
ℓ and r, V res = {ℓ, r} and we call Tℓ, Tr > 0 their temperatures. In this case the duality
function with the reference process with two absorbing sites is

Dθ(ξ, ζ) = T ξℓℓ T
ξr
r ·Dbulk

θ (ζ, ξ) (X.160)

thus

Eµstθ

[
ζx
αx

]
= Tx

= Ex [ρ(X
rw(∞))]

= Tr + (Tℓ − Tr) ·Px (X
rw(∞) = ℓ) (X.161)
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where {Xrw(t) : t ≥ 0} is the single random walker associated to the dual process, and
(X.153) becomes: ∫

Dθ(ξ, ζ)µ
st
θ (dζ) = T |ξ|

r · Eξ
[(

Tℓ
Tr

)ξℓ(∞) ]
(X.162)

We then have the following result whose proof is similar to the proof of Theorem X.20.

THEOREM X.31. Let ξ ∈ Ω, then∫
Dθ(ξ, ζ) µ

st
θ (dη)−

∫
D0(ξ, ζ) µ

st
0 (dη) (X.163)

=

|ξ|∑
κ=2

(
Eξ
[(
ξr(∞)

κ

)]
− Eirw

ξ

[(
ξr(∞)

κ

)])
· (Tr − Tℓ)

κ T
|ξ|−κ
ℓ . (X.164)

As a consequence of this theorem we deduce thaat the correlation functions satisfy the
relation below:

COROLLARY X.32. For every x = (x1, . . . , xn) ∈ Vn such that xi ̸= xj for all i, j ∈
{1, . . . , n}, i ̸= j, we have

Eµstθ

[ n∏
i=1

ζxi
αxi

−
n∏
i=1

Txi

]
(X.165)

=

|ξ|∑
κ=2

(
Eξ
[(
ξr(∞)

κ

)]
− Eirw

ξ

[(
ξr(∞)

κ

)])
· (Tr − Tℓ)

κ T n−κℓ (X.166)

with ξ = φ(x).

Specializing the formula to the case n = 2 we obtain, for x ̸= y,

covµstθ

(
ζx
αx
,
ζy
αy

)
= (Tr − Tℓ)

2 ·
(
Pδx+δy(ξℓ(∞) = 0)− Pirw

δx+δy(ξℓ(∞) = 0)
)
.

X.4.2 Continuous-continuous duality

In item 3 of Theorem V.7 we proved that the Brownian energy process without reservoirs,
besides being dual to the symmetric inclusion process is also self-dual. Here we wonder
whether, in analogy with the discrete case, it is possible to construct suitable continuous
versions of “absorbing sites” V res, to be added to the bulk-term of the generator of the
BEP. In this way we would like to prove a duality result between the BEP with reservoirs
and the BEP with absorbing sites. We will see that the “absorbing” term of the generator
that one has to add has the following form:

Labs =
∑
x∈V
y∈V res

p(x, y)αyL
abs
x,y with Labs

x,y f(v) = vx

(
∂

∂vy
− ∂

∂vx

)
f(v).

(X.167)
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The single-edge generator Labs
x,y can be interpreted as a continuous version of the “dis-

crete absorbing generator” defined in (X.91). It is indeed the the deterministic flow
associated to the transport equation

d

dt
f(v) = vx

(
∂

∂vy
− ∂

∂vx

)
f(v), x ∈ V, y ∈ V res

is given by the solution of the following system of ODEs:{
d
dt
vx(t) = −vx(t)

d
dt
vy(t) = vx(t)

whose solutions are {
vx(t) = vx(0) e

−t

vy(t) = (vx(0) + vy(0))− vx(0) e
−t (X.168)

From (X.168) we can see that the total mass vx(0) + vy(0) initially present in the bulk-
reservoir edge (x, y) flows exponentially fast from the bulk site x to the reservoir y. And
then in the long run all the mass is “absorbed” in the site y ∈ V res. Also in this setting,
in the dual dynamics, the sites in the set V res can be interpreted as absorbing sites. In
the following theorem we show that the Brownian energy process with reservoirs is dual
to the Brownian energy process with absorbing boundaries.

THEOREM X.33. The process with generator L = Lbulk+Lres given in (X.141)-(X.142)-
(X.143) is dual to the process with absorbing sites whose generator is

Ldual = Lbulk +Labs (X.169)

with Labs given by (X.167). The duality function is

Dα,T res(v, ζ) = Dbulk
α (v, ζ) ·

∏
y∈V res

e(Ty−1)vy (X.170)

and Dbulk
α (·, ·) given by

Dbulk
α (v, ζ) =

∏
x∈V res

dαx(υx, ζx) with dα(v, z) = e−v 0F1

[
−
θα

; θzv

]
. (X.171)

PROOF. From the self-duality of the process without reservoirs we know that

[LbulkDbulk(v, ·)](ζ) = [LbulkDbulk(·, ζ)](v). (X.172)

Hence, in order to prove the statement we only need to verify that

Lres
x,yD(v, ·)(ζ) = Labs

x,y D(·, ζ)(v) for all (x, y) ∈ V × V res. (X.173)

We have

Lres
x,yD(v, ·)(ζ) =

=

{
(Tyα− ζx)

∂

∂ζx
+ θζx

∂2

∂ζ2x

}
D(v, ζ)

= vx

(
∂

∂vy
− ∂

∂vx

)
D(v, ζ)

= Labs
x,y D(·, ζ)(v) (X.174)
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that concludes the proof.

An analogous duality result between the process with reservoirs and the process with
absorbing sites holds true for an orthogonal duality function. See Appendix C for more
details.

X.5 Additional notes

Interacting particle systems and, more generally, stochastic models of transport, have
been widely used as prototype models for the understanding non-equilibrium phenomena.
Pioneer works of this field are [145] and [210] treating, respectively, the KMP model
and the symmetric exclusion process. In the course of the last forty years models of
this type have been used to prove typical phenomena of non-equilibrium such as the
emergence of long-range correlations [72,74,113,210] and the non-locality of large deviation
free energies [22–27, 72]. An important role in the study of non-equilibrium systems is
played by exactly solvable models, i.e. systems for which there is a full knowledge of the
non-equilibrium steady state. These includes to the symmetric exclusion process with
reservoirs [74] and some multispecies generalizations [4], for which the non-equilibrium
stationary correlations are given in a closed form in terms of a Matrix Product Ansatz,
allowing to compute several quantities in great details, such as fluctuations and large
deviations of density and current [71, 73, 75]. Other works treating the problem from an
exact integrability point of view are [61, 64, 113, 116, 157–159, 223, 228]. As explained in
this chapter, the class of interacting particle systems with reservoirs showing a duality
processes includes the SEP model but contains several processes that are not exactly
solvable via Matrix Product Ansatz.

A duality property was shown in the context of non-equilibrium in [145] where the
KMP is proven to be dual to the absorbing discrete KMP process. Various duality rela-
tions for boundary driven systems were obtained in [110, 111]. A comprehensive review
on duality for boundary-driven processes is provided in [42] where duality properties and
applications are shown for a whole class of models of non-equilibrium. In [90] the authors
study the same class of processes and generalize the results by finding also orthogonal
polynomial duality functions, thus completing the picture given in [42]. In [182] the au-
thor generalizes the duality result for ASEP by allowing a more general set of boundary
conditions. In [164, 181] the authors find a duality property and study local equilibrium
for a generalized version of KMP in which the components have different degrees of free-
dom and the rate of interaction depends on the spatial location. In some recent works,
it emerged the relation between the duality property and the existence of a mapping
between equilibrium and non-equilibrium processes [102,103,218].

Duality techniques for the study of scaling limits of the exclusion process with reser-
voirs have been broadly used (see e.g. [9, 80, 114, 115, 154]). In the last few years duality
results have been used for the study of a broader class of processes. In [183,220] local equi-
librium properties of the SIP with reservoirs are studied via duality. In [96] the authors
study the hydrodynamic limit of the inclusion process in contact with slow reservoirs.

In the last few years the interest for systems in contact with multiples reservoirs with
long reange interactions has emerged [18–21].
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Chapter XI

Duality and macroscopic fields

Abstract: In this chapter we study consequences of duality in the study of
hydrodynamic limits, and more generally macroscopic fluctuation fields. The
approach is in the spirit of [69] where the macroscopic limits are studied via du-
ality functions, but we focus on simple applciations, mostly emphasizing what
extra information one can obtain via duality, such as the deviation from local
equilibrium. First we show that the scaling limit of a single dual particle de-
termines the macrosopic equation for the particle density. Then, starting with
independent walkers we study the time dependent variance of the density field
via two dual particles and compare with the solution of the limiting Ornstein
Uhlenbeck process. We show how the propagation of local equilibrium is related
to the scaling behavior of an arbitrary number of dual particles. We then turn
to the interacting case, where we essentially show the same results, using cou-
pling with independent particles. Finally we consider higher order macrosopic
fields, and provide a new application of orthogonal polynomial duality, namely
a quantitative version of the Boltzmann-Gibbs principle.

XI.1 Introduction

In this chapter we will use duality to obtain precise information on macroscopic fields,
in particular the density field. We emphasize that for the systems under study, the
hydrodynamic limit, as well as the fluctuations of the density field have been understood
and belong to the standard “repertoire” of hydrodynamic limits, see e.g. [146].

The aim of this chapter is therefore not so much to add to the general knowledge of
hydrodynamic limits, but more to highlight what one can do with duality in this context.
More precisely, we discuss the connection between the behavior of macroscopic fields
and the scaling properties of dual particles. Generally speaking, the scaling properties
of a single dual particle determine the hydrodynamic equation, in the sense that the
expectation of the density field converges to the solution of the hydrodynamic equation,
which in our context is the linear heat equation. The control of the variance of the density
field is related to the behavior of two dual particles. From the scaling properties of their
joint dynamics, one can understand both the stationary and non-stationary behavior
of the variance of the density fluctuation field. In particular, quantities such as the
effect of deviation from local equilibrium become accessible. Therefore, we provide a
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detailed study of the time dependent (co)variance of the density field and study it in
different regimes (equilibrium, local equilibrium, non-equilibrium). After the study of
the variance, the natural next step is “propagation of chaos” or “propagation of local
equilibrium”. As we will see, this amounts to the study of the scaling properties of n
dual particles, more precisely to the comparison of n dual particles with n independent
particles. Under a general coupling condition, we obtain propagation of local equilibrium.
Next, we consider higher order fields, which correspond to pair and n-tuple empirical
distributions of particles, and show that they converge to solutions of the n-dimensional
heat equation. Finally, we use orthogonal polynomial duality to prove a quantitative
version of the Boltzmann-Gibbs principle. In this context, the Boltzmann-Gibbs principle
can be seen as a projection result, which shows that all fluctuation fields have a dominant
contribution coming from their projection on the density field, or equivalently, that the
fluctuation fields of all orthogonal polynomials of order ≥ 2 are negligible.

We start in the next sectionwith the case of independent random walkers, which is
simple, but shows already interesting features for the variance and propagation of local
equilibrium. We then turn to the interacting case (Section XI.3) and show how with
coupling assumptions essentially the same results as in the independent random walkers
case can be recovered. In the final sections we discuss higher order fields (Section XI.4)
and the Boltzmann-Gibbs principle (Section XI.5).

XI.2 The case of independent random walkers

XI.2.1 Preliminaries

In this section, we consider independent walkers and restrict to the vertex set V = Zd,
and let the single particle transition rate p(x, y) be symmetric and translation invariant,
i.e.,

p(x, y) = π(y − x) = π(x− y) (XI.1)

We assume without loss of generality that
∑

x∈Zd π(x) = 1 and furthermore we assume
finite second moment, i.e.,

σ2 :=
∑
x∈Zd

x2π(x) <∞ (XI.2)

From the symmetry of p(x, y), we have that
∑

x xπ(x) = 0. More precisely, by (XI.2) the
sum

∑
x |x|π(x) <∞ and then, by symmetry,

∑
x xπ(x) = 0. In the rest of the section, we

will assume (without loss of generality) that σ2 = d. As a consequence, for the associated
continuous-time random walk {X(t), t ≥ 0} we have the invariance principle, i.e.,

ϵX(ϵ−2t) → W (t) as ϵ→ 0 (XI.3)

where W (t) is a d-dimensional standard Brownian motion, and where the convergence is
weak-convergence on path space. The d-dimensional standard Brownian motion has as a
generator 1

2
∆, and is connected to the heat equation

∂ρ(t, x)

∂t
=

1

2
∆ρ(t, x)
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via ρ(t, x) = E(ρ(0, x+W (t)).
In order to define macroscopic fields, we introduce a scaling parameter ϵ > 0 which

represents intuitively the ratio between the microscopic and the macroscopic length scale.
The random fields which we consider act as continuous linear functionals on a class of test
functions φ : Rd → R which we choose to be the Schwartz functions, i.e., C∞ functions of
which all derivatives converge to zero at infinity faster than any polynomial. We denote
by S the set of these test functions and S′ the dual, i.e., the set of Schwartz distributions.
The fields that we consider are then random elements of S′.

We can then define the notion of macroscopic fields associated to local functions.

DEFINITION XI.1 (Macroscopic fields).

1. For a local function f : Ω = NZd → R, a configuration η ∈ Ω and a scale ϵ > 0 we
define the field of f at scale ϵ as the distribution which maps φ ∈ S to

Xϵ(φ, f, η) = ϵd
∑
x

φ(ϵx)τxf(η) (XI.4)

where τx denotes shift over x, i.e., τxf(η) = f(τxη), (τxη)y = η(y + x).

2. When f(η) = η0 = D(δ0, η) the field Xϵ is called the density field:

Xϵ(φ, η) = Xϵ(φ,D(δ0, ·), η) = ϵd
∑
x

φ(ϵx) ηx (XI.5)

3. The density fluctuation field is defined as

Yϵ(φ, η) = ϵd/2
∑
x

φ(ϵx) (ηx − E(ηx))

= ϵ−d/2 (Xϵ(φ, η)− E (Xϵ(φ, η))) (XI.6)

In this definition, we implicitly assume that the configuration η is such that the sum in
the rhs of (XI.4) is absolutely convergent. Otherwise, we say that the field does not exist.
For the existence of the density field, a sufficient condition for the convergence of the
rhs of (XI.5) is that the configurations ηx does not increase faster than a polynomial as
x→ ∞, i.e., there exists C > 0, k > 0 such that ηx ≤ C∥x∥k. Later on, as a consequence
of precise assumptions on the distribution of η, this bound will hold with probability one.

The prefactor ϵd means that we consider the macroscopic fields on the scale of the law
of large numbers. This is also called the hydrodynamic spatial scaling, i.e., the scaling
corresponding to the “hydrodynamic limit” which is a deterministic partial differential
equation. In the density fluctuation field we have the prefactor ϵd/2 which corresponds
to central limit scaling, and the limit will therefore be stochastic, and the solution of
stochastic partial differential equation of Ornstein Uhlenbeck type.

For the distribution of η we choose a scale-dependent probability measure on the state
space NZd

, which we denote µϵ . This distribution has to be chosen appropriately, such
that the fields have well-defined limiting expectations, as we specify below.
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DEFINITION XI.2 (Assumptions on the initial distribution). The family of probability
measures {µϵ : ϵ > 0} is said to satisfy the uniform finite moments condition (abbreviation
UFMC) if for all k ∈ N,

sup
ϵ>0

sup
x∈Zd

∫
ηkxdµϵ(η) =: Ck <∞ (XI.7)

where Ck satisfies the Carleman growth conditions, i.e.,
∑

k C
−1/2k
2k <∞.

REMARK XI.3. Notice that (XI.7) is satisfied if there exists θ > 0 such that we have a
uniform bound on the moment generating function

sup
x

sup
ϵ>0

Eµϵ
(
eθηx

)
<∞ (XI.8)

We will in this section always work with families {µϵ : ϵ > 0} satisfying UFMC, which
guarantees that for f(η) = ηk0 the fields (XI.4) are well-defined with probability one. We
can then define the notion of compatibility between a family {µϵ : ϵ > 0} and a density
profile.

We remind the reader that the reversible ergodic measures for the system of indepen-
dent walkers are homogeneous Poisson product measures νρ with marginals

νρ(ηx = n) = ρn

n!
e−ρ

We call these measures “the equilibrium product measures”. We also remind the reader
the classical self-duality polynomials for the system of independent random walkers:
D(ξ, η) =

∏
x∈Zd d(ξx, ηx) with d(k, n) = n!/(n − k)!, and where ξ is a finite configu-

ration, i.e., such that
∑

x ξx <∞.
For a finite configuration ξ, we recall the notation ξ =

∑n
i=1 δxi , where x1, . . . , xn ∈ Zd,

which allows us to view D(ξ, η) as a function of the finite configurations ξ, or equivalently
as a symmetric functions of n-tuples (x1, . . . , xn) ∈ Zdn.

We say that a family of probability measures µϵ D-converges to a limit µ if for all ξ

lim
ϵ→0

∫
D(ξ, η)dµϵ(η) =

∫
D(ξ, η)dµ

Because in this section we will only focus on this form of convergence, we will simply call
it “convergence” (instead of D-convergence) and denote it µϵ → µ. Notice that this form
of convergence is stronger than convergence in distribution and implies convergence of
moments.

DEFINITION XI.4 (Compatible density profiles and local equilibrium). Let ρ : Rd →
[0,∞) be a bounded smooth function. We think of ρ as a macroscopic density profile.

1. We say that the family of probability measures µϵ, ϵ > 0 has expected density com-
patible with ρ if for all ϵ > 0, and x ∈ Zd∫

ηxdµϵ(η) = ρ(ϵx) (XI.9)
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2. We say that {µϵ : ϵ > 0} satisfies the local equilibrium property with density profile
ρ if for all x ∈ Rd

τ⌊ϵ−1x⌋µϵ → νρ(x) (XI.10)

as ϵ→ 0.

REMARK XI.5. Notice that the equality for all ϵ in (XI.9) is for convenience only, and
can be replaced with some extra effort by the condition limϵ→0

(∫
ηxdµϵ(η)− ρ(ϵx)

)
= 0.

The idea of local equilibrium is that around each macro-point x ∈ Rd, corresponding to
the micro-point ⌊ϵ−1x⌋ ∈ Zd, the distribution is Poisson with a parameter ρ(x) depending
on the choice of the macro-point. Of course, the equilibrium distribution νρ is a special
case of a local equilibrium with constant density profile.

A classical example of a local equilibrium with density profile ρ is the inhomogeneous
product of Poisson distributions with slowly varying parameter ρ(ϵx) at x ∈ Zd, i.e., the
family

µϵ = ⊗x∈Zdνρ(ϵx) (XI.11)

Let us show in the easy proposition below that (XI.11) indeed satisfies the definition
(XI.10).

PROPOSITION XI.6. The family defined via (XI.11) is a local equilibrium.

PROOF.
Recall that for a inhomogeneous product of Poisson measures

νf := ⊗i∈Zdνf(i)

where f : Zd → [0,∞) we have the characterizing property∫
D

(
n∑
i=1

δxi , η

)
dνf (η) =

n∏
i=1

f(xi) (XI.12)

Therefore, in order to show (XI.10), we have to show that

lim
ϵ→0

∫
τ⌊ϵ−1x⌋D

(
n∑
i=1

δyi , η

)
dµϵ(η) = ρ(x)n (XI.13)

From this we see that for the measures (XI.11) and for any choice y1, . . . , yn ∈ Zd, we
have, using the assumed smoothness of ρ:

lim
ϵ→0

∫
τ⌊ϵ−1x⌋D

(
n∑
i=1

δyi , η

)
dµϵ(η) = lim

ϵ→0

n∏
i=1

ρ(ϵ(yi + ⌊ϵ−1x⌋))

= ρ(x)n =

∫
D

(
n∑
i=1

δyi , η

)
dνρ(x) (XI.14)

which shows (XI.13). Finally, notice that clearly, (XI.11) satisfies the condition UFMC
by the assumed boundedness of ρ, as can be seen e.g. via (XI.8).
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XI.2.2 Expected density field: from a single dual particle to the
heat equation

In this section we show that the diffusive scaling of a single dual particle to Brownian
motion implies the convergence of the expected density field at macroscopic times to the
solution of the heat equation.

THEOREM XI.7. Let ρ : Rd → [0,∞) be a bounded smooth function. Let {µϵ, ϵ > 0}
be a family of probability measures on NZd

which has expected density density compatible
with ρ in the sense of (XI.9). Let η be distributed according to µϵ. Then for the expected
density field at a macroscopic time t > 0 we have

lim
ϵ→0

Eµϵ(Xϵ(φ, η(ϵ
−2t))) =

∫
φ(x)ρ(t, x)dx (XI.15)

where ρ(t, x) is the solution of the heat equation

∂ρ(t, x)

∂t
=

1

2
∆ρ(t, x) (XI.16)

where ∆ denotes the Laplacian in Rd, and where the initial condition is given by ρ(0, x) =
ρ(x).

PROOF. We compute, using duality with one dual particle, and the fact thatD(δx, η) = ηx
(for D as in (II.35)-(II.34))

Eµϵ [ηx(ϵ−2t)] = EµϵD(δx, η(ϵ
−2t))

=

∫
ERW
x D(δX(ϵ−2t), η)µ

ϵ(dη)

= ERW
0 ρ(ϵx+ ϵX(ϵ−2t)) (XI.17)

where ERW
x denotes the expectation w.r.t. the random walk {X(t) : t ≥ 0} starting from

x at time t = 0, and where in the last step we used translation invariance of this random
walk. Then the expected density field at macroscopic times is given by

Eµϵ
[
Xϵ(φ, η(ϵ

−2t))
]

= ϵd
∑
x

φ(ϵx) ERW
0 ρ(ϵx+ ϵX(ϵ−2t)) (XI.18)

Define now, for x ∈ Rd, t > 0

ρ(t, x) := EBM [ρ(W (t) + x)] =

∫
Rd

e−
(x−y)2

2t√
(2πt)

d
ρ(y)dy (XI.19)

where EBM refers to the expectation w.r.t. the standard Brownian motion W (t), then,
as we already mentioned before, ρ(t, x) is the solution of the heat equation with initial
condition ρ(0, x) = ρ(x). In what follows we will denote by Qt the semigroup of Brownian
motion, i.e., Qtf(x) = Ef(W (t) + x). Using this notation we then have, using (XI.19),
that ρ(t, x) = Qtρ(0, x).
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Starting from (XI.18), using the invariance principle and using dominated convergence,
we obtain

lim
ϵ→0

Eµϵ
[
Xϵ(φ, η(ϵ

−2t))
]

= lim
ϵ→0

ϵd
∑
x

φ(ϵx) ERW
0 ρ(ϵx+ ϵX(ϵ−2t))

= lim
ϵ→0

ϵd
∑
x

φ(ϵx) EBM0 ρ(ϵx+W (t)))

= lim
ϵ→0

ϵd
∑
x

φ(ϵx)ρ(t, ϵx) =

∫
φ(x)ρ(t, x)dx (XI.20)

REMARK XI.8. In the proof we used translation invariance of the random walk, i.e.,
when denoting Xx(t) the random walk starting from x ∈ Zd at time t > 0, we used
the fact that Xx(t) = x + X0(t). In the non-translation invariant case, we need the
invariance principle from an arbitrary starting point, i.e., we need that if xϵ ∈ Zd such
that ϵxϵ → y ∈ Rd as ϵ→ 0, then ϵXxϵ(ϵ−2t) → y+W (t), which is slightly more than the
invariance principle starting from the origin. This is used to prove the hydrodynamic limit
in a context where one has duality, but no translation invariance, such as a (dynamic or
static) random environment. See [91,191] for examples for the partial exclusion process in
random environement. The basic idea to pass from the one-particle invariance principle
to the hydrodynamic limit is due to Nagy [180], see [87] for a more recent implemention
of this idea for particle systems in random environment.

XI.2.3 Variance of the density field: two dual particles

We now compute the variance of the density field. We will consider various cases for
the initial measure, and from the study of the variance which amounts to consider two
dual particles, we can already access some interesting quantities such as the deviation
from local equilibrium. This will become clear in the discussion after the computation of
Lemma XI.10.

We start from a family {µϵ, ϵ > 0} of probability measures which satisfies UFMC, and
which is compatible with a macroscopic density profile ρ : Rd → [0,∞) which is bounded
and smooth, i.e., Eµϵ(ηx) = ρ(ϵx). In order to deal with the second moment of the density
field we define the second order expectations of µϵ via

ρϵ2(ϵx, ϵy) =

∫
D(δx + δy, η)µϵ(dη)− ρ(ϵx)ρ(ϵy) (XI.21)

If x ̸= y, then covµϵ(ηx, ηy) = ρϵ2(ϵx, ϵy). Remark that if µϵ is a Poisson product measure,
then ρϵ2 is equal to zero.If µϵ is a general product measure, then ρϵ2(ϵx, ϵy) = 0 for x ̸= y,
and

ρϵ2(ϵx, ϵx) = Varµϵ(ηx)− ρ(ϵx) (XI.22)

DEFINITION XI.9.
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1. Decaying covariances. We say that the family {µϵ, ϵ > 0} has decaying covari-
ances if there exists a continuous ψ : [0,∞) → [0,∞) such that limr→∞ ψ(r) = 0
and such that for all ϵ > 0, x, y ∈ Zd

covµϵ(ηx, ηy) ≤ ψ(∥x− y∥) (XI.23)

where ∥x∥ denotes the Euclidean norm in Rd.

2. Slowly varying covariances. We say that the family {µϵ, ϵ > 0} has slowly
varying covariances if

Varµϵ(ηx, ηx) = V (ϵx)

covµϵ(ηx, ηy) = C(ϵx, ϵy)ϵd for x ̸= y (XI.24)

for some smooth bounded functions V : R → [0,∞) and C : R2 → R.

We further denote
ρϵ(t, ϵx) = Eµϵ(ηx(ϵ−2t)) (XI.25)

By Theorem XI.7, we have, for a test function φ ∈ S

ϵd
∑
x

φ(ϵx)ρϵ(t, ϵx) =

∫
φ(x)ρ(t, x)dx+ o(1) (XI.26)

where ρ(t, x) is the solution of the heat equation (XI.16), with initial condition ρ(0, x) =
ρ(x), and where o(1) → 0 as ϵ → 0. In the following lemma we compute the time-
dependent covariances of particle occupations.

LEMMA XI.10 (Time-dependent variance of the density-field).

Eµϵ
[
ηx(ϵ

−2t)ηy(ϵ
−2t)

]
− ρϵ(t, ϵx)ρϵ(t, ϵy) = EIRW

x,y

[
ρϵ2(ϵX1(ϵ

−2t), ϵX2(ϵ
−2t))

]
+ 1l{x=y} ρ

ϵ(t, ϵx)

where EIRW
x,y denotes expectation w.r.t. two independent random walkers starting at x, y

at time t = 0.
As a consequence,

Varµϵ
(
Xϵ(φ, η(ϵ

−2t))
)
= ϵ2d

∑
x,y

φ(ϵx)φ(ϵy) EIRW
x,y [ρϵ2(ϵXϵ−2t, ϵYϵ−2t)] + ϵ2d

∑
x

φ(ϵx)2 ρϵ(t, ϵx)

PROOF. Denote as before by Xx(t) the position of the random walk starting at x at time
t. First use that

ηxηy = D(δx + δy, η) + 1l{x=y}D(δx, η)

Then, as a consequence, using self-duality and (XI.21), (XI.25) we have

Eµϵ(ηx(ϵ−2t)ηy(ϵ
−2t))

= Eµϵ
(
D(δx + δy, η(ϵ

−2t)) + 1l{x=y}D(δx, η(ϵ
−2t)

)
= EµϵEIRW

((
D(δXx

1 (ϵ
−2t) + δXy

2 (ϵ
−2t), η) + 1l{x=y}D(δXx

1 (ϵ
−2t), η

))
= ρϵ(t, ϵx)ρϵ(t, ϵy) + EIRWρϵ2(ϵX

x
1 (ϵ

−2t), ϵXy
2 (ϵ

−2t))

+ 1l{x=y}ρ
ϵ(t, ϵx) (XI.27)
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Here EIRW denotes expectations w.r.t. the two independent walkers Xx
1 (t), X

y
2 (t), starting

from x, resp. y. Now (XI.27) follows immediately. To prove the consequence, compute

Varµϵ
(
Xϵ(φ, η(ϵ

−2t))
)

= ϵ2d
∑
x,y∈Zd

φ(ϵx)φ(ϵy)
(
Eµϵ

[
ηx(ϵ

−2t)ηy(ϵ
−2t)

]
− ρϵ(t, ϵx)ρϵ(t, ϵy)

)
Then use (XI.27).

XI.2.4 Scaling limits of the variance of the density field.

In this subsection we provide detailed properties of the variance of the density fluctuation
field, in various non-equilibrium settings determined by different choices of the initial
measure µϵ. In particular, on the level of the variance, one can understand the “deviations
from local equilibrium”. More precisely, when the initial measure is not a product of
Poisson with parameter ρ(ϵx), then the time-dependent variance of the density fluctuation
field contains correction terms related to the deviation from local equilibrium.

In the next discussion we compute the variance of the density field Xϵ and we remark
that the variance of the density fluctuation field is related to that via

V ar(Yϵ) = ϵ−dV ar(Xϵ)

We distinguish five cases.

a) Local equilibrium: the initial measure µϵ is a product of Poisson measures.
Then we have that ρϵ2 = 0 and the variance of the density field at time ϵ−2t equals

Varµϵ(Xϵ

(
φ, η(ϵ−2t))

)
= ϵ2d

∑
x

φ(ϵx)2ρϵ(t, ϵx) ≈ ϵ2d
∑
x

φ(ϵx)2ρ(t, ϵx).

This quantity is of order O(ϵd) and corresponds to the variance of

ϵd
∑
x

φ(ϵx)Zx

where Zx are independent Poisson random variables with expectation ρ(t, ϵx). This
is because a product of Poisson measures is propagated into a product of Poisson
measures (cf. Theorem III.15). This exact propagation of local equilibrium is an
exceptional situation which holds only for independent walkers. As we have seen
before, it corresponds to the fact that the intertwining dynamics in the continuum
is deterministic, or equivalently via Doob’s theorem. As a consequence, the limiting
variance of the density fluctuation field Yϵ(φ, η(ϵ

−2t)) equals

lim
ϵ→0

Var
(
Yϵ(φ, η(ϵ

−2t)
)
=

∫
φ(x)2ρ(t, x)dx
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b) The initial measure is a general product measure. Then ρϵ2(ϵx, ϵy) = 0 for
x ̸= y and using (XI.22) we obtain for the variance of the density field at time ϵ−2t

Varµϵ(Xϵ

(
φ, η(ϵ−2t))

)
= ϵ2d

∑
x

φ(ϵx)2ρϵ(t, ϵx) (XI.28)

+ ϵ2d
∑
x,y

φ(ϵx)φ(ϵy)EIRW
x,y

(
1l{(X1(ϵ−2t)=X2(ϵ−2t))}

(
Varµϵ(ηX(ϵ−2t))− ρ(ϵX(ϵ−2t))

))
The first term corresponds to the local equilibrium contribution and is of order
O(ϵd), whereas the second term comes from the deviation from local equilibrium
and is also of order O(ϵd), whenever the variance Varµϵ(ηx) is uniformly bounded in
x and ϵ. This can be seen via

PIRWx,y

(
X1(ϵ

−2t) = X2(ϵ
−2t)

)
= p2ϵ−2t(x− y, 0) ≈ e−

(x−y)2
4ϵ−2t

(4πϵ−2t)d/2
= O(ϵd)

where pt(x, y) denotes the transition probability for the random walk to move from
x to y in time t. Here the first equality follows from the fact that X1(t)−X2(t) has
the same law as X(2t) by translation invariance, whereas the last step follows via
the local limit theorem.

Now if we assume that the variance is also slowly varying in space, i.e., of the form

Varµϵ(ηx) = V (ϵx)

with V : R → [0,∞) a bounded smooth function, then we can further work out the
second term in term in (XI.28) and find, using the local limit theorem, and abbre-
viating qt(x, y) = (2πt)−d/2e−(x−y)2/2t the transition probability density of Brownian
motion:

lim
ϵ→0

ϵ−dϵ2d
∑
x,y

φ(ϵx)φ(ϵy)EIRW
x,y

(
1l{X1(ϵ−2t)=X2(ϵ−2t)}

(
Varµϵ(ηX(ϵ−2t))− ρ(ϵX(ϵ−2t))

) )
= lim

ϵ→0
ϵd

∑
x,y,z∈Zd

φ(ϵx)φ(ϵy)(V (ϵz)− ρ(ϵz))pϵ−2t(x, z)pϵ−2t(y, z)

=

∫
φ(x)φ(y)(V (z)− ρ(z))qt(x, z)qt(y, z)dxdydz (XI.29)

So in this case, we also conclude that the variance of the density field is of order ϵd,
and that the limiting variance of the density fluctuation field equals

lim
ϵ→0

Var
(
Yϵ(φ, η(ϵ

−2t))
)

=

∫
φ(x)2ρ(t, x)dx

+

∫
φ(x)φ(y)(V (z)− ρ(z))qt(x, z)qt(y, z) dxdydz.

The term ∫
φ(x)φ(y)(V (z)− ρ(z))qt(x, z)qt(y, z) dxdydz (XI.30)
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corresponds to the correction coming from the deviation from local equilibrium.
Indeed, notice that for the local equilibrium distribution, V (z) − ρ(z) = 0, so this
term is not present.

We can rewrite the limiting variance using Qtf(x) =
∫
qt(x, y)f(y)dy for the semi-

group of Brownian motion and the fact that ρ(t, ·) = Qt(ρ(0, ·)), combined with
self-adjointness of Qt in L

2(dx):

lim
ϵ→0

Var
(
Yϵ(φ, η(ϵ

−2t))
)

=

∫
Qt(φ

2)(x)ρ(x)dx

+

∫
(Qt(φ))

2(z)(V (z)− ρ(z))dz (XI.31)

We will see below that this expression coincides with the variance that one computes
from the limiting infinite dimensional Ornstein Uhlenbeck process which described
the evolution of the fluctuation field in the limit ϵ→ 0 .

c) The initial measure has decaying covariance.

Then, as in the previous two cases, in this case the limiting variance of the density
fluctuation field equals zero, as ϵ→ 0. Indeed, using the defining property (XI.23),
the correction, corresponding to the deviation from local equilibrium, can now be
estimated by

ϵ2d
∑
x,y

φ(ϵx)φ(ϵy)EIRW
x,y [ψ(|Xϵ−2t − Yϵ−2t|)]

which goes to zero as ϵ → 0. Indeed, with probability close to 1 as ϵ → 0, |Xϵ−2t −
Yϵ−2t| → +∞, and therefore, using the assumption ψ(r) → 0 as r → ∞, the factor
EIRW
x,y [ψ(|Xϵ−2t − Yϵ−2t|)] tends to zero as ϵ→ 0.

d) The initial measure has slowly varying covariances. If we assume that the
initial distribution µϵ has a slowly varying variance, as well as a suitable scaling
form for the covariance, as defined in (XI.24), then we can repeat an analogous
computation as we did in item b) for a product initial measure, and we find that
the limiting variance of the density fluctuation field equals

lim
ϵ→0

Varµϵ
(
ϵ−d/2Xϵ(φ, η(ϵ

−2t))
)

=

∫
Qt(φ

2)(x)ρ(x)dx+

∫
(Qt(φ)(x))

2(V (x)− ρ(x))dx

+

∫
(Qtφ)(x)Qt(φ)(y)C(x, y)dxdy (XI.32)

where Qt denotes the semigroup of Brownian motion.

e) The initial measure has macroscopic covariances. This means that

ρϵ2(ϵx, ϵy) ≈ ρ2(ϵx, ϵy) (XI.33)

does not converge to zero as ϵ → 0 for x ̸= y but has a limiting scaling form
(where we remind the reader that ρϵ2(ϵx, ϵy) is defined in (XI.21)). In words, (XI.33)
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means that under the measure µϵ the particle numbers ηx, ηy have “macroscopic”
covariances (i.e., of order ϵ−1). In that case the limiting variance equals

lim
ϵ→0

Varµϵ(Xϵ

(
φ, η(ϵ−2t))

)
=

∫
φ(x)φ(y)EBM [ρ2(x+W1(t), y +W2(t))] dxdy

where EBM is now the expectation w.r. to two independent standard d-dimensional
Brownian motions, W1 and W2. Because the variance of the density field does not
vanish in the limit ϵ → 0, in that setting the limiting density field is no longer
deterministic.

XI.2.5 Connection with the SPDE for the limiting density fluc-
tuation field

Here we show that the limiting time-dependent variance of the density fluctuation field,
as we computed in the previous section in various cases, corresponds (in all these cases)
to the limiting linear Ornstein-Uhlenbeck stochastic partial differential equation (SPDE)
for the fluctuation field, which is given by

dY (t, x) =
1

2
∆Y (t, x)dt−∇.

(√
ρ(t, x)dW(t, x)

)
(XI.34)

Here W(t, x) denotes space-time white noise. The term ∇.
(√

ρ(t, x)dW(t, x)
)
has to be

interpreted as follows: for a test function f ∈ S, the quantity∫ T

0

∇.
(√

ρ(t, x)dW(t, x)
)
[φ]

is a martingale with quadratic variation
∫ T
0

∫
R ρ(s, x)(∇φ(x))

2dxdt.
The mild solution of (XI.34) is given by

Yt(φ) = Y0(Qtφ) +

∫ t

0

∇(Qt−sφ)(x).
√
ρ(s, x)dW(s, x) (XI.35)

where we remind that Qtf(x) =
∫
qt(x, y)f(y)dy denotes the semigroup of Brownian

motion. Here we denoted Yt(φ) the pairing of the distribution Y (t, ·) with the test function
φ.

From (XI.35) we can compute the variance of Yt(φ)

Var (Yt(φ)) = Var(Y0(Qtφ)) +

∫ t

0

∫
(∇(Qt−sφ))

2ρ(x, s)dxds (XI.36)

Then, we have to match (XI.36) to (XI.31)
We show that the right hand side of (XI.31) fits with the solution of the SPDE (XI.34),

where as initial condition we have for Y (0, ·) white noise with variance Var (Y0(φ)) =∫
V (x)φ2(x)dx, which by the central limit theorem corresponds to the limit ofYϵ(φ, η(ϵ

−2t))
at time t = 0, because η(0) is by assumption distributed as a product measure.
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We then have to show that∫
φ2(x)ρ(t, x)dx−

∫
(Qtφ)

2(x)ρ(x)dx =

∫ ∫ t

0

(∇(Qt−sφ))
2ρ(x, s)dsdx (XI.37)

This follows from the identity∫
d

ds

(
(Qt−sφ)

2ρ(x, s)
)
dx =

∫
(∇(Qt−sφ))

2ρ(x, s)dx (XI.38)

which in turn can be derived from the fact d
ds
Qs =

1
2
∆Qs combined with partial integra-

tion, and the fact ρ(x, s) = Qsρ(x, 0).
Similarly, the variance computed in (XI.32) fits with the solution of (XI.34) starting

from initial condition Y (0, ·) Gaussian white noise with variance
∫
φ(x)φ(y)C(x, y)dxdy+∫

V (x)φ(x)2.

XI.2.6 Summary

Combining the computations for the expected density field with the computations for the
variance of the density field, we can summarize as follows.

1. Hydrodynamic limit in L2.

If the initial measure µϵ has the following two properties,

i) well-defined (limiting) density profile

µϵ(ηx) = ρ(ϵx)

ii) decaying covariance as in item c) of the previous discussion

covµϵ(ηx, ηy) ≤ ψ(∥x− y∥) with ψ(r) → 0 as r → ∞

or slowly varying variance and covariance as in item d) of the previous discussion.
Then we conclude that

lim
ϵ→0

Varµϵ(Xϵ

(
φ, η(ϵ−2t))

)
= 0 (XI.39)

Together with the result on the expected density field (XI.20), this implies that,
at every macroscopic time t, the density field converges in L2 to the deterministic
quantity ∫

φ(x) ρ(t, x) dx (XI.40)

where ρ(t, x) is the solution of the heat equation (XI.16), i.e.

lim
ϵ→0

E
[
Xϵ

(
φ, η(ϵ−2t)

)
−
∫
φ(x) ρ(t, x) dx

]2
= 0

2. Limiting variance of the density fluctuation field.

If the initial measure µϵ has a scaling form for the variance and covariance in
the sense (XI.24), then the density fluctuation field Yϵ(φ, η(ϵ

−2t)) has a limit-
ing variance which fits with the mild solution of the stochastic partial differential
equation (XI.34) with initial condition Y (0, ·) given by white noise with variance
E(Y0(φ)2) =

∫
C(x, y)φ(x)φ(y)dxdy +

∫
V (x)φ(x)dx.
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XI.2.7 Local equilibrium: n dual particles

Local equilibrium as defined in (XI.10) is expected to be a property that sets in at any
positive macroscopic time, and is preserved in the course of (macroscopic) time. This
should be the case if one starts from a reasonable family of measures {µϵ, ϵ > 0}, i.e., a
family compatible with a density profile, and such that there is some decay of covariances.
If there is duality, then the main reason why local equilibrium sets in is the fact that at
macroscopic times, dual particles will typically be at large distances from each other.

Let us start with a sketchy computation which explains this intuition, and contains
the main idea of the proof of propagation of local equilibrium. Let us assume that we
start for simplicity from a product measure µϵ, compatible with a density profile ρ, and
suppose that we want to compute the expectation at macroscopic time t (i.e., microscopic
time ϵ−2t) of a classical duality polynomial around the macroscopic point x ∈ Rd, i.e.,
around the microscopic point ⌊ϵ−1x⌋:∫

EηD

(
n∑
i=1

δ⌊ϵ−1x⌋+yi , η(ϵ
−2t)

)
dµϵ(η) (XI.41)

where y1, . . . , yn ∈ Zd. Using self-duality we find that this expectation can be rewritten
as ∫

EIRWD

(∑
i=1

δ
X

⌊ϵ−1x⌋+yi
i (ϵ−2t)

, η

)
dµϵ(η) (XI.42)

where the expectation EIRW is w.r.t. the independent random walkers initially at positions
⌊ϵ−1x⌋+ yi, i = 1, . . . , n. Because we let the walkers evolve for a time ϵ−2t, we have with

probability close to one that all their locations at time ϵ−2t, i.e., X
⌊ϵ−1x⌋+yi
i (ϵ−2t) are

different (typically they will be at distance ϵ−1 from each other). Therefore, using the
fact that for y1, . . . , yn mutually different elements of Zd

D

(
n∑
i=1

δyi , η

)
=

n∏
i=1

ηyi

we can approximate (XI.42) by∫
EIRW

(
n∏
i=1

η
X

⌊ϵ−1x⌋+yi
i (ϵ−2t)

)
dµϵ(η) (XI.43)

and because µϵ is a product measure, also by

EIRW

(
n∏
i=1

∫
η
X

⌊ϵ−1x⌋+yi
i (ϵ−2t)

dµϵ(η)

)
(XI.44)

and because µϵ is compatible with profile ρ, by

n∏
i=1

ρ(t, ϵ(⌊ϵ−1x⌋+ yi)) ≈ ρ(t, x)n
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In other words, around the macroscopic point x (corresponding to the microscopic
lattice point ⌊ϵ−1x⌋, at macroscopic time t > 0 the distribution is approximately (when
ϵ→ 0) a product of Poisson with density ρ(t, x), where ρ(t, x) is the solution of the heat
equation starting from the initial density profile.

The following theorem formalizes this computation. For simplicity we assume that
the measures µϵ consists of product measures. This can be replaced easily by decaying
covariance (of general polynomials of the particle numbers ηx) assumptions.

THEOREM XI.11 (Local equilibrium). Let the family {µϵ, ϵ > 0} have expected density
compatible with the density profile ρ : Rd → [0,∞). Assume moreover that µϵ is a product
measure for all ϵ > 0 and satisfies UFMC (i.e., (XI.7)). Let us denote by µϵS(ϵ

−2t) the
distribution at time ϵ−2t when started from µϵ. Then the family {µϵS(ϵ−2t) : ϵ > 0} is
a local equilibrium with density profile ρ(t, x) given by the solution of the heat equation
(XI.16) with initial condition ρ(0, x) = ρ(x).

We start with a simple lemma.

LEMMA XI.12. Let us denote by An the set of n-tuples of lattice points with all n entries
different. Then we have the following estimate

sup
x1,...,xn∈Zd

PIRWx1,...,xn
((Xx1(t), . . . , Xxn(t)) ∈ Acn) ≤ n(n− 1)p2t(0, 0) (XI.45)

PROOF.

PIRWx1,...,xn
((Xx1(t), . . . , Xxn(t)) ∈ Acn) ≤

n∑
i,j=1,i ̸=j

PIRWxi,xj
(Xxi(t) = Xxj(t))

≤ n(n− 1)p2t(0, 0) (XI.46)

where in the last step we used that Xxi
t −X

xj
t has the same distribution as X

xi−xj
2t which

follows from independence of the walks, and we also used that pt(x, y) ≤ pt(0, 0).

We can now prove Theorem XI.11.

PROOF. We have to prove that for all choices of y1, . . . , yn ∈ Zd, and x ∈ Rd

lim
ϵ→0

∫
EηD

(
n∑
i=1

δ⌊ϵ−1x⌋+yi , η(ϵ
−2t)

)
dµϵ(η) = ρ(t, x)n (XI.47)

By duality this is equivalent to showing that

lim
ϵ→0

∫
EIRWD

(∑
i=1

δ
X

⌊ϵ−1x⌋+yi
i (ϵ−2t)

, η

)
dµϵ(η) = ρ(t, x)n (XI.48)

Abbreviate

x(ϵ, t) =
(
X⌊ϵ−1x⌋+y1(ϵ−2t), . . . X⌊ϵ−1x⌋+yn(ϵ−2t)

)
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Write

EIRW

(
D

(∑
i=1

δ
X

⌊ϵ−1x⌋+yi
i (ϵ−2t)

, η

))

= EIRW

(
n∏
i=1

D
(
δ
X

⌊ϵ−1x⌋+yi
i (ϵ−2t)

, η
)
1l{An}(x(ϵ, t))

)

+ EIRW

(
n∏
i=1

D
(
δ
X

⌊ϵ−1x⌋+yi
i (ϵ−2t)

, η
)
1l{Ac

n}(x(ϵ, t))

)
(XI.49)

Next estimate, using the inequality 0 ≤ D(
∑n

i=1 δzi , η) ≤
∏n

i=1 ηzi which holds for all
choices z1, . . . , zn ∈ Zd, the Cauchy-Schwarz inequality, and the condition UFMC

EIRW

∫ ( n∏
i=1

D
(
δ
X

⌊ϵ−1x⌋+yi
i (ϵ−2t)

, η
)
1l{Ac

n}(x(ϵ, t))dµϵ(η)

)
≤ (PIRW(x(ϵ, t) ̸∈ An))

1/2Cn (XI.50)

where

Cn =

(
sup

z1,...,zn∈Zd

∫
(
n∏
i=1

ηzi)
2dµϵ(η)

)1/2

<∞

By Lemma XI.12 we conclude that

lim
ϵ→0

EIRW

(∫ ( n∏
i=1

D
(
δ
X

⌊ϵ−1x⌋+yi
i (ϵ−2t)

, η
))

1l{Ac
n}(x(ϵ, t))dµϵ(η)

)
= 0

Then, by the product character of the measure µϵ, and the assumed density profile, i.e.,
Eµϵ(ηx) = ρ(ϵx)

EIRW

∫ ( n∏
i=1

D
(
δ
X

⌊ϵ−1x⌋+yi
i (ϵ−2t)

, η
)
dµϵ(η)1l{An}(x(ϵ, t))

)

= EIRW

(
1l{An}(x(ϵ, t))

n∏
i=1

ρ(ϵX⌊ϵ−1x⌋+yi(ϵ−2t))

)
(XI.51)

By the assumed boundedness of the profile ρ, we have

EIRW

(
1l{Ac

n}(x(ϵ, t))
n∏
i=1

ρ(ϵX⌊ϵ−1x⌋+yi(ϵ−2t))

)

≤
(
EIRW1l{Ac

n}(x(ϵ, t))
)1/2 EIRW

(
n∏
i=1

ρ2(ϵX⌊ϵ−1x⌋+yi(ϵ−2t))

)1/2

≤ Kn

(
PIRW(x(ϵ, t) ̸∈ An)

)1/2
(XI.52)

where Kn = ∥ρ∥n∞. Using lemma XI.12 once more, we conclude that

lim
ϵ→0

EIRW

(
1l{Ac

n}(x(ϵ, t))
n∏
i=1

ρ(ϵX⌊ϵ−1x⌋+yi(ϵ−2t))

)
= 0
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Therefore we can remove the indicator 1l{An} in the rhs of (XI.51), and arrive at

EIRW

n∏
i=1

ρ(ϵX⌊ϵ−1x⌋+yi(ϵ−2t)) =
n∏
i=1

ERW
⌊ϵ−1x⌋+yi(ρ(ϵX(ϵ−2t)) → ρ(t, x)n, when ϵ→ 0

where the last step follows from the invariance principle, i.e., the random walk starting
from ⌊ϵ−1x⌋+ yi at time ϵ−2t converges to x+W (t) for all i ∈ {1, . . . , n} as ϵ→ 0.

XI.2.8 Stationary fluctuation field

In this section we consider the independent random walkers starting from a homogeneous
Poisson product measure νρ and look at the stationary density fluctuation field

Yϵ(φ, η(ϵ
−2t)) = ϵd/2

∑
x

φ(ϵx)(ηx(ϵ
−2t)− ρ) (XI.53)

As we have already seen in the computation of the variance of the density field, we expect
that as ϵ→ 0, this field converges to an infinite dimensional Ornstein Uhlenbeck process
given by the SPDE

dY (t) =
1

2
∆Y (t)dt+

√
ρ∇dW(t) (XI.54)

where W(t) is space-time white noise. The solution of the SPDE (XI.54) is a stationary
Gaussian distribution valued process with covariance

cov(Yt(φ), Ys(φ)) = ρ⟨φ,Q|t−s|φ⟩

We will use duality with the deterministic system to obtain this result in the sense
of convergence of finite dimensional distributions. The duality with the deterministic
system can be used to compute the moment generating function. Notice that a stronger
result, namely convergence is path space, is proved in [146], Chapter 11, using martingale
methods. The martingale method is more suitable to obtain tightness in path space via
the control of the quadratic variation.

THEOREM XI.13. For all a, b ∈ R

lim
ϵ→0

logEνρeaYϵ(φ,η(0))+bYϵ(φ,η(ϵ−2t)) =
ρ

2

(
(a2 + b2)⟨φ, φ⟩+ 2ab⟨φ,Qtφ⟩

)
(XI.55)

where ⟨, ⟩ denotes inner product in L2(dx) and where Qt is the semigroup of Brownian
motion. As a consequence, for all choices of t1, . . . , tn, the limit in distribution of the
vector (Yϵ(φ, η(t1)), . . .Yϵ(φ, η(tn))) is a stationary Gaussian vector (Yt1 , . . . , Ytn) with
covariances

cov(Yti , Ytj) = ρ⟨φ,Q|ti−tj |φ⟩

PROOF. We start by computing

Eη
(
ebYϵ(φ,η(ϵ−2t))

)
= Eη

(∏
x

ebφ(ϵx)ηx(ϵ
−2t)

)∏
x

e−bρϵ
d/2φ(ϵx) (XI.56)
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Using duality with the deterministic system we obtain

Eη

(∏
x

ebφ(ϵx)ηx(ϵ
−2t)

)
=
∏
x

(∑
y

pϵ−2t(x, y)e
ϵd/2bφ(ϵy)

)ηx

(XI.57)

Indeed, putting zx = ebφ(ϵx) the product in the lhs of (XI.57) is of the form
∏

x z
ηx(ϵ−2t
x ), and

hence the Eη expectation is by duality with the deterministic system equal to
∏

x zx(t)
ηx ,

with zx(t) =
∑

y pϵ−2t(x, y)zy. Using the invariance principle, the sum∑
y

pϵ−2t(x, y)e
ϵd/2bφ(ϵy) =: Qϵ

t(e
ϵd/2bφ(·))(ϵx)

which is well-approximated by Qt(e
ϵd/2bφ(·))(ϵx) where Qt is the semigroup of Brownian

motion. Therefore,
EηeaYϵ(φ,η(0))+bYϵ(φ,η(ϵ−2t))

can be rewritten as

eϵ
d/2a

∑
x(ηx−ρ)φ(ϵx)e−bϵ

d/2ρ
∑

x φ(ϵx)
∏
x

(Qϵ
t(e

ϵd/2bφ(·))(ϵx))ηx) (XI.58)

We now take the expectation of this expression w.r.t. the Poisson product measure, using
Eνρzηx = eρ(z−1), and obtain

logEνρeaYϵ(φ,η(0))+bYϵ(φ,η(ϵ−2))

=
∑
x

[(
(−ϵd/2(a+ b)ρφ(ϵx)

)
+ ρ

(
exp

(
φ(ϵx)ϵd/2a+ logQϵ

t(e
ϵd/2bφ(·))(ϵx)

)
− 1
)]

(XI.59)

We then remark

logQϵ
te
ϵd/2bφ(·)(ϵx)− 1 = ϵd/2bQϵ

tφ(ϵx) +
1

2
ϵdb2Qϵ

t(φ
2)(ϵx) + o(ϵd)

Substituting this expression into (XI.59), and expanding the exponentials, hereby ne-
glecting all terms o(ϵd), and using that Qϵ

t → Qt we obtain (XI.55). Using the Markov
property, and iteratively using the duality with the deterministic system, the extension
to multiple times is straightforward. We leave this to the reader.

REMARK XI.14 (Tightness). Theorem XI.13 implies that the trajectory of the random
distribution Yϵ(·, η(ϵ−2t)) converges in the sense of finite dimensional distributions to
the stationary solution of (XI.54). In order to establish convergence in path space (in
D([0,∞),S′)), one has to prove tightness. This can be done along the same lines by
estimating the Eνρ(Yϵ(φ, η(ϵ−2t))−Yϵ(φ, η(0)))

4 and obtaining an upper bound of order
t2 when t→ 0. Then by Kolmogorov’s tightness criterion, {Yϵ(φ, η(ϵ−2t)), t ≥ 0} is tight
in D([0,∞),R), which implies tightness of {Yϵ(·, η(ϵ−2t)), t ≥ 0} in D([0,∞),S′). We
omit the details here, because the by now standard methodology based on martingales
gives a much more elegant and robust approach based on Aldous’ tightness criterion.
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XI.3 The interacting case

In this section we show that many of the results for independent random walkers can be
generalized to interacting systems with duality.

Following the line of thought of the case of independent random walkers, we will
discuss the following items.

1. If the scaling limit of a single dual particle is Brownian motion, then the expected
density field converges to the solution of the heat equation. This is exactly the
same for interacting systems with duality as it is for independent random walkers
because the statement depends only on a distribution of the trajectory of a single
dual particle, and therefore the interaction between dual particles does not play any
role in this statement. Therefore Theorem XI.7 holds in the interacting case.

2. The variance of the density field and its scaling behavior, both stationary and non-
stationary can be obtained from the study of two dual particles.

3. The macroscopic propagation of local equilibrium (“propagation of chaos”) can be
obtained from a suitable coupling between n dual particles and n independent par-
ticles. Then how local equilibrium sets in and propagates is then analogous to the
case of independent random walkers, namely because the dual particles are with
probability close to 1 at different locations at any macroscopic time.

For the sake of simplicity we will restrict to three models: independent random walkers
(already covered), symmetric exclusion, and symmetric inclusion. Similar results can be
derived for diffusion processes dual to SIP or thermalized models such as KMP.

For the three models under study the underlying single particle random walk {X(t) :
t ≥ 0} has jump rates αp(x, y). We assume that p(x, y) translation invariant and of
unit variance, i.e., satisfying (XI.1) and (XI.2). As a consequence ϵX(ϵ−2t) converges
to a Brownian motion with variance αt, i.e., to W (αt), where W (t) denotes standard
Brownian motion.

We recall the generator of the models under consideration:

Lf(η) =
∑
x,y∈Zd

p(x, y)ηx(α + σηy)(f(η
x,y)− f(η)) (XI.60)

where σ = 0, 1,−1 for independent random walkers, symmetric inclusion, symmetric
exclusion respectively. In order to avoid unnecessary technicalities, we will additionally
assume in the whole of this section that p(x, y) is of finite range, i.e., there exists R > 0
such that p(x, y) = 0 whenever |x− y| > R.

We will start with the computation of the time-dependent covariance using two dual
particles. This will help us in obtaining estimates for the variance of the density field.

XI.3.1 Time dependent covariance of particle numbers: two
dual particles

In order to study the behavior of the variance of the density field in terms of two dual
particles (next section), in this section we compute time dependent covariance of the
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particle numbers at different locations, as well as of the time dependent variance at a
single location. We believe that these explicit computations are of independent use, as
we discuss after having performed them.

We start with some notation and then proceed with the computation of variances and
covariances. We put

D(δx, η) = c1ηx

D(2δx, η) = c2ηx(ηx − 1) (XI.61)

We have

1. For SIP(α): c1 =
1
α
, c2 =

1
α(α+1)

.

2. For SEP(α), with α ≥ 2, c1 = 1/α c2 =
1

α(α−1)
.

3. For independent random walkers c1 = c2 = 1.

We start the process with the configuration at time zero, i.e., η(0) distributed according
to the probability measure ν and denote

ρ(x) =

∫
ηxdν =

1

c1

∫
D(δx, η)dν

ρ2(x) =

∫
ηx(ηx − 1) =

1

c2

∫
D(2δx, η)dν

C(x, y) =

∫
ηxηydν −

∫
ηxdν

∫
ηydν (XI.62)

Notice that for the reversible homogeneous product measures ν = νρ we have ρ(x) = ρ

and, because as we saw earlier
∫
D(2δx, η)dνρ(η) =

(∫
D(δx, η)dνρ(η)

)2
we also have

c2ρ2 = (c1ρ)
2.

Furthermore, we denote as before by pt(x, y) the transition probability for a single
dual particle to go from x to y in time t and by pt(x, y;u, v) the transition probability for
two (labeled) dual particles to go from x, y to u, v in time t, and

ρt(x) =
∑
y

pt(x, y)ρ(y) =

∫
Eη(ηx(t))dν (XI.63)

Finally we denote the time dependent covariance of the particle numbers at x and y when
initially started from ν as

Ξ(t, x, y; ν) =

∫
Eη(ηx(t)ηy(t))dν(η)− ρt(x)ρt(y) (XI.64)

Computation of the time dependent covariance of particle occupation numbers

Then we have the following useful computational lemma.

LEMMA XI.15. We have the following equalities:



XI.3. THE INTERACTING CASE 297

1. First, for x ̸= y:

Eη(ηx(t)ηy(t)) =
∑
u̸=v

pt(x, y;u, v)ηuηv +
c2
c21
pt(x, y;u, u)ηu(ηu − 1) (XI.65)

2. Second:

Eη(ηx(t)2) =
c21
c2

∑
u̸=v

pt(x, x;u, v)ηuηv +
∑
u

pt(x, x;u, u)ηu(ηu − 1) +
∑
u

pt(x, u)ηu

(XI.66)

3. Third, for the time-dependent covariance starting from the initial measure ν, we get,
for x ̸= y:

Ξ(t, x, y; ν) =

∫
Eη(ηx(t)ηy(t))dν(η)− ρt(x)ρt(y)

=
∑
u,v

(pt(x, y;u, v)− pt(x, u)pt(y, v))ρ(u)ρ(v)

+
∑
u

pt(x, y;u, u)

(
c2
c21
ρ2(u)− ρ(u)2

)
+

∑
u̸=v

pt(x, y;u, v)C(u, v) (XI.67)

4. Fourth, for the time-dependent variance starting from the initial measure ν, we get

Ξ(t, x, x; ν) =

∫
Eη(ηx(t)2)dν(η)− ρt(x)

2

=
c21
c2

∑
u,v

(pt(x, x;u, v)− pt(x, u)pt(x, v))ρ(u)ρ(v)

+
∑
u

pt(x, x;u, u)

(
ρ2(u)−

c21
c2
ρ(u)2

)
+

(
c21
c2

− 1

)
ρt(x)

2

+
c21
c2

∑
u̸=v

pt(x, x;u, v)C(u, v) (XI.68)

PROOF. We start with the first equality

Eη(ηx(t)ηy(t)) =
1

c21
EηD(δx + δy, η(t))

=
1

c21

∑
u,v

pt(x, y;u, v)D(δu + δv, η)

=
∑
u̸=v

pt(x, y;u, v)ηuyηv

+
c2
c21

∑
u

pt(x, y;u, u)ηu(ηu − 1)
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The third equality follows from the first equality, by integrating the η-variable over ν,
subtracting ρt(x)ρt(y) and using that ρt(x) =

∑
u pt(x, u)ρ(u).

For the second equality:

Eη(ηx(t)2) = Eη(ηx(t)(ηx(t)− 1)) + Eη(ηx(t))

=
1

c2
EηD(2δx, η(t)) +

∑
u

pt(x, u)ηu

=
c21
c2

∑
u̸=v

pt(x, x;u, v)ηuηv

+
∑
u

pt(x, x;u, u)ηu(ηu − 1) +
∑
u

pt(x, u)ηu

The fourth equality follows by integrating the second equality over ν, subtracting ρt(x)
2

and using that ρt(x) =
∑

u pt(x, u)ρ(u).

Let us denote by ECx,y;x,y a coupling (upper-index C referring to coupling) of two dual
particles with two independent walkers (where a single walker moves as a single dual
particle) starting both from x, y, and by Ex,y expectation of two dual particles starting

from x, y. In this coupling we denote by X(t), Y (t), resp. X̃(t), Ỹ (t) the positions of
the two dual particles, resp. the two independent particles. Then we can summarize our
expression for Ξ(t, x, y; ν) as follows

Ξ(t, x, y, ν) =

[
1 +

c21 − c2
c2

δx,y

] [
ECx,y;x,y

[
ρ(X(t))ρ(Y (t))− ρ(X̃(t))ρ(Ỹ (t))

]
+ Ex,y

(
1l{X(t)=Y (t)}

(
c2
c21
ρ2(X(t))− ρ(X(t))2

))]
+ δx,y

(
(c21 − c2)

c2
ρt(x)

2 + ρt(x)

)
+ Ex,y(1l{X(t)̸=Y (t)}C(X(t), Y (t))) (XI.69)

Discussion of the time-dependent covariance (XI.69)

Let us start by some discussion of the various terms encountered in the computational
lemma, and in (XI.69)

1. First notice that if we take the homogeneous stationary product measure, for which∫
D(2δx, η)dν =

(∫
D(δx, η)dν

)2
= c21ρ

2 and hence

ρ2 =
c21
c2
ρ2 (XI.70)

we find Ξ(t, x, y; ν) = 0 as it should.

2. If we consider the independent random walk case, and start from a inhomogeneous

Poisson product measure, the term
(
c2
c21
ρ2(u)− ρ(u)2

)
vanishes because c1 = c2 = 1

and ρ2(u) = ρ(u)2. Therefore, in that case Ξ(t, x, y; ν) vanishes, as it should be,
because at time t the measure is again product Poisson with parameter ρt(x) at x.
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3. Again for the independent random walkers: the term
∑

u pt(x, y;u, u)
(
c2
c21
ρ2(u)− ρ(u)2

)
measures the deviation from Poisson and has no definite sign, i.e., it can be positive
or negative depending on ν. This shows that even for independent random walkers,
when started from a non-Poissonian product measure, correlations at time t can be
positive or negative.

4. In case we start from the homogeneous stationary product measure ν, we find

Ξ(t, x, x; ν) = ρ− ρ2 +
c21
c2
ρ2

as it should, because the stationary variance of η0 equals∫
η20 dν − ρ2 =

∫
η0(η0 − 1)dν + ρ− ρ2 = c−1

2 (c1ρ)
2 + ρ− ρ2 (XI.71)

5. In the independent random walk case, when starting from an inhomogeneous prod-
uct of Poisson measures with density ρ(x) at x, the first two terms vanish, and the
third term equals ρt(x), as it should because the measure at time t is inhomogeneous
Poisson with density ρt(x) at x, and the variance of ηx(t) then indeed equals ρt(x).

6. We see that the first term in (XI.69) measures the difference between two dual
particles and two independent particles, it vanishes if we consider the homogeneous
case, i.e., when ρ(x) = ρt(x) = ρ does not depend on x. It also vanishes for
independent random walkers. Moreover, by proposition IV.30, we have that the
second term becomes larger if we replace Xt, Yt by independent random walkers,

provided
(
c2
c21
ρ2(x)− ρ(x)2

)
≥ 0. For such initial ν we conclude that ηx and ηy are

positively correlated at time t when we evolve according to SIP(α).

7. In the independent random walkers case, the second term measure the deviation
from local equilibrium, i.e., starting from a non-Poissonian product measure, in the
limit of large t the term[

Ex,y
(
1l{X(t)=Y (t)}

(
c2
c21
ρ2(X(t))− ρ(X(t))2

))]
vanishes, hence in that limit the covariance of ηx(t) and ηy(t) for x ̸= y vanishes,
and the variance becomes the Poissonian variance ρt(x).

8. The expression [
ECx,y;x,y

[
ρ(X(t))ρ(Y (t))− ρ(X̃(t))ρ(Ỹ (t))

]]
is non-negative for SIP, and non-positive for SEP. This follows from the correlation
inequalities which we proved in Section IV.8. Indeed (x, y) 7→ ρ(x)ρ(y) is a sym-
metric and positive definite function, and therefore, expectation of this term under
SIP (resp. SEP) is larger (resp. smaller) or equal than the independent random
walk expectation.
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XI.3.2 Variance of the density fluctuation field

We now consider the setting where the initial distribution of particle numbers, denoted
µϵ, satisfies

ρ(ϵx) =

∫
ηxdµϵ(η)

ρ2(ϵx) =

∫
ηx(ηx − 1)dµϵ(η)

ϵdC(ϵx, ϵy) =

∫
ηxηydµϵ −

∫
ηxdµϵ

∫
ηydµϵ (XI.72)

where with a small abuse of notation (w.r.t. the previous section) now ρ : Rd → R+, ρ2 :
Rd → R+ C : R2d → R, and where we always implicitly assume that in the case SEP(α)
the image of ρ, ρ2 is [0, α], [0, α(α − 1). We assume for simplicity that ρ, ρ2 are smooth
and bounded, with bounded derivatives up to order three, and C is bounded and con-
tinuous. An important special case is when µϵ is the local equilibrium product measure

corresponding to the density profile ρ. In that case C = 0 and ρ2(x) =
c21
c2
ρ(x), cf. (XI.70).

We further denote,

ρϵ(t, ϵx) =
∑
y

pϵ−2t(x, y)ρ(ϵy) = Ex(ρ(ϵX(ϵ−2t))) (XI.73)

Then we have, using the invariance principle for a single dual particle (which is a random
walk), for t > 0, x ∈ Rd that ρϵ(t, x) ≈ ρ(t, x) where ρ(t, x) solves the heat equation with
diffusion constant α, i.e.

∂ρ(t, x)

∂t
=
α

2
∆ρ(t, x). (XI.74)

We further denote the density field at macroscopic time t by

Xϵ(φ, η(ϵ
−2t)) = ϵd

∑
x

φ(ϵx)ηx(ϵ
−2t) (XI.75)

and the density fluctuation field by

Yϵ(φ, η(ϵ
−2t)) = ϵd/2

∑
x

φ(ϵx)
(
ηx(ϵ

−2t)− ρϵ−2t(ϵx)
)

(XI.76)

Then for the expectation of the density field we obtain, using duality with one dual
particle:

EµϵXϵ(φ, η(ϵ
−2t)) = ϵd

∑
x

φ(ϵx)
∑
y

pϵ−2t(x, y)ρ(ϵy) (XI.77)

which converges to
∫
φ(x)ρ(t, x) where ρ(t, x) solves the heat equation (XI.74).

Then using the formula (XI.69) we obtain the following expression for the variance of
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the density fluctuation field at macroscopic times.

Eν
((

Yϵ(φ, η(ϵ
−2t))

)2)
= ϵd

∑
x,y∈Zd

φ(ϵx)φ(ϵy)Ξ(t, x, y, ν)

= ϵd
∑
x,y∈Zd

φ(ϵx)φ(ϵy)

[
1 +

c21 − c2
c2

δx,y

] [
ECx,y;x,y

[
ρ(ϵX(ϵ−2t))ρ(ϵY ((ϵ2t))− ρ(ϵX̃(ϵ−2t))ρ(ϵỸ (ϵ−2t))

]
+ Ex,y

(
1l{X(ϵ−2t)=Y (ϵ−2t)}

(
c2
c21
ρ2(ϵX(ϵ2t))− ρ(ϵX(ϵ−2t))2

))]
+ ϵd

∑
x∈Zd

φ(ϵx)2
(
(c21 − c2)

c2
ρϵ(t, ϵx)2 + ρϵ(t, ϵx)

)
+ ϵd

∑
x,y∈Zd

φ(ϵx)φ(ϵy)Ex,y(1l{X(ϵ−2t)̸=Y (ϵ−2t)}ϵ
dC(ϵX(ϵ−2t), ϵY (ϵ−2t))) (XI.78)

Discussion of the variance of the density fluctuation field

Let us discuss the behavior of the various terms appearing in the rhs of (XI.78)
We start with the last three terms of (XI.78). Under the assumption that the couple

(ϵX(ϵ−2t), ϵY (ϵ−2t))) converges to two independent Brownian motions (B1(t), B2(t), the
last three terms in (XI.78) converge to (as ϵ→ 0)∫ ∫ ∫

φ(x)φ(y)qt(x, u)qt(y, u)

(
c2
c21
ρ2(u)− ρ(u)2

)
dxdydu

+

∫
φ(x)2

(
(c21 − c2)

c2
ρ(t, x)2 + ρ(t, x)

)
dx

+

∫ ∫
φ(x)φ(y)EC(x+B1(t), y +B2(t))dxdy (XI.79)

with qt(x, y) the transition probability density of Brownian motion. The first term mea-
sures the influence of deviation from local equilibrium, and vanishes when we start from
the local equilibrium product measure see (XI.70). The second term is the variance of
the time-evolved local equilibrium. The third term measures the effect of covariance in
the initial distribution. If we denote Qtf(x) = Ef(x + B(t)) the semigroup of Brownian
motion, and if we further denote

χ(ρ) =

(
(c21 − c2)

c2
ρ2 + ρ

)
(XI.80)

which is the variance under the equilibrium product measure µρ with Eµρ(ηx) = ρ, then
the three terms in (XI.79) can be rewritten as follows∫

(Qtφ(u))
2

(
c2
c21
ρ2(u)− ρ(u)2

)
du

+

∫
φ(x)2χ(ρ(t, x))dx

+

∫ ∫
Qtφ(x)Qtφ(y)C(x, y)dxdy (XI.81)
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In order to deal with the first term of (XI.78) we have to introduce some assumptions.

DEFINITION XI.16. We say that there exists a suitable coupling of 2 dual particles and
2 independent particles if under this coupling, we have the following two property. Under
the coupling path space measure PCx,y;x,y we have, for all t > 0 the following control on the
discrepancies:

ϵ
(
(X(ϵ−2t), Y (ϵ−2t))− (X̃(ϵ−2t), Ỹ (ϵ−2t))

)
→ (0, 0) in probability (XI.82)

REMARK XI.17. The condition (XI.82) is requiring that on the diffusive space-time rescal-

ing, the discrepancies (i.e., the differences between X and X̃ and between Y and Ỹ ) are
negligible. Because the interaction between the particles acts only when they are within
the range of the kernel p(x, y), this is also a very natural condition. Both conditions are
met for the coupling between SIP and independent particles constructed in [183] as well
as for the stirring coupling of exclusion particles constructed in [69].

We then have the following

LEMMA XI.18. If there exists a suitable coupling of 2 dual particles and 2 independent
particles, then we have

lim
ϵ→0

ϵ2d
∑
x,y∈Zd

φ(ϵx)φ(ϵy)
[
ECx,y;x,y

[
ρ(ϵX(ϵ−2t))ρ(ϵY ((ϵ−2t))− ρ(ϵX̃(ϵ−2t))ρ(ϵỸ (ϵ−2t))

]]
= 0

(XI.83)
As a consequence,

lim
ϵ→0

V ar(Xϵ(φ, η(ϵ
−2t))) = 0 (XI.84)

PROOF. From a simple Taylor expansion argument, using (XI.82) we see that

ECx,y;x,y
[
ρ(ϵX(ϵ−2t))ρ(ϵY ((ϵ−2t))− ρ(ϵX̃(ϵ−2t))ρ(ϵỸ (ϵ−2t))

]
= o(1)

where o(1) is uniformly bounded and goes to zero as ϵ → 0. Therefore, using that φ is a
smooth test function, we have that ϵ2d

∑
x,y∈Zd φ(ϵx)φ(ϵy) is uniformly bounded in ϵ and

converges to the integral
∫ ∫

|φ(x)φ(y)|dxdy. As a consequence,

ϵ2d
∑
x,y∈Zd

φ(ϵx)φ(ϵy)
[
ECx,y;x,y

[
ρ(ϵX(ϵ−2t))ρ(ϵY (ϵ−2t))− ρ(ϵX̃(ϵ−2t))ρ(ϵỸ (ϵ−2t))

]]
≤ o(1)

∑
x,y∈Zd

|φ(ϵx)φ(ϵy)| → 0

which gives (XI.83). The consequence follows from (XI.78), combined with the discus-
sion above providing the behavior of the last three terms in the rhs of that equation.

REMARK XI.19.

1. Later on we will prove that

lim sup
ϵ→0

ϵd
∑
x,y∈Zd

φ(ϵx)φ(ϵy)
[
ECx,y;x,y

[
ρ(ϵX(ϵ−2t))ρ(ϵY ((ϵ−2t))− ρ(ϵX̃(ϵ−2t))ρ(ϵỸ (ϵ−2t))

]]
<∞

(XI.85)
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which implies that the variance of the density fluctuation field remains bounded (as
a function of ϵ). This cannot be proved via a simple coupling argument.

This, combined with the discussion of the three last terms in (XI.78) implies that
the variance of the density field is in fact of order ϵd, i.e., behaves roughly as if the
summands defining it were independent.

2. If we put χ(ρ) =
(

(c21−c2)
c2

ρ2 + ρ
)
, which is the variance under the equilibrium prod-

uct measure µρ with Eµρ(ηx) = ρ, then the limiting fluctuation field is expected to
satisfy the SPDE

dY (t, x) =
1

2
∆Y (t, x)dt−∇.

(√
χ(ρ(t, x))W(t, x)

)
(XI.86)

When we start from a homogeneous product measure, the first term in (XI.78)
vanishes, and in that case it is easy to verify that the obtained variance of the
density fluctuation field matches with the mild solution of (XI.86).

Let us summarize the result of our computations.

THEOREM XI.20 (Hydrodynamic limit). Let {µϵ : ϵ > 0} be a family of measures such
that (XI.72) holds. Assume additionally that there exists a suitable coupling in the sense
of Definition XI.16. Then for all t > 0 the density field Xϵ(φ, η(ϵ

−2t)) converges in L2 to∫
φ(x)ρ(t, x)dx where ρ(t, x) is the solution of the heat equation (XI.74) and with initial

condition ρ(0, x) = ρ(x).

PROOF. For the expectation we have, by the invariance principle

Eµϵ(Xϵ(φ, η(ϵ
−2t))) = ϵd

∑
x

φ(ϵx)Exρ(ϵX(ϵ−2t)) →
∫
φ(x)ρ(t, x)dx

For the variance we obtain, thanks to the computations in Section XI.3.2 that

lim
ϵ→0

V ar
(
Xϵ(φ, η(ϵ

−2t)
)
= 0

To conclude this section, we prove (XI.85) in the nearest neighbor case., which shows
that the variance of the density fluctuation field stays bounded as ϵ → 0. The proof is
inspired by a method from [189].

PROPOSITION XI.21. Let p(x, y) = 1
2d
1l{x∼y} be nearest neighbor random walk (we denoted

x ∼ y for x, y being neighbors). Then we have

lim sup
ϵ→0

ϵd
∑
x,y∈Zd

φ(ϵx)φ(ϵy)
[
ECx,y;x,y

[
ρ(ϵX(ϵ−2t))ρ(ϵY ((ϵ−2t)))− ρ(ϵX̃(ϵ−2t))ρ(ϵỸ (ϵ−2t))

]]
<∞

(XI.87)
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PROOF. Before we start the proof, we briefly explain the idea. The sum in (XI.87) has
two summation indices, and therefore appears at first sight to be of order ϵ−d. However, if
we can show that “effectively” the sum over y is a “restricted” sum (e.g. by imposing that
x ∼ y), then this problem disappears. Because the coupling is between independent and
interacting particles, effectively, the coupling only will create “discrepancies” whenever the
particles are at neighboring positions, i.e., interact. This “effectively” creates a restriction
on the double sum, which is enough to guarantee that the double sum actually behaves
as a single sum, for which the normalization ϵd is enough.

To formalize this we need some notation. Denote

ψ(ϵ, x, y, t) = ECx,y;x,y
[
ρ(ϵX(ϵ−2t))ρ(ϵY ((ϵ−2t)))− ρ(ϵX̃(ϵ−2t))ρ(ϵỸ (ϵ−2t))

]
Further denote by L2 the generator of 2 dual particles. Let us furthermore abbreviate

U(ϵ, x, y, t) = EIRWx,x (ρ(ϵX(ϵ−2t))ρ(ϵY (ϵ−2t))) + EIRWy,y (ρ(ϵX(ϵ−2t))ρ(ϵY (ϵ−2t)))

− 2EIRWx,y (ρ(ϵX(ϵ−2t))ρ(ϵY (ϵ−2t))) (XI.88)

Then we compute

d

dt
ψ(ϵ, x, y, t) = ϵ−2L2ψ(ϵ, x, y, t)

− σϵ−2I(x ∼ y)U(ϵ, x, y, t)

= ϵ−2L2ψ(ϵ, x, y, t) +K(ϵ, x, y, t) (XI.89)

where we denoted

K(ϵ, x, y, t) = σϵ−2I(x ∼ y)U(ϵ, x, y, t)

= σϵ−2I(x ∼ y)
(
ERW
x (ρ(ϵX(ϵ−2t))− ERWy (ρ(ϵX(ϵ−2t))

)2
(XI.90)

Now notice that because of the smoothness and boundedness of ρ and the local limit
theorem we can estimate

|ERW
x (ρ(ϵX(ϵ−2t))− ERWy (ρ(ϵX(ϵ−2t))| ≤ Cϵ|x− y|

which implies the pointwise upperbound

K(ϵ, x, y, t) ≤ CI(x ∼ y) (XI.91)

Starting from (XI.89) and using the classical variation of constants method, together with
the fact that ψ(ϵ, x, y, 0) = 0 we obtain, also using the bound (XI.91)

ψ(ϵ, x, y, t) =

∫ t

0

eϵ
−2(t−s)L2K(ϵ, x, y, s)ds

≤ C

∫ t

0

eϵ
−2(t−s)L2I(x ∼ y)

= C
∑
x′,y′

∫ t

0

p
(2)

ϵ−2(t−s)(x, y;x
′y′)I(x′ ∼ y′) (XI.92)
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where in the last line we denoted by p
(2)
r (x, y;x′y′) the transition probability for two dual

particles to move from x, y to x′, y′ in time r. Because the process of two dual particles
has a reversible σ-finite measure πσ,α(x, y) which only on the diagonal x = y differs from
the counting measure, and where the weight πσ,α(x, x) does not depend on x, one easily
obtains the bound

p
(2)

ϵ−2(t−s)(x, y;x
′y′) ≤ Bp

(2)

ϵ−2(t−s)(x
′, y′;x, y)

where B is a constant (i.e., not depending on x, y, x′, y′, ϵ, t). Using this together with
(XI.92), we arrive at

ϵd
∑
x,y

|φ(ϵx)φ(ϵy)|ψ(ϵ, x, y, t)

≤ ϵdC
∑

x,y,x′∼y′
|φ(ϵx)φ(ϵy)|

∫ t

0

p
(2)

ϵ−2(t−s)(x, y;x
′y′)

= BϵdC
∑

x,y,x′∼y′
|φ(ϵx)φ(ϵy)|

∫ t

0

p
(2)

ϵ−2(t−s)(x
′, y′;x, y)

≤ ∥φ∥∞ϵdBC
∑
x,x′∼y′

|φ(ϵx)
∫ t

0

pϵ−2(t−s)(x
′, x) (XI.93)

where in the last step we used
∑

y p
(2)

ϵ−2(t−s)(x
′, y′;x, y) = pϵ−2(t−s)(x

′, x) because the first
marginal of two particles is a random walk. Now if we denote∑

x

|φ(ϵx)|
∫ t

0

pϵ−2(t−s)(x
′, x) := V (t, ϵ, ϵx′)

by the invariance principle, V is bounded and smooth function of x′. As a consequence
we obtain

∥φ∥∞ϵdBC
∑
x,x′∼y′

|φ(ϵx)|
∫ t

0

pϵ−2(t−s)(x
′, x) ≤ ∥φ∥∞ϵdBC

∑
x′∼y′

V (t, ϵ, ϵx′) (XI.94)

and the rhs of (XI.94) clearly remains bounded as ϵ→ 0.

XI.3.3 Propagation of local equilibrium

We have seen in the independent random walk case that propagation of local equilibrium
is a consequence of the fact that the dual particles spread out over the lattice, i.e., have
negligible probabilities to be at the same location at macroscopic times, combined with the
fact that n independent walkers scale to n independent Brownian motions under diffusive
rescaling. In the interacting case, a similar reasoning holds, provided one has a suitable
coupling between n dual particles and n independent particles. Under that setting, we
can proceed as in Section XI.2.7.

First we define what we call a suitable coupling of n dual particles and n independent
particles.
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DEFINITION XI.22. We say that {(X1(t), . . . Xn(t);Y1(t), . . . Yn(t)) : t ≥ 0} is a suitable
coupling of n particles with n independent particles if

1. Correct marginals: {(X1(t), . . . , Xn(t)) : t ≥ 0} equals in distribution the n particle
process started from (X1(0), . . . , Xn(0)), and {(Y1(t), . . . , Yn(t)) : t ≥ 0} equals in
distribution n independent particles starting from (Y1(0), . . . , Yn(0)).

2. Suitable behavior of discrepancies: as ϵ→ 0

(ϵX1(ϵ
−2t), . . . ϵXn(ϵ

−2t))− (ϵY1(ϵ
−2t), . . . , ϵYn(ϵ

−2t)) → 0 in probability

This is the natural generalization of what we defined for 2 particles before.
Next we recall the definition a family of measure associated to density profile ρ. For

simplicity we will restrict to product measures here. This can be generalized to measures
with decaying covariances without too much effort.

DEFINITION XI.23. Let ρ : Rd → [0,∞) denote a bounded and smooth density profile.
We say that a family of probability measures {µϵ, ϵ > 0} is tempered and compatible with
the profile if

1. Tempered: uniform moments bound: for all ϵ > 0, µϵ is UFMC.

2. Density profile: ∫
ηxdµϵ(η) = ρ(ϵx) (XI.95)

We recall the definition of convergence of duality polynomials:

DEFINITION XI.24. µϵ → µ in the sense of convergence of duality polynomials if for all
ξ finite configurations

∫
D(ξ, η)dµϵ(η) →

∫
D(ξ, η)dµ(η).

Then we have the following result on propagation of local equilibrium.

THEOREM XI.25. Let ρ : Rd → [0,∞) denote a bounded and smooth density profile.
Let {µϵ : ϵ > 0} be a family of tempered product measures compatible with the profile ρ.
Then as ϵ → 0, for all t > 0, the time evolved measure µϵS(ϵ

−2t) is a local equilibrium
distribution with density profile ρt, i.e., for all x ∈ Rd, in the sense of convergence of
duality polynomials

τ⌊ϵ−1x⌋(µϵS(ϵ
−2t)) → µρ(t,x) (XI.96)

Here ρt is the solution of the heat equation (XI.74), and initial condition ρ.

PROOF. Let us denote for (x1, . . . xn) denote by (Xx1
1 (t), . . . , Xxn

n (t)) denote the positions
of n (labeled) dual particles initially located at x1, . . . , xn. We remind the reader that
D(δx, η) = ηx/α. Therefore, in order to obtain (XI.96) we have to prove that for all
x1, . . . , xn ∈ Zd, and x ∈ Rd

lim
ϵ→0

∫
EηD

(
δ⌊ϵ−1x⌋+y1 + . . . δ⌊ϵ−1x⌋+yn , η(ϵ

−2t)
)
dµϵ(η) =

ρt(x)
n

αn
(XI.97)
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Indeed, the reversible product measure µρ is characterized by∫
ηxdµρ = ρ,∫

D(ξ, η)dµρ(η) =

(∫
D(δ0, η)dµρ(η)

)|ξ|

Before the limit ϵ→ 0, the lhs of (XI.97) equals, using duality∫
E(⌊ϵ−1x⌋+y1,...,⌊ϵ−1x⌋+yn)D

(
δ
X⌊ϵ−1x⌋+y1

(ϵ−2t) + . . . δX⌊ϵ−1x⌋+yn (ϵ−2t), η
)
dµϵ(η) (XI.98)

As a first step, we have to show that with probability converging to 1 as ϵ → 0 we have
that the n locations of the dual particles (X⌊ϵ−1x⌋+y1(ϵ−2t), . . . , X⌊ϵ−1x⌋+yn(ϵ−2t)) are all
different. To prove this, denote by ξ = δ⌊ϵ−1x⌋+y1 + . . . δ⌊ϵ−1x⌋+yn , then we have to prove
that

lim
t→∞

Pξ(∃x ∈ Zd : ξx(t)(ξx(t)− 1) ≥ 1) = 0 (XI.99)

This is proved in Lemma XI.26 below for SIP (the proof for SEP being analogous). Then
we can proceed as in the proof of Theorem XI.11 to arrive that the expression (XI.98)
equals

E(⌊ϵ−1x⌋+y1,...,⌊ϵ−1x⌋+yn)

(
n∏
i=1

ρ(ϵX⌊ϵ−1x⌋+y1(ϵ−2t)

)
+ o(1) (XI.100)

where o(1) → 0 for all x, y1, . . . , yn. Arrived there, we use the assumed suitable coupling
to conclude that the expression in (XI.100) equals

EIRW
(⌊ϵ−1x⌋+y1,...,⌊ϵ−1x⌋+yn)

(
n∏
i=1

ρ(ϵX⌊ϵ−1x⌋+y1(ϵ−2t)

)
+ o(1) (XI.101)

where the expectation is now over independent random walkers. Then using the indepen-
dence, and the invariance principle, we arrive at ρt(x)

n + o(1).
We finally state and prove Lemma XI.26.

LEMMA XI.26. Let ξ be a configuration with n particles. Then we have an upperbound

Pξ(∃i ∈ Zd : ξi(t)(ξi(t)− 1) ≥ 1) ≤ Cn(t) (XI.102)

where C(t) only depends on ξ via the number of particles n, and tends to zero as t→ ∞.

PROOF. We give the proof for p(x, y) finite range, i.e., such that p(x, y) = 0 for |x−y| > R.
The generalization to infinite range is left to the reader as an exercise. Notice that
the duality polynomial with two dual particles equals d(2, n) = Cn(n − 1), with C =
1/αα(+1). Therefore, using the Markov inequality there is C1 > 0 such that

Pξ(ξi(t)(ξ(t)− 1) ≥ 1) ≤ C1EξD(2δi, ξ(t)) = C1Ei,iD(δX1(t) + δX2(t), ξ)

where in the last step we used self-duality. Let us denote by pt(i, i;u, v) the transition
probability for two SIP particles initially at (i, i) to move to (u, v) in time t. Because SIP
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with two particles admits a strictly positive reversible σ-finite measure λ(x, y) which is
uniformly bounded, and uniformly bounded from below, it follows that

Pξ(ξi(t)(ξ(t)− 1) ≥ 1) ≤ C2

∑
x,y:ξxξy≥1

pt(x, y; ii)

summing over i gives then the upperbound

C2

∑
x,y:ξxξy≥1

Px,y(Xx
1 (t) = Xy

2 (t)) ≤ C2n(n− 1) sup
x,y

Px,y(Xx
1 (t)−Xy

2 (t) = 0)

where in the last inequality we used that there at most n particles to choose from in the
sum

∑
x,y:ξxξy≥1. Now because the difference process Xx

1 (t)−Xy
2 (t) is Markov and jumps

like a random walk, except when at distance R from the origin (where R is the assumed
finite range of the random walk kernel p(x, y)), it follows that limt→∞ supx,y Px,y(Xx

1 (t)−
Xy

2 (t) = 0) = 0.

REMARK XI.27. In the spirit of propagation of local equilibrium one can also obtain a
slightly stronger statement of “local ergodicity”. If we start from a local equilibrium
product measure µϵ, corresponding to a density profile ρ then at later times we have that
the macroscopic field of duality polynomials

ϵd
∑
x

φ(ϵx)D(ξ, τx(η)(ϵ
−2t)) (XI.103)

converges as ϵ→ 0 to the deterministic quantity∫
φ(x)ρ(t, x)n

where n =
∑

x ξx is the number of dual particles. For the expectation this follows imme-
diately by the definition of local equilibrium. To show that the variance of (XI.103) goes
to zero when ϵ → 0 one can proceed as before by using duality and the fact that dual
particles at macroscopic times are typically at different locations.

XI.4 Higher order hydrodynamic fields

The hydrodynamic limit, which is the law of large numbers for the density field can be
stated equivalently as the convergence of the field

ϵd
∑
x

D(δx, η)φ(ϵx)

associated to the first duality polynomial, because for the models under consideration,
D(δx, η) = ηx/α. Similarly, the density fluctuation field in the stationary setting, i.e.,
started from the stationary product measure µρ, can be rewritten (up to a multiplicative
constant) as

ϵd/2
∑
x

Dρ(δx, η)φ(ϵx)
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where Dρ(δx, η) is the first order orthogonal polynomial, which for a single dual particle
at x is proportional to ηx − ρ. This suggests that by passing to higher order duality
polynomials, we can define higher order hydrodynamic fields and higher order fluctuation
fields. In order to proceed, it is convenient to weight the sums defining higher order fields
with the reversible sigma-finite measure on (Zd)n, which we denote by πσ,α(x1, . . . , xn),
where we remind the reader that σ, α are the parameters of the model (XI.60). This
measure is such that the semigroup of n particle motion is self-adjoint in l2((Zd)n). This
measure is unique up to a multiplicative constant, which we fix by requiring that whenever
the n particles are at different locations, the weight π(x1, . . . , xn) = 1. For SIP(α) this
measure is given by

πσ,α(x1, . . . , xn) =
1

αn

∏
x∈Zd

Γ(α + ξx)

Γ(α)ξx!
(XI.104)

where ξ is the configuration
∑

i δxi . Notice that the infinite product is well defined because
ξ is a finite configuration, i.e., only finitely many terms of the product are different from
1. For SEP(α) this sigma-finite measure is given by

πσ,α(x1, . . . , xn) =
∏
x

(
α

ξx

)
(XI.105)

Notice that the measure π depends only on the particle configuration “combinatorics”,
and not on the precise locations of the particles.

We then want to define the fields of order n as the

ϵnd
∑

x1,...,xn

φ(ϵx1, . . . , ϵxn)D (δx1 + . . . δxn , η)πσ,α(ϵx1, . . . , ϵxn) (XI.106)

where φ : Rnd → R is a Schwartz function. Without loss of generality we can restrict to
symmetric functions φ, and further to tensor products φ(x1) . . . φ(xn) =: φ⊗n(x1, . . . , xn),
because linear combinations of those span all symmetric functions. Next, we note that for
the three models the duality polynomials are factorial moments multiplied with weights
which are exactly the inverse of the measure π. More precisely, as we saw before the
duality polynomial for the model with parameters σ, α reads

Dσ,α(ξ, η) = (D0,1(ξ, η))πσ,α(ξ) (XI.107)

where we remind that the duality polynomials for the independent walkers are just the
joint factorial moments

D0,1(ξ, η) =
∏
i

ηi!

(ηi − ξi)!

Let us, in order not to overload notation abbreviate Dσ,α(ξ, η) =: D(ξ, η), and when
ξ =

∑n
i=1 δxi , we write D(x1, . . . , xn; η) = D(ξ, η).

Our discussion above then motivates the following definition.

DEFINITION XI.28. The hydrodynamic field of order n at scale ϵ is defined as

X(n, ϵ, φ, η) = ϵnd
∑

x1,...,xn

φ⊗n(ϵx1, . . . , ϵxn)D(x1, . . . , xn; η) (XI.108)
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DEFINITION XI.29. Let {µϵ, ϵ > 0} denote a family of probability measures on the con-
figuration space, indexed by the scaling parameter ϵ > 0. Let ρ(n, ·) : Rnd → [0,∞). We
say that {µϵ, ϵ > 0} is consistent with the n-th order profile if

lim
ϵ→0

∫
X(n, ϵ, φ, η)dµϵ(η) =

∫
Rnd

ρ(n, x1, . . . , xn)φ
⊗n(x1, . . . , xn)dx1 . . . dxn (XI.109)

We can then define “n-th order hydrodynamics”, which in words means that whenever
at time zero a family {µϵ, ϵ > 0} of probability measures on the configuration space is
consistent with a n-th order profile, then at later macroscopic times we have consistency
with a new n-th order profile which the solution of the nd-dimensional heat equation
with diffusion constant α. We will state a theorem proving this in the case that {µϵ, ϵ >
0} is a family of product measures. The generalization to families of measures with a
“controllable” covariance is straightforward, and as in the n = 1 case, obtained via a
study of the variance of the nth-order field.

Hydrodynamic equation for the n-th order field

We then have the following result on the evolution of the n-th order profile on macroscopic
time scales.

THEOREM XI.30. Assume that there exists a suitable coupling of n dual particles with n
independent particles in the sense of Definition XI.22. Let {µϵ, ϵ > 0} denote a family
of probability measures on the configuration space consistent with a smooth and bounded
profile ρ(n, ·) : Rnd → R. Then, for all t > 0 the time evolved n-th order field

X(n, ϵ, φ, η(ϵ−2t)) →
∫
ρ(n, t, x1, . . . , xn)φ

⊗n(x1, . . . , xn)dx1 . . . dxn (XI.110)

where the convergence is in L2 sense and where ρ(n, t, x1, . . . , xn) is the solution of (XI.74)
in Rdn.

PROOF. The proof proceeds in two steps:

1. Step 1: convergence of expectation of X(n, ϵ, φ, η(ϵ−2t)).

2. Step 2: control of the variance: Var(X(n, ϵ, φ, η(ϵ−2t))) → 0 as ϵ→ 0.

We prove the first step in the general case, and the second in the case of independent
random walkers, the other models being dealt with analogously via the assumed existence
of a suitable coupling, in the spirit of the case n = 1 proved earlier.

Step 1: expectations.
Denote Dσ,α(ξ, η) = Dσ,α(x1, . . . , xn; η) whenever ξ =

∑n
i=1 δxi . Let us further denote

Qn,σ,α
t the semigroup of n dual particles, and Qn

t the semigroup of n independent Brow-
nian motions with diffusion constant α, i.e., of the process B1(αt), . . . , Bn(αt)) where
B1, . . . , Bn are independent standard Brownian motions on Rd. Let us also denote Qn,IRW

t

the semigroup of n independent walkers with jumping rates αp(x, y) between x and
y. Further, o(1) denotes a quantity converging to zero when ϵ → 0, and

∑̸=
x1,...,xn
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denotes the sum over x1, . . . , xn where xi ̸= xj for i ̸= j. Finally, we abbreviate
φ⊗n(x1, . . . , xn) =: Φ(x1, . . . , xn)

Then we have, using (XI.107), duality and the reversibility of πα,σ:

Eµϵ
(
X(n, ϵ, φ, η(ϵ−2t))

)
= ϵnd

∑
x1,...,xn∈Zd

Eµϵ
(
D(x1, . . . , xn, η(ϵ

−2t)
)
Φ(ϵx1, . . . , ϵxn)

= ϵnd
∑

x1,...,xn∈Zd

Eµϵ
(
Dσ,α(x1, . . . , xn, η(ϵ

−2t)
)
Φ(ϵx1, . . . , ϵxn)πσ,α(x1, . . . , xn)

= ϵnd
∑

x1,...,xn∈Zd

Qn,σ,α
ϵ−2t

∫
(Dσ,α(x1, . . . , xn, η)) dµϵ(η)Φ(ϵx1, . . . , ϵxn)πσ,α(x1, . . . , xn)

= ϵnd
∑

x1,...,xn∈Zd

∫
(Dσ,α(x1, . . . , xn, η)) dµϵ(η)Q

n,σ,α
ϵ−2t Φ(ϵx1, . . . , ϵxn)πσ,α(x1, . . . , xn)

= ϵnd
∑

x1,...,xn∈Zd

ρ(n, ϵx1, . . . , ϵxn)Q
n,IRW
ϵ−2t Φ(ϵx1, . . . , ϵxn)πσ,α(x1, . . . , xn) + o(1)

where in the last step we used the assumption that there exists a suitable coupling of n
dual particles with n independent walkers. Then we can continue using the invariance
principle which implies that we can approximate Qn,IRW

ϵ−2t by Qn
t :

Eµϵ
(
X(n, ϵ, φ, η(ϵ−2t))

)
= ϵnd

∑
x1,...,xn∈Zd

ρ(n, ϵx1, . . . , ϵxn)Q
n
t Φ(ϵx1, . . . , ϵxn)πσ,α(x1, . . . , xn) + o(1)

= ϵnd
̸=∑

x1,...,xn∈Zd

ρ(n, ϵx1, . . . , ϵxn)Q
n
t Φ(ϵx1, . . . , ϵxn)πσ,α(x1, . . . , xn) + o(1)

= ϵnd
̸=∑

x1,...,xn∈Zd

ρ(n, ϵx1, . . . , ϵxn)Q
n
t Φ(ϵx1, . . . , ϵxn) + o(1)

=

∫
ρ(n, x1, . . . , xn)Q

n
t Φ(x1, . . . , xn)dx1 . . . dxn + o(1)

=

∫
Qn
t ρ(n, x1, . . . , xn)Φ(x1, . . . , xn)dx1 . . . dxn + o(1) (XI.111)

Here in the last steps we used the fact that π = 1 on configurations with n different
locations for the n particles.

Step 2: the variance.
To control the variance, as earlier announced, we restrict to the independent particle case.
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We have

Eµϵ
(
X2(n, ϵ, φ, η(ϵ−2t))

)
=

∑
x1,...,xn

∑
y1,...,yn

Φ(ϵx1, . . . , ϵxn)Φ(ϵy1, . . . , ϵyn)Eµϵ
(
D(x1, . . . , xn; η(ϵ

−2t))D(y1, . . . , yn; η(ϵ
−2t))

)
=

̸=∑
x1,...,xn

̸=∑
y1,...,yn:{y1,...,yn}∩{x1,...,xn}=∅

Φ(ϵx1, . . . , ϵxn)Φ(ϵy1, . . . , ϵyn) [

Eµϵ
(
D(x1, . . . , xn; η(ϵ

−2t))D(y1, . . . , yn; η(ϵ
−2t))

)]
+ o(1)

=

̸=∑
x1,...,x2n

Q2n,IRW
ϵ−2t

∫
D(x1, . . . , x2n, η)dµϵ(η)Φ(ϵx1, . . . , ϵx2n) + o(1)

=

̸=∑
x1,...,x2n

∫
D(x1, . . . , x2n, η)dµϵ(η)Q

2n,IRW
ϵ−2t Φ(ϵx1, . . . , ϵx2n) + o(1)

Using now the invariance principle combined with the fact that for x1, . . . , x2n mutually
different points of Zd

D(x1, . . . , x2n, η) = D(x1, . . . , xn, η)D(xn+1, . . . , x2n, η)

together with
Φ(x1, . . . , x2n) = φ⊗2n(x1, . . . , x2n)

we arrive at

Eµϵ
(
X2(n, ϵ, φ, η(ϵ−2t))

)
=

̸=∑
x1,...,x2n

∫
D(x1, . . . , x2n, η)dµϵ(η)Q

2n
t Φ(ϵx1, . . . , ϵx2n) + o(1)

=

(∫
ρ(n, x1, . . . , xn)Q

n
t Φ(ϵx1, . . . , ϵxn)

)2

+ o(1)

=
(
Eµϵ

(
X(n, ϵ, φ, η(ϵ−2t))

))2
+ o(1). (XI.112)

This shows that V ar (X(n, ϵ, φ, η(ϵ−2t))) = o(1).

XI.5 Boltzmann Gibbs principle and orthogonal poly-

nomial duality

In the study of fluctuation fields, an important principle is the so-called Boltzmann Gibbs
principle which states that the density fluctuation field is the slowest varying field, and
other fluctuation fields can be replaced by their “projection” on the density fluctuation
field. This general idea appeared first in a paper by Brox and Rost, [35], and was later
generalized and refined, see [146], chapter 11, for a general statement and proof. For
systems with orthogonal polynomial duality, it is natural to study the fluctuation fields of
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orthogonal polynomials. These “span” the fluctuation fields of general functions. We will
see that in a sense to be defined below, the fluctuation fields of all orthogonal polynomials
of order at least two are negligible. This implies that the fluctuation field of a general
function can be replaced by its projection on orthogonal polynomials of order 1, which is
in turn the density fluctuation field.

We recall that for a general local function f and a reversible product measure νρ, we
define its stationary fluctuation field via

Yϵ(f, φ; η) = ϵd/2
∑
x

(
τxf(η)−

∫
fdνρ

)
φ(ϵx) (XI.113)

and when f = η0 we denote the field by Yϵ(φ; η), and call it the (stationary) density
fluctuation field. Strictly speaking, these fields also depend on ρ, but we suppress that
dependence to lighten notation. The Boltzmann Gibbs principle states that for a general
f , at macroscopic times, the field

Yϵ(f, φ; η(ϵ
−2t))

can be well approximated by a constant times the density fluctuation field, i.e., by

C(ρ, f)Yϵ(φ; η(ϵ
−2t))

where C(ρ, f) is a constant depending on f and ρ:

C(ρ, f) =
d

dρ′

(∫
fdµρ′

)∣∣∣∣
ρ′=ρ

If we are in a context where orthogonal polynomial duality is valid, we can first
consider f which are orthogonal duality polynomials, and expand every other f in this
“basis”. The statement of the Boltzmann-Gibbs principle can then be reformulated as
the statement that the fluctuation fields of orthogonal duality polynomials of order ≥ 2
are negligible, (in a sense to be described below, see Theorem XI.33) .

In order to fix ideas, we start with a simple example which illustrates in which
sense fluctuations of orthogonal polynomials of order 2 are negligible. Let us denote
by Dρ(x1, . . . , xn; η) the orthogonal (in L2(νρ)) duality polynomial corresponding to the
dual configuration ξ =

∑n
i=1 δxi .

Then we start with the following example which shows that the fluctuation field of
Dρ(0, 0; η) is negligible. The example contains already the main idea needed in the proof
of the general case. In order to proceed, we need some notation. Let X(t), Y (t) denote
the positions of two dual particles, then by translation invariance of the interaction,
the difference process Z(t) = X(t) − Y (t) is a Markov process. In the independent
random walk case, this is again a random walk moving at twice the speed, whereas in the
interacting case with p(x, y) = π(y − x) and finite range R, it is a Markov process with
generator

Lf(z) =
∑
r∈A

2π(r)(α + σ1l{r=−z})(f(z + r)− f(z)) (XI.114)

where A denotes the finite set [−R,R]d ∩ Zd. This process is moving as a random walk
as long as it is at distance larger than R from the origin, and has different rates within
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the set A of locations at distance at most R from the origin. We denote EZz expectation
in this process {Z(t) : t ≥ 0} starting from z. Let us denote by lt(z) =

∫ t
0
1l{Z(s)=z} the

local time of this process at z ∈ Zd. By the fact that the process behaves outside the ball
of radius R as an ordinary finite range translation invariant random walk, we have for all
z, z′ ∈ Zd

lim
t→∞

1

t
Ezlt(z′) = 0 (XI.115)

Indeed, this is the case for ordinary random walk, and since one can decompose the
difference process in “epochs” (excursions) where it behaves as an ordinary random walk,
followed by periods in which it is in the ball B(0, R), which is left after a time bounded
above by an exponentially distributed random variable, one concludes (XI.115) for the
difference process as well.

We then prove the following.

PROPOSITION XI.31. For all T > 0, and for all Schwartz functions φ we have

lim
ϵ→0

Eνρ

(
ϵd/2

∑
x

∫ T

0

D(x, x; η(ϵ−2t))φ(ϵx)dt

)2

= 0 (XI.116)

PROOF. First we write, abbreviating Cρ = ∥Dρ(0, 0; η)∥2L2(νρ)
= ∥Dρ(x, x; η)∥2L2(νρ)

:

Eνρ

(
ϵd/2

∑
x

∫ T

0

Dρ(x, x; η(ϵ
−2s))φ(ϵx)

)2

= 2ϵd
∫ T

0

dt

∫ t

0

ds
∑
x

∑
y

φ(ϵx)φ(ϵy)Eνρ
(
Dρ(x, x; η(ϵ

−2(t− s))Dρ(y, y; η(0))
)

= 2ϵdCρ

∫ T

0

dt

∫ t

0

ds
∑
x

∑
y

φ(ϵx)φ(ϵy)pϵ−2(t−s)(x, x; y, y)

≤ 2ϵdCρ

∫ T

0

dt

∫ T

0

dr
∑
x

|φ(ϵx)|Ex,x
(
|φ(ϵX(ϵ−2r)|)1l{X(ϵ−2r)=Y (ϵ−2r)}

)
≤ 2T∥φ∥∞Cρϵd

∑
x

|φ(ϵx)|ϵ2EZ0
∫ ϵ−2T

0

1l{Z(s)=0}ds

= 2T∥φ∥∞Cρϵd
∑
x

|φ(ϵx)|ϵ2EZ0 (lϵ−2T (0)) (XI.117)

In the first equality we used stationarity, and in the second orthogonal polynomial duality.
By (XI.115) we have ϵ2EZ0 (lϵ−2T (0)) → 0 as ϵ→ 0.

REMARK XI.32.

1. Notice that in the proof, the integration over time plays an important role. Indeed,
for fixed time t > 0, the fluctuation field Yϵ(D(0, 0; ·), φ; η(ϵ−2t)) does not converge
to zero, but, by stationarity, converges to a normally distributed random variable.

Next, notice that the essence of the proof of Proposition (XI.31) lies in the fact that
two dual particles spend o(ϵ−2) time together (or more generally at a fixed distance)
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in the interval [0, ϵ−2], or in other words, the expected local time EZ0 (lϵ−2T (0)) =
o(ϵ−2) as ϵ→ 0.

2. Notice further that if the random walk Z is transient then EZ0 (lϵ−2T (0)) remains
bounded as ϵ → 0 and as a consequence the quantity appearing in (XI.116), i.e.,

Eνρ
(
ϵd/2

∑
x

∫ T
0
D(x, x; η(ϵ−2t))φ(ϵx)dt

)2
is of order ϵ2 as ϵ→ 0.

The following theorem shows that in the same sense as in the example, fluctuation
fields of orthogonal polynomials of order ≥ 2 are negligible. The essence of the proof is
once more the fact that dual particles spend o(ϵ−2) at fixed distances in the time interval
[0, ϵ−2]. Notice that when we consider orthogonal duality polynomials, then we have that∫

Dρ(x1, . . . , xn; η)Dρ(y1, . . . , yn; η)dνρ(η) = (XI.118)

1l{∃σ∈Sn:xσ(1),...,xσ(n)=(y1,...,yn)}

∫
Dρ(x1, . . . , xn; η)

2dνρ(η)

In other words the polynomials Dρ(x1, . . . , xn; η) and Dρ(y1, . . . , yn; η) are orthogonal if
and only if the configurations corresponding to the two n tuples are different, i.e., whenever∑n

i=1 δxi ̸=
∑n

i=1 δyi .

THEOREM XI.33. For all n ∈ N, x1, . . . , xn ∈ Zd, for all Schwartz functions φ and for
all T > 0 we have

lim
ϵ→0

Eνρ

(
ϵd/2

∫ T

0

∑
x

Dρ(x+ x1, . . . , x+ xn; η(ϵ
−2s))φ(ϵx)dt

)2

= 0 (XI.119)

PROOF. Fix T > 0, n ∈ N, x1, . . . , xn ∈ Zd, a Schwartz function φ. Denote ∥Dρ(x +
x1, . . . , x + xn; η)∥2L2(νρ)

= C(ρ), where we suppressed the dependence on (x1, . . . , xn)
for notational simplicity. Then using stationarity, combined with orthogonal polynomial
duality, proceeding as in the proof of Proposition XI.31 we estimate

Eνρ

(
ϵd/2

∫ T

0

∑
x

Dρ(x+ x1, . . . , x+ xn; η(ϵ
−2s))φ(ϵx)dt

)2

≤
∑
σ∈Sn

2ϵdC(ρ)

∫ T

0

dt

∫ t

0

ds
∑
x

|φ(ϵx)|Ex+x1,...,x+xn
(
|φ(ϵX1(ϵ

−2s)− xσ(1))|

1l{X1(ϵ−2s)−xσ(1)=...=Xn(ϵ−2s)−xσ(n)}

)
≤ 2ϵdC(ρ)∥φ∥∞T

∑
σ∈Sn

∑
x

|φ(ϵx)|ϵ2
∫ ϵ−2T

0

Ex+x1,...,x+xn
(
1l{X1(s)−xσ(1)=...=Xn(s)−xσ(n)}

)
ds

= 2ϵdC(ρ)∥φ∥∞T
∑
σ∈Sn

∑
x

|φ(ϵx)|ϵ2
∫ ϵ−2T

0

Ex+x1,...,x+xn
(
1l{Xi(s)−Xj(s)=Xσ(i)(0)−Xσ(j)(0) ∀i,j∈{1,...,n}}

)
ds

Similarly as in the two particle case, one has, for all σ ∈ Sn

lim
ϵ→0

ϵ2
∫ ϵ−2T

0

Ex+x1,...,x+xn
(
1l{Xi(s)−Xj(s)=Xσ(i)(0)−Xσ(j)(0) ∀i,j∈{1,...,n}}ds

)
= 0
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Indeed, from the consistency property, one sees that a randomly selected pair (Xi(s), Xj(s))
of (X1(s), . . . , Xn(s)) behaves as two particles, and therefore the expected local time
lϵ−2T (z) of the difference vector Xi(s)−Xj(s) of that pair at any fixed location z is o(ϵ−2).

REMARK XI.34. If the difference Xi(s)−Xj(s) is transient, then as in remark XI.32, item
2, the quantity

Eνρ

(
ϵd/2

∫ T

0

∑
x

Dρ(x+ x1, . . . , x+ xn; η(ϵ
−2s))φ(ϵx)dt

)2

is of order ϵ2. In the case of independent random walkers, more quantitative estimates of
this quantity can be given, in terms of expected local time of a single random walk. We
refer to [221] for more details.

XI.6 Additional notes

The use of duality combined with coupling between n dual particles with n independent
particles is the methodology of [69] and was the first method to prove the hydrodynamic
limit for the weakly asymmetric exclusion process in [68]. The method developed in [69]
is based on the control of the so-called v-functions which are a measure of the deviation
from local equilibrium. This method is also reminiscent of correlation function based
methods in kinetic theory, e.g. in the proof of the Boltzmann equation.

At present, many methods are available in the proof of hydrodynamic limits, for a
complete account of the methodologies developed by Varadhan and co-authors, as well as
alternative entropy-based methods such as the method developed by Yau, and methods
based on monotonicity see [146].

In this chapter we have highlighted in the simplest possible setting properties which
can be obtained via duality which are mainly the time-dependent covariance of the fluctua-
tion field, propagation of local equilibrium, higher-order hydrodynamics and quantitative
versions of the Boltzmann-Gibbs principle. In [7] duality is used to obtain results for
higher-order fluctuation field. In [46], [6] results are obtained on the scaling limits of the
inclusion process in the condensing regime, using scaling limits of two dual particles. The
behavior of condensing piles in the scaling limit is related to a system of sticky Brownian
motions. The full scaling limit of the (non-stationary) density field in the coarsening
process is still an open problem, which amounts to prove the scaling limit for n particles
in the condensation limit.

Duality is also used to understand hydrodynamic limits of boundary driven systems,
which lead to PDE’s such as the heat equation with appropriate boundary conditions
(Dirichlet, Robin, Neumann), depending on the strength of the coupling with the reser-
voirs, see e.g. [199], [97]. The study of hydrodynamic limits has been pioneered in [99]
using the entropy method, and has since then been studied by various authors.



Chapter XII

Duality and integrability

Abstract: In this final chapter, we discuss the interplay between duality and
integrability. We consider integrable spin chains in the context of the quantum
inverse scattering method or algebraic Bethe ansatz. We address the problem of
the identification of the corresponding integrable interacting particle systems.
In the framework of non-compact spins associated to the Lie algebra su(1, 1),
we discuss two recent examples of integrable processes, namely the so-called
“harmonic process” and an integrable heat conduction model. Their duality
functions coincide with those of, respectively, the inclusion process (Chapter
IV) and the Brownian energy process (Chapter V), as they share the same
underlying Lie algebra and the same symmetries. As an application of inte-
grability, we show how to rigorously obtain the non-equilibrium steady state
for open chains and from this we deduce a large deviation principle for the
empirical density profile.

XII.1 The harmonic process

Let G = (V,E) be a connected graph and let α > 0. We define the harmonic process on
the graph G as the Markov process {η(t), t ≥ 0} taking values on the set NV generated
by

L =
∑

{i,j}∈E

Li,j (XII.1)

where, for a function f : NV → R we set

Li,jf(η) =

ηi∑
k=1

φα(k, ηi)(f(η − kδi + kδj)− f(η)) (XII.2)

+

ηj∑
k=1

φα(k, ηj)(f(η + kδi − kδj)− f(η))

and the function φα : N× N → R is defined as

φα(k, n) =
1

k

Γ(n+ 1)Γ(n− k + α)

Γ(n+ α)Γ(n− k + 1)
, 1 ≤ k ≤ n , (XII.3)

317
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while φs(k, n) = 0 when k > n. Here δi is the configuration with only one particle at site
i ∈ V ; if k ∈ N then kδi is the configuration with k particles all sitting at site i.

As usual, ηi(t) is interpreted as the number of particle at vertex i at time t ≥ 0.
In the harmonic process, when a site i ∈ V contains ηi ∈ N particles, k of them (with
1 ≤ k ≤ ηi) are moved from site i to any of the edge-connected sites j ∈ V with a rate
φα(k, ηi). The reason why the process is called “harmonic process” is that the harmonic
numbers naturally appear in the definition of the model. This is manifest when considering
the waiting time in a configuration η before a particle jump occur, which is an exponential
random variable with parameter

∑
(i,j)∈E hα(ηi) where

hα(n) =
n∑
k=1

φα(k, n) =
n∑
k=1

1

k + α− 1
(XII.4)

are the so-called “shifted” harmonic numbers.

REMARK XII.1 (The case α = 1). It is useful to look at the simplest instance of the
harmonic process, which is obtained by choosing α = 1. In this case

φ1(k, n) =
1

k
, 1 ≤ k ≤ n,

which means that, at any vertex, k of the available particles jumps at rate 1/k. Further-
more the holding time in a configuration is proportional to the usual harmonic number

h1(n) =
n∑
k=1

φ1(k, n) =
n∑
k=1

1

k
.

REMARK XII.2 (Generalizations). In this chapter we have chosen all the edge weights
equal to 1 for the sake of notational simplicity. However, because the duality results
depend only on the structure of the single edge generator, the generalization of these
results to the generator

L =
∑

{i,j}∈E

p(i, j)Li,j

is immediate. Similarly, we have chosen the parameter α constant. Also here, the gener-
alization to a site dependent α = αi, i ∈ V is straightforward.

The harmonic process was introduced in [104] as an integrable model of transport
in 1D. To explain the genesis of the harmonic model we need to consider integrable
quantum spin chains and their algebraic description. This will be the subject of the next
section. Traditionally, integrability has been used extensively in equilibrium statistical
mechanics [13], as the transfer matrices of many 2D systems are related to quantum
integrable systems [98]. The connection between integrability and Markovian dynamics in
non-equilibrium statistical mechanics is however more recent. For an extended discussion
around the concept of stochastic integrability, see [212].

XII.2 Integrable spin chains

As a prototype of integrable quantum spin chains we consider the Heisenberg XXX Hamil-
tonian. We shall treat first the case of compact spins and then the case of non-compact
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spins. As already mentioned in Chapter VI, the symmetric exclusion process appears as
the integrable stochastic jump process associated to the chain with su(2) spins of value
1/2. Similarly, the harmonic process introduced in the previous section emerges as the in-
tegrable stochastic jump process associated to the chain with non-compact su(1, 1) spins.
Remarkably, the Heisenberg XXX chain with non compact spins can be read as the gen-
erator of a Markov process for all spin values s > 0. For details about the construction
and derivation of integrable quantum spin chains via the Yang-Baxter equation we refer
to [85], [207].

The integrable Heisenberg XXX Hamiltonian with compact spins

We start from the set-up of su(2) spins associated to the sites of a chain of length N . On
each site we consider the spin S = (Sx, Sy, Sz) satisfying the su(2) Lie algebra:

[Sx, Sy] = iSz, [Sy, Sz] = iSx, [Sz, Sx] = iSy.

Defining

S+ = Sx + iSy, S− = Sx − iSy

then we have

[S+, S−] = 2Sz, [Sz, S+] = S+, [Sz, S−] = −S−

which is the more familiar version of su(2) algebra encountered in Chapter VI. Ir-
reducible representations are labeled by the value of the spin s ∈ N/2 and they are
(2s + 1)−dimensional. We choose to enumerate the standard orthonormal base of R2s+1

as |0⟩, |1⟩, . . . , |2s⟩. Then the Casimir operator

S2 = SzSz +
1

2

(
S+S− + S−S+

)
is a multiple of the identity

S2|n⟩ = s(s+ 1)|n⟩ .

A useful representation is given by

S+|n⟩ = (2s− n)|n+ 1⟩
S−|n⟩ = n|n− 1⟩
Sz|n⟩ = (n− s)|n⟩ (XII.5)

with n ∈ {0, 1, . . . , 2s}. As we saw in Chapter VI this representation is crucial to establish
the link between the Hamiltonian with density given by the co-product of the Casimir
and the partial symmetric exclusion process.

The integrable lattice model describing a chain of N spin operators with spin value
s ∈ N/2 is given by the Heisenberg XXX Hamiltonian [85]:

H [s] =
N−1∑
i=1

2
(
ψ(Si,i+1 + 1)− ψ(2s+ 1)

)
(XII.6)
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where the operator Si,i+1 is defined by the relation

Si,i+1(Si,i+1 + 1) = (Si + Si+1)
2 . (XII.7)

Here

ψ(x) =
d

dx
ln Γ(x) (XII.8)

is the digamma-function, i.e. the logarithmic derivative of the Γ function. Notice that for
integer values n ∈ N of its argument it satisfies

ψ(n) = −γ +
n−1∑
k=1

1

k

with γ being the Euler-Mascheroni constant and
∑n−1

k=1
1
k
being the (n − 1)th harmonic

number.
To identify Markov processes associated with the Hamiltonian (XII.6) we need to

check if the non-diagonal matrix elements are all of a definite sign. In the tensor product
base where for each site we use the representation (XII.5) this is not an easy task. It is
convenient to switch to the base where the operators (Si + Si+1)

2 and (Szi + Szi+1) are
diagonal, which is obtained by using Clebsch-Gordan coefficients. In this new base, the
theory of addition of angular momenta tell us that the operator (Si + Si+1)

2 will have
eigenvalues l(l+1) with l = 0, 1, . . . , 2s. Thus we can rewrite the Hamiltonian density as

H
[s]
i,i+1 = α01l + α1(Si + Si+1)

2 + α2(Si + Si+1)
4 + . . .+ α2s(Si + Si+1)

4s (XII.9)

where the coefficient α0, . . . , α2s are determined combining together (XII.6) and (XII.9)
via (XII.7). We illustrate this with two examples.

REMARK XII.3 (Spin s = 1/2). In this case we have

2
(
ψ(1)− ψ(2)) = α0

2
(
ψ(2)− ψ(2)) = α0 + 2α1

Using the recursion relation ψ(x+ 1) = ψ(x) + 1/x we get

−2 = α0

0 = α0 + 2α1

which implies α0 = −2, α1 = 1. Then the quantum integrable Hamiltonian for spin
s = 1/2 reads:

H [ 1
2
] =

N−1∑
i=1

[
−2 + (Si + Si+1)

2
]
=

N−1∑
i=1

[
−1

2
+ 2Si · Si+1

]
(XII.10)

To see the system as a stochastic process one can rewrite

H [ 1
2
] =

N−1∑
i=1

(
S+
i S

−
i+1 + S−

i S
+
i+1 + 2Szi S

z
i+1 −

1

2

)
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and check the action of the single edge Hamiltonian. Writing |ni, ni+1⟩ as an abbreviation
for the tensor product base |ni⟩ ⊗ |ni+1⟩ and using (XII.5), one has

H
[ 1
2
]

i,i+1|ni, ni+1⟩ = (1− ni)ni+1 |ni + 1, ni+1 − 1⟩
+ ni(1− ni+1) |ni − 1, ni+1 + 1⟩

+

(
2(ni −

1

2
)(ni+1 −

1

2
)− 1

2

)
|ni, ni+1⟩

This means that for the corresponding single edge generator, which is the transposed of
the single edge Hamiltonian we have the following transition rates:

|ni, ni+1⟩ → |ni + 1, ni+1 − 1⟩ with rate (1− ni)ni+1

|ni, ni+1⟩ → |ni − 1, ni+1 + 1⟩ with rate ni(1− ni+1).

The out of diagonal terms of the matrix h
[ 1
2
]

i,i+1 are positive and furthermore the column
sums of its elements are zero, so that the transposed is the generator of a Markov process.
We retrieved the symmetric exclusion process associated to the integrable spin chain of
spin 1/2.

REMARK XII.4 (Spin s = 1). In this case we have

2
(
ψ(1)− ψ(3)

)
= α0

2
(
ψ(2)− ψ(3)

)
= α0 + 2α1 + 4α2

2
(
ψ(3)− ψ(3)

)
= α0 + 6α1 + 36α2 (XII.11)

that is

−3 = α0

−1 = α0 + 2α1 + 4α2

0 = α0 + 6α1 + 36α2 (XII.12)

which implies α0 = −2, α1 = +5
4
, α2 = −1

8
. Then the integrable Heisenberg XXX Hamil-

tonian of spin value 1 reads:

H [1] =
N−1∑
i=1

[
−3 +

5

4
(Si + Si+1)

2 − 1

8
(Si + Si+1)

4

]

=
1

2

N−1∑
i=1

[
Si · Si+1 − (Si · Si+1)

2
]

(XII.13)

To our knowledge it is not know how to read the integrable Heisenberg XXX Hamiltonian
of spin value 1 as a stochastic process. One can check that, in the tensor product base
|nj⟩ ⊗ |ni+1⟩, the hamiltonian denisty H

[1]
i,i+1 has out-of-diagonal elements of both signs.

The Heisenberg XXX Hamiltonian with non-compact spins

We change now to the set-up of su(1, 1) spins. On each site we consider a spin S =
(Sx, Sy, Sz) satisfying the su(1, 1) Lie algebra:

[Sx, Sy] = −iSz, [Sy, Sz] = iSx, [Sz, Sx] = iSy.
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Defineing
S+ = Sx + iSy, S− = Sx − iSy

then we have

[S+, S−] = −2Sz, [Sz, S+] = S+, [Sz, S−] = −S−

which is the more familiar version of su(1, 1) algebra encountered in Chapter IV and in
Chapter V. Representations are labeled by the value of the spin s > 0 and are infinite
dimensional. We choose to enumerate the standard orthonormal base of ℓ2 as |0⟩, |1⟩, . . ..
The Casimir operator

S2 = SzSz − 1

2

(
S+S− + S−S+

)
is a multiple of the identity with eigenvalues

S2|n⟩ = s(s− 1)|n⟩ .

A useful representation is given by

S+|n⟩ = (2s+ n)|n+ 1⟩
S−|n⟩ = n|n− 1⟩
Sz|n⟩ = (n+ s)|n⟩ (XII.14)

with n ∈ {0, 1, . . .}. As we saw in Chapter IV this representation is crucial to establish
the link between the Hamiltonian with density given by the co-product of the Casimir
and the partial symmetric inclusion process.

The integrable lattice model describing a chain of N non-compact spin operators with
spin value s is given by the Heisenberg XXX Hamiltonian [85]:

H =
N−1∑
i=1

2
(
ψ(Si,i+1)− ψ(2s)

)
(XII.15)

where the operator Si,i+1 is now defined by the relation

Si,i+1(Si,i+1 − 1) = (Si + Si+1)
2 . (XII.16)

As before, here ψ(x) = d
dx

ln Γ(x) is the digamma-function.
It turns out that, in the tensor product base where for each site we use the repre-

sentation (XII.14), the transposed of this Hamiltonian is the generator of the symmetric
harmonic process introduced in Section XII.1. To see this one has to perform a similarity
transformation, using the Clebsch-Gordan coefficient, so that in the new base the opera-
tors (Si + Si+1)

2 and (Szi + Szi+1) are diagonal. This is a long computation which is not
discussed here.

XII.3 The harmonic process as the limit of asym-

metric models

The harmonic process can be obtained as the limit of asymmetric models previously intro-
duced in relation to the study of the Kardar-Parisi-Zhang universality class. One of them
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is the multiparticle hopping asymmetric diffusion model (MADM) that was introduced
by Sasamoto and Wadati [198], with generator

L MADM =
∑
i∈Z

Li,i+1

with

Li,i+1f(η) =

ηi∑
k=1

1

[k]q

[
f(η − kδi + kδi+1)− f(η)

]
+

ηi+1∑
k=1

qk

[k]q

[
f(η + kδi − kδi+1)− f(η)

]
where, for 0 < q < 1, the following definition of q-number has been used

[k]q =
1− qk

1− q
.

It is clear that the harmonic model with α = 1 is recovered in the limit q → 1, as the
q-numbers reduce to ordinary numbers. A more general model is the q-Hahn process,
introduced by Barraquand and Corwin [10] as a partial asymmetric model generalizing
the totally asymmetric model of Povolotsky [187]. The q-Hahn model is defined by the
generator

L q-Hahn =
∑
i∈Z

Li,i+1

with

Li,i+1f(η) =
∞∑
k=1

φr,q,να (k, ηi)(f(η − kδi + kδi+1)− f(η)) (XII.17)

+
∞∑
k=1

φℓ,q,να (k, ηi+1)(f(η + kδi − kδi+1)− f(η)).

Here the functions φ
r/ℓ,q,ν
α : N× N → R are defined as

φr,q,να (k, n) =
1

[k]q

(q; q)n (ν; q)n−k
(ν; q)n (q, q)n−k

1l{1,...,n}(k)

φℓ,q,να (k, n) =
νk

[k]q

(q; q)n (ν; q)n−k
(ν; q)n (q, q)n−k

1l{1,...,n}(k)

where we have used the Pochammer symbol

(ν; q)n =
n−1∏
j=0

(1− νqj).

Putting ν = qα and using the fact that

lim
q→1

(qα; q)n
(1− q)n

=
Γ(α + n)

Γ(α)
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one obtains
lim
q→1

φr/ℓ,q,q
α

α (k, n) = φα(k, n)

and thus the harmonic model with parameter α is recovered from the q-Hahn model in
the limit q → 1. We remark that the MADM model, as well as the q-Hahn model, were
introduced as models allowing an unbounded number of particles per site for which the
coordinate Bethe ansatz can be used to prove properties related to the Kardar-Parisi-
Zhang universality class. Their algebraic description was given in [100] in relation to the
trigonometric integrable XXZ chain introduced in [36].

XII.4 Algebraic description of the harmonic process

The advantage of the algebraic expression (XII.15) is that the su(1, 1) symmetry of the
harmonic process is revealed. In particular the generator (i.e. the transposed of the
Hamiltonian) is a function of the co-product of the Casimir, which is a central element.
As a consequence, the total creation operator and the total annihilation operator are
hidden symmetries, besides the total number operator which is trivial symmetry reflecting
conservation of the total number of particles in the harmonic process

However, in the following, we rather prefer to consider another algebraic expression
where the generator of the harmonic process on each bond of the graph is decomposed
into two parts: one describing the jumps of particle in the one direction (which we call
right), and the other describing the jumps in the opposite direction (which we call left).
This representation was identified in [101].

We recall the operators K+, K− and K0 working on functions f : N → R as:

K+f(n) = (α + n)f(η + 1),

K−f(n) = nf(n− 1),

K0f(n) =
(
α
2
+ n
)
f(n). (XII.18)

which provide a representation of the conjugate su(1, 1) Lie algebra. Furthermore we
introduce the operator

B =
(
K0 +

α

2

)−1

K+ (XII.19)

Notice that the operator K0 is a multiplication operator and therefore its inverse is well-
defined. The action of B then simply reads

Bf(n) =
1

n+ α
K+f(n) = f(n+ 1). (XII.20)

Then we have the following result.

PROPOSITION XII.5 (Algebraic description of the harmonic process). Let L1,2 be the
generator of the harmonic process on two sites, i.e.

L1,2f(n1, n2) =

n1∑
k=1

φα(k, n1)(f(n1 − k, n2 + k)− f(n1, n2))

+

n2∑
k=1

φα(k, n2)(f(n1 + k, n2 − k)− f(n1, n2)) (XII.21)
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with

φα(k, n) =
1

k

Γ(n+ 1)Γ(n− k + α)

Γ(n+ α)Γ(n− k + 1)
, 1 ≤ k ≤ n .

Then we have

−L1,2 = eK
−
1 B2

(
ψ
(
K0

1 +
α

2

)
− ψ(α)

)
e−K

−
1 B2

+ eK
−
2 B1

(
ψ
(
K0

2 +
α

2

)
− ψ(α)

)
e−K

−
2 B1 (XII.22)

PROOF. First, by using the recursive property of the digamma function, one may check
that the hα function defined in (XII.4) can be rewritten as

hα(n) = ψ(α + n)− ψ(α). (XII.23)

Second, using K−f(n) = nf(n+ 1), we have

ecK
−
f(n) =

∞∑
j=0

cj

j!

(
K−)j f(n) = n∑

j=0

cj

j!

n!

(n− j)!
f(n− j) . (XII.24)

Combining the previous two equations we obtain

ecK
−
(ψ(K0+

α

2
)−ψ(α))e−cK−

f(n) =
∞∑
l=0

∞∑
j=0

(−1)lcj+l
n!

j!l!(n− j − l)!
hα(n−j)f(n−j−l) .

(XII.25)
Performing the change of variables k = j + l we have

ecK
−
(ψ(K0+

α

2
)−ψ(α))e−cK−

f(n) =
n∑
k=0

ck
k∑
j=0

(−1)k−j
n!

j!(k − j)!(n− k)!
hα(n−j)f(n−k) .

(XII.26)
We now separate the term k = 0, and use the following identity when k > 0

k∑
j=0

(−1)k−j
n!

j!(k − j)!(n− k)!
hα(n− j) = −φα(k, n) , (XII.27)

whose proof can be found in [101], proof of Lemma 3.1. Thus we have established the
following similarity transformation:

ecK
−
(ψ(K0 +

α

2
)− ψ(α))e−cK

−
f(n) = hα(n)f(n)−

n∑
k=1

φα(k, n)c
kf(n− k) (XII.28)

We proceed by choosing c = B2 which then yields

eK
−
1 B2(ψ(K0

1 +
α

2
)− ψ(α))e−K

−
1 B2f(n1, n2)

= hα(n1)f(n1, n2)−
n∑
k=1

φα(k, n)(B2)
kf(n1 − k, n2) (XII.29)



326 CHAPTER XII. DUALITY AND INTEGRABILITY

Recalling the action of the operator B2 (cf. (XII.19)) we find

(B2)
kf(n1 − k, n2) = f(n1 − k, n2 + k). (XII.30)

Inserting this in the equation above and recalling that hα(n1) =
∑n1

k=1 φα(k, n1) we finally
obtain

eK
−
1 B2(ψ(K0

1 +
α

2
)− ψ(α))e−K

−
1 B2f(n1, n2)

= −
n1∑
k=1

φα(k, n1)
(
f(n1 − k, n2 + k)− f(n1, n2)

)
(XII.31)

By an analogous computation one proves that

eK
−
2 B1(ψ(K0

2 +
α

2
)− ψ(α))e−K

−
2 B1f(n1, n2)

= −
n2∑
k=1

φα(k, n2)
(
f(n1 + k, n2 − k)− f(n1, n2)

)
(XII.32)

Adding up the last two equations the proof is concluded.

XII.5 Reversible measure and self-duality of the har-

monic process

As a consequence of the su(1, 1) symmetry, one expects for the harmonic process the
same self-duality results that were established for several other processes sharing the
same symmetry. In fact this is the case, as the following theorem shows.

THEOREM XII.6 (Reversible measure and self-duality). Consider the harmonic process
with parameter α > 0 on a graph G = (V,E), defined by the generator (XII.1). Then we
have:

1. For all λ > 0 there exists a one-parameter family of reversible distributions, which
are the product measure with marginal the (unnormalized) Negative Binomial dis-
tribution:

M(η) =
∏
x∈V

m(ηi) with m(n) =
λn

n!

Γ(n+ α)

Γ(α)
(XII.33)

2. The function

Dch(ξ, η) =
∏
x∈V

dch(ξx, ηx), with dch(k, n) =
n!Γ(α)

Γ(α + n)
δk,n (XII.34)

is a cheap self-duality function for the harmonic process.
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3. The harmonic process has self-duality functions given by

D(ξ, η) =
∏
i∈V

d(ξi, ηi) with d(k, n) =
n!

(n− k)!

Γ(α)

Γ(α + k)
1l{k≤n} . (XII.35)

PROOF. For the first item, the detailed balance condition is easily verified from the fact
that, for all all all n, ℓ ∈ N and for all 1 ≤ k ≤ n, one has

m(n)m(ℓ)φα(k, n) = m(n− k)m(ℓ+ k)φα(n, ℓ) . (XII.36)

As a consequence the cheap self-duality function of the second item follows from Theorem
I.7. The proof of the last item is similar to the one of Theorem IV.8. Namely, one verifies
that

∑
i∈V K

+
i is a symmetry of the generator and then uses that

eK
+

[dch(·, n)](k) = d(k, n). (XII.37)

An alternative proof is obtained by following the idea of a change of representation from
the conjugate su(1, 1) Lie algebra to the su(1, 1) Lie algebra, as described in Section IV.5
for the symmetric inclusion process. Indeed one has

K+ dch−−→ K−

K− dch−−→ K+

K0 dch−−→ K0 (XII.38)

which means that [
K+dch(·, n)

]
(k) =

[
K−dch(k, ·)

]
(n)[

K−dch(·, n)
]
(k) =

[
K+dch(k, ·)

]
(n)[

K0dch(·, n)
]
(k) =

[
K0dch(k, ·)

]
(n). (XII.39)

As a consequence of this, when we consider the algebraic description of the harmonic
process generator we have (remember that we have to write the “sequence in the reverse
order”)

eK
−
1 (K0

2+
α
2
)−1K+

2

(
ψ
(
K0

1 +
α

2

)
− ψ(α)

)
e−K

−
1 (K0

2+
α
2
)−1K+

2

+eK
−
2 (K0

1+
α
2
)−1K+

1

(
ψ
(
K0

2 +
α

2

)
− ψ(α)

)
e−K

−
2 (K0

1+
α
2
)−1K+

1

dch−−→ e−K
+
1 K

−
2 (K0

2+
α
2
)−1
(
ψ
(
K0

1 +
α

2

)
− ψ(α)

)
eK

+
1 K

−
2 (K0

2+
α
2
)−1

+e−K
+
2 K

−
1 (K0

1+
α
2
)−1
(
ψ
(
K0

2 +
α

2

)
− ψ(α)

)
eK

+
2 K

−
1 (K0

1+
α
2
)−1

(XII.40)

The self-duality of the harmonic process with cheap self-duality function is then obtained
by observing that the term on the right hand side is again the generator of the harmonic
process, i.e.

−L1,2 = e−K
+
1 K

−
2 (K0

2+
α
2
)−1
(
ψ
(
K0

1 +
α

2

)
− ψ(α)

)
eK

+
1 K

−
2 (K0

2+
α
2
)−1

+ e−K
+
2 K

−
1 (K0

1+
α
2
)−1
(
ψ
(
K0

2 +
α

2

)
− ψ(α)

)
eK

+
2 K

−
1 (K0

1+
α
2
)−1

(XII.41)
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Remark however that the last equation is the result of a subtle cancellation which origi-
nates from the following two equalities:

e−K
+
1 K

−
2 (K0

1+
α
2
)−1
(
ψ
(
K0

2 +
α

2

)
− ψ(α)

)
eK

+
1 K

−
2 (K0

2+
α
2
)−1

(XII.42)

= −
n2∑
k=1

φα(k, n2)
(
f(n1 + k, n2 − k)− f(n1, n2)

)
+ (hα(n1)− hα(n2))f(n1, n2)

and

e−K
+
2 K

−
1 (K0

1+
α
2
)−1
(
ψ
(
K0

2 +
α

2

)
− ψ(α)

)
eK

+
2 K

−
1 (K0

1+
α
2
)−1

(XII.43)

= −
n1∑
k=1

φα(k, n1)
(
f(n1 − k, n2 + k)− f(n1, n2)

)
+ (hα(n2)− hα(n1))f(n1, n2)

Adding up (XII.42) and (XII.43) leads to (XII.41).
The proof of (XII.42) (and similarly of (XII.43)) is obtained by a computation that

follows the same ideas of Section XII.4 and reveals the additional contribution of the
diagonal terms. One uses that

hα(n) = ψ(α + n)− ψ(α) (XII.44)

and

ecK
+

f(n) =
∞∑
j=0

cj

j!

(
K+
)j
f(n) =

∞∑
j=0

cj

j!

Γ(n+ α + j)

Γ(n+ α)
f(n+ j) .

Combining together these two equations we get

e−cK
+

(ψ(K0+
α

2
)−ψ(α))ecK+

f(n) =
∞∑
l=0

∞∑
j=0

(−1)l
cj+l

j!l!

Γ(n+ α + j + l)

Γ(n+ α)
hα(n+l)f(n+j+l) .

(XII.45)
Performing the change of variables k = j + l and then changing the order of summation
we have

e−cK
+

(ψ(K0+
α

2
)−ψ(α))ecK

+

f(n) =
∞∑
k=0

ck
k∑
l=0

(−1)l

l!(k − l)!

Γ(n+ α + k)

Γ(n+ α)
hα(n+ l)f(n+ k) .

(XII.46)
We now separate the term k = 0, and use the following identity when k > 0

k∑
l=0

(−1)l

l!(k − l)!

Γ(n+ α + k)

Γ(n+ α)
hα(n+ l) = −1

k
, (XII.47)

whose proof can be found in [101]. Thus we establish the following similarity transforma-
tion:

e−cK
+
(
ψ(K0 +

α

2
)− ψ(α)

)
ecK

+

f(n) = hα(n)f(n)−
n∑
k=1

ck

k
f(n+ k) (XII.48)



XII.6. INTEGRABLE HEAT CONDUCTION MODEL 329

Applying this with c = K−
2 (K

0
2 +

α
2
)−1 we then have

e−K
+
1 K

−
2 (K0

2+
α
2
)−1
(
ψ
(
K0

1 +
α

2

)
− ψ(α)

)
eK

+
1 K

−
2 (K0

2+
α
2
)−1

f(n1, n2)

=
∞∑
k=1

1

k

(
K−

2 (K
0
2 +

α

2
)−1
)k
f(n1 + k, n2)− hα(n1)f(n1, n2) (XII.49)

Observing that (
K−(K0 +

α

2
)−1
)
f(n) =

n

n+ α− 1
f(n− 1) (XII.50)

it follows(
K−

2 (K
0
2 +

α

2
)−1
)k
f(n1 + k, n2) =

Γ(n2 + 1)

Γ(n2 − k + 1)

Γ(n2 − k + α)

Γ(n2 + α)
f(n1 + k, n2 − k).

(XII.51)

Inserting this above and recalling the definition of φα(k, n) =
1
k
Γ(n+1)Γ(n−k+α)
Γ(n+α)Γ(n−k+1)

, we finally
obtain

−e−K
+
1 K

−
2 (K0

2+
α
2
)−1
(
ψ
(
K0

1 +
α

2

)
− ψ(α)

)
eK

+
1 K

−
2 (K0

2+
α
2
)−1

=

n2∑
k=1

φα(k, n2)
(
f(n1 + k, n2 − k)− f(n1, n2)

)
+hα(n2)f(n1, n2)− hα(n1)f(n1, n2). (XII.52)

Thus the proof of (XII.42) is completed.

XII.6 Integrable heat conduction model

In Chapter V, the Brownian energy process was discussed. The Brownian energy process is
a diffusion model of heat conduction, i.e. a continuous quantity (the heat/energy) diffuses
and is locally redistributed, remaining conserved globally. It was shown that it is possible
to obtain the Brownian energy process from the symmetric inclusion process by taking a
many-particle limit. From the algebraic point of view, this corresponds to considering a
representation of non-compact su(1, 1) spins in terms of differential operators. The change
from discrete to continuous representations is then leading to duality.

Similarly, the harmonic process introduced at the beginning of this chapter does have
a many-particle limit, which provides an integrable model of heat conduction. However,
the generator of the limiting process does not involve only first and second derivatives,
but rather contains “derivatives of all orders”. Infact we shall see that it is a jump process
with infinite activity. In the following we first introduce the process and then we show
its connection to the harmonic process by a many-particle scaling limit. In the next
section we shall discuss the relation between the integrable heat conduction process and
the harmonic process from the perspective of representation theory.

Consider a connected graph G = (V,E) and let s > 0. We define the integrable heat
conduction process on the graph G as the Markov process {ζ(t), t ≥ 0} taking values on
the set RV

+ generated by

L =
∑

{i,j}∈E

Li,j (XII.53)
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where, for functions f : RV
+ → R we set

Li,jf(ζ) =

∫ ζi

0

dx

x

(
1− x

ζi

)α−1

[f(ζ − xδi + xδj)− f(ζ)]

+

∫ ζj

0

dx

x

(
1− x

ζj

)α−1

[f(ζ + xδi − xδj)− f(ζ)] . (XII.54)

We interpret ζi(t) as the energy at vertex i at time t ≥ 0 and observe that the total
energy |ζ(t)| =

∑
i∈V ζi(t) is obviously conserved by the dynamics. We do not address

the issue of identifying the domain of the generator, we observe that the generator is at
least well defined on polynomial functions.

REMARK XII.7. An alternative form of the generator reads

Li,jf(ζ) =

∫ 1

0

du

u
(1− u)α−1 [f(ζ − ζiuδi + ζiuδj)− f(ζ)]

+

∫ 1

0

du

u
(1− u)α−1 [f(ζ + ζjuδi − ζjuδj)− f(ζ)] . (XII.55)

We first show that the integrable heat conduction process is a many-particle limit of
the harmonic process.

PROPOSITION XII.8 (Many-particle limit of the harmonic process). Define the process
{ζ(N)(t), t ≥ 0} by

ζ(N)(t) =
η(t)

N
,

where {η(t), t ≥ 0} is the harmonic process. Assume ζ(N) := ζ(N)(0) converges to ζ ∈ RV
+

as N → ∞. Then the sequence of processes {ζ(N)(t), t ≥ 0} converges to the integrable
heat conduction process with generator (XII.53), starting from the configuration ζ(0) = ζ.

PROOF. Denote by L(N) the generator of the process {ζ(N)(t), t ≥ 0}. Then in view of the
Trotter Kurtz theorem, it suffices to prove that for a smooth test function f : RV

+ → R
we have the convergence

LNf(ζN) → Lf(ζ)

as N → ∞ where L is the generator of the integrable heat conduction process. This in
turn reduces to

LNi,jf(ζ
N) → Li,jf(ζ)

for all {i, j} ∈ E. We give the proof for the case α = 1. We have

LNi,jf(ζ
(N)) =

Nζ
(N)
i∑

k=1

1

N

1

k/N

(
f(ζ(N) − k

N
δi +

k
N
δj)− f(ζ(N))

)

+

Nζ
(N)
j∑

k=1

1

N

1

k/N

(
f(ζ(N) − k

N
δi +

k
N
δj)− f(ζ(N))

)
. (XII.56)
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The rhs of (XII.56) is a Riemann sum approximation of an integral. Using that limN→∞ ζN =
ζ we get

Li,jf(ζ) = lim
N→∞

LNi,jf(ζ
(N)) =

∫ ζi

0

dx

x
[f(ζ − xδi + xδj)− f(ζ)]

+

∫ ζj

0

dx

x
[f(ζ − xδj + xδi)− f(ζ)] . (XII.57)

The general case α ̸= 1 is proved similarly via Riemann sum approximation and by using
the asymptotics

Γ(z + γ1)

Γ(z + γ2)
≈ zγ1−γ2 as z → ∞.

XII.7 Duality of the integrable heat conduction model

We start by providing the algebraic description of the integrable heat conduction model.
By considering a representation of the su(1, 1) Lie algebra with differential operators we
show that the integrable heat conduction process is obtained from the hamiltonian density
of the integrable XXX chain with non non-compact spins.

PROPOSITION XII.9 (Algebraic description of the integrable heat conduction model). Let
L1,2 be the generator of the harmonic process on two sites, i.e.

L1,2f(ζ) =

∫ ζ1

0

dx

x

(
1− x

ζ1

)α−1

[f(z1 − x, z2 + x)− f(z1, z2)]

+

∫ ζ2

0

dx

x

(
1− x

ζ2

)α−1

[f(z1 + x, z2 − x)− f(z1, z2)] . (XII.58)

Then we have

−L1,2 = eK +
1 B2

(
ψ
(
K 0

1 +
α

2

)
− ψ(α)

)
e−K +

1 B2

+ eK +
2 B1

(
ψ
(
K 0

2 +
α

2

)
− ψ(α)

)
e−K +

2 B1 (XII.59)

where the following representation of the su(1, 1) Lie algebra is used:

K + = z , K − =

(
z
∂

∂z
+ α

)
∂

∂z
, K 0 = z

∂

∂z
+
α

2
, (XII.60)

and the operator B is given by

B = (K 0 +
α

2
)−1K − =

∂

∂z
. (XII.61)
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PROOF. It is enough to consider the “right” part of the generator, the “left” part is
treated in an analogous manner. Using that

B2 = (K 0
2 +

α

2
)−1K −

2 =
∂

∂z2
(XII.62)

we have

eK +
1 B2

(
ψ
(
K 0

1 +
α

2

)
− ψ(α)

)
e−K +

1 B2 = e
z1

∂
∂z2

(
ψ
(
z1

∂

∂z1
+ α

)
− ψ

(
α
))
e
−z1 ∂

∂z2

(XII.63)

By employing the following integral representation of the digamma function

ψ(x+ α)− ψ(α) =

∫ 1

0

dβ β2s−11− βx

1− β
, (XII.64)

we obtain

eK +
1 B2

(
ψ
(
K 0

1 +
α

2

)
− ψ(α)

)
e−K +

1 B2 = e
z1

∂
∂z2

∫ 1

0

dβ

1− β
βα−1

(
1− β

z1
∂

∂z1

)
e
−z1 ∂

∂z2

(XII.65)

Moreover the following (formal) rewriting of translations and dilatations

f(z + c) = ec
∂
∂z f(z) (XII.66)

f(cz) = cz
∂
∂z f(z) (XII.67)

implies that

eK +
1 B2

(
ψ
(
K 0

1 +
α

2

)
− ψ(α)

)
e−K +

1 B2f(z1, z2)

=

∫ 1

0

dβ

1− β
βα−1

(
f(z1, z2)− f(βz1, z2 + (1− β)z1)

)
. (XII.68)

Changing variable by defineing x = (1− β)z1 we have

eK +
1 B2

(
ψ
(
K 0

1 +
α

2

)
− ψ(α)

)
e−K +

1 B2f(z1, z2)

= −
∫ z1

0

dx

x

(
1− x

z1

)α−1(
f(z1 − x, z2 + x)− f(z1, z2)

)
. (XII.69)

By an analogous computation one proves that

eK +
2 B1

(
ψ
(
K 0

2 +
α

2

)
− ψ(α)

)
e−K +

2 B1f(z1, z2)

= −
∫ z2

0

dx

x

(
1− x

z2

)α−1(
f(z1 + x, z2 − x)− f(z1, z2)

)
. (XII.70)

Adding up the last two equations the proof is concluded.

Having established the algebraic description, it is an easy consequence to establish
duality.
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THEOREM XII.10 (Duality integrable heat conduction process and harmonic process).
The integrable heat conduction process with parameter α > 0 on a graph G = (V,E),
defined by the generator (XII.53) is dual to the harmonic process with duality functions
given by

D(ξ, ζ) =
∏
i∈V

d(ξi, ζi) with d(k, z) = zk
Γ(α)

Γ(α + k)
. (XII.71)

PROOF. The proof is analogous to the one of Theorem V.2, where the following basic
duality for the su(1, 1) Lie algebra was first obtained:

K+ d−−→ K +

K− d−−→ K −

K0 d−−→ K 0. (XII.72)

The duality relation

L1,2
d−−→ L1,2 (XII.73)

then follows combining equation (XII.59) (which provides the algebraic description of the
integrable heat conduction model in terms of K operators) and equation (XII.41) (which
provides the algebraic description of the harmonic process in terms of K operators).

REMARK XII.11 (Poisson intertwining). As a consequence of the duality between har-
monic process and integrable heat conduction process we have the Poisson intertwiner, as
in Theorem V.8. Namely,

ΛL = LΛ

with

(Λf)(ζ) =
∑
η∈NV

f(η)
∏
x∈V

ζηxx
ηx!

e−ζx . (XII.74)

Therefore evolving a Poisson product measure with parameters ζi at site i under the
harmonic process yields at time t > 0 a mixture of Poisson product measures where the
mixture measure is given by the probability distribution of the integrable heat conduction
model at time t started from ζ = {ζi, i ∈ V }.

XII.8 The hidden parameter model and propagation

of mixtures

We have seen that

−L1,2 = eK
−
1 (K0

2+
α
2
)−1K+

2

(
ψ
(
K0

1 +
α

2

)
− ψ(α)

)
e−K

−
1 (K0

2+
α
2
)−1K+

2

+ eK
−
2 (K0

1+
α
2
)−1K+

1

(
ψ
(
K0

2 +
α

2

)
− ψ(α)

)
e−K

−
2 (K0

1+
α
2
)−1K+

1 (XII.75)



334 CHAPTER XII. DUALITY AND INTEGRABILITY

We use the duality

k+
d−−→ K +

k−
d−−→ K −

k0
d−−→ K 0. (XII.76)

where

k+ = θ(θ∂θ + α)

k− = ∂θ

k0 = θ∂θ +
α

2
(XII.77)

and

d(θ, n) = θn (XII.78)

We obtain

LHidden1,2
D−−→ L1,2 (XII.79)

with

−LHidden1,2 = e−k
−
1 k

+
2 (k02+

α
2
)−1
(
ψ
(
K0

1 +
α

2

)
− ψ(α)

)
ek

−
1 k

+
2 (k02+

α
2
)−1

+ e−k
−
2 k

+
1 (k01+

α
2
)−1
(
ψ
(
K0

2 +
α

2

)
− ψ(α)

)
ek

−
2 k

+
1 (k01+

α
2
)−1

(XII.80)

with

D(θ1θ2;n1, n2) = θn1
1 θ

n2
2 (XII.81)

and using the representation (XII.77) we find

LHidden1,2 f(θ1, θ2) =

∫ 1

0

du

u
(1− u)α−1(f((1− u)θ1 + uθ2, θ2)− f(θ1, θ2))

+

∫ 1

0

du

u
(1− u)α−1(f(θ1, uθ1 + (1− u)θ2)− f(θ1, θ2))

(XII.82)

If we define the intertwiner

Λf(θ) =
∑
η

∏
i∈V

µθi(ηi)f(η) (XII.83)

the previous duality implies that

LHiddenΛ = ΛL (XII.84)

From this it follows that mixture of negative binomial distributions are propagated by
the discrete harmonic process into mixture of negative binomial distributions.
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XII.9 Boundary-driven harmonic process

In this last section we consider the harmonic model in the boundary-driven set up and
show how the combination of duality and quantum inverse scattering method allows to
identify the stationary measure, i.e. the non-equilibrium steady state, in closed form.
We give here a concise account with some sketches of proofs, for details we refer to the
works [103], [102], [101], [92], [39], [38].

The boundary-driven harmonic model is the process {η(t) = (η1(t), . . . ηN(t)), t ≥ 0}
taking values in NN defined by the following generator:

L = L1 +
N−1∑
i=1

Li,i+1 + LN (XII.85)

where

Li,i+1f(η) =

ηi∑
k=1

φα(k, ηi)
[
f(η − kδi + kδi+1)− f(η)

]
+

ηi+1∑
k=1

φα(k, ηi+1)
[
f(η + kδi − kδi+1)− f(η)

]
and

L1f(η) =

η1∑
k=1

φα(k, ηi)
[
f(η − kδ1)− f(η)

]
+

∞∑
k=1

1

k

(
ρL

1 + ρL

)k [
f(η + kδ1)− f(η)

]
and

LNf(η) =

ηN∑
k=1

φα(k, ηi)
[
f(η − kδN)− f(η)

]
+

∞∑
k=1

1

k

(
ρR

1 + ρR

)k [
f(η + kδN)− f(η)

]
.

Here ρL and ρR > 0 are two parameters that are used to tune to densities of particles
at the left and right boundaries. In particular, when ρL = ρR one can check that the
following product measure is reversible:

µρL,ρL(η) =
N∏
i=1

µρL(ηi) (XII.86)

where

µθ(n) =
1

n!

Γ(α + n)

Γ(α)

(
θ

1 + θ

)n(
1

1 + θ

)α
(XII.87)

Namely, the numbers of particles on each site are identical and independent random
variables with Negative Binomial distribution of mean αρL.

If instead ρL ̸= ρR then reversibility is lost, and then stationary measure is called
the non-equilibrium steady state. The following theorem [101,102] characterizes the non-
equilibrium steady state of the open harmonic model.
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THEOREM XII.12 (Factorial moments). Consider the boundary-driven harmonic model
with parameters ρL, ρR. Denote by E expectation with respect to the stationary measure
and call (Y1, . . . , YN) the random variables with this joint distribution. Then, for ξ =
(ξ1, . . . , ξN) ∈ NN

0 , the factorial moments of order ξ are given by

E

[
N∏
i=1

Yi!

(Yi − ξi)!

]
=

[
N∏
i=1

Γ(ξi + α)

Γ(α)

] |ξ|∑
n=0

ρ
|ξ|−n
R (ρL − ρR)

ngξ(n)

with

gξ(n) =
∑

n1,...,nN∑
i ni=n

N∏
i=1

(
ξi
ni

) α∏
j=1

α(N + 2− i)− j

α(N + 2− i)− j +
∑N

k=i nk
.

PROOF. The proof is obtained in two steps. The first step is to use duality to reduce the
computation of the factorial moment of order ξ to a problem about |ξ| =

∑N
i=1 ξi dual

particles. In particular we have duality of the boundary-driven harmonic model with an
absorbing dual process {ξ̃(t) = (ξ̃0(t), ξ̃1(t), . . . ξ̃N(t), ξ̃N+1(t)), t ≥ 0} with generator:

L dual = L dual
1 +

N−1∑
i=1

Li,i+1 + L dual
N (XII.88)

where

L dual
1 f(ξ̃) =

ξ̃1∑
k=1

φα(k, ξ̃i)
[
f(ξ̃ − kδ1 + kδ0)− f(ξ̃)

]
and

L dual
N f(ξ̃) =

ξ̃N∑
k=1

φα(k, ξ̃i)
[
f(ξ̃ − kδN + kδN+1)− f(ξ̃)

]
One can check that

Eη
[
D(η(t), ξ̃)

]
= Eξ

[
D(η, ξ̃(t))

]
with duality function

D(ξ̃, η) = ρξ̃0L

[
N∏
i=1

ηi!

(ηi − ξ̃i)!

Γ(α)

Γ(ξ̃i + α)

]
ρ
ξ̃N+1

R . (XII.89)

Taking the limit t→ ∞ of the duality relation with the dual process initialized from the
configuration ξ̃ =

∑N
i=1 ξiδi one gets

E

[
N∏
i=1

Yi!

(Yi − ξi)!

Γ(α)

Γ(ξi + α)

]
=

|ξ|∑
k=0

ρkL ρ
|ξ|−k
R pξ(k)

where

pξ(k) = P
[
ξ(∞) = kδ0 + (|ξ| − k)δN+1

∣∣∣ ξ(0) = N∑
i=1

ξiδi

]
.
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Thus the factorial moments are expressed as polynomials in the parameters ρL, ρR whose
coefficients are the probabilities that starting the dual process from the configuration∑N

i=1 ξiδi, one eventually has k particles absorbed at the extra site {0} and the remaining
ones absorbed at the extra site {N + 1}.

The second step amounts to the explicit computation of these absorption probabilities.
For this we refer to the original paper [101], where the computation is performed by using
a non-trivial symmetry of the boundary-driven chain, which is in turn derived from the
application of the quantum inverse scattering method.

From the knowledge of the factorial moments one can reconstruct the stationary mea-
sure of the open harmonic process with parameters ρL, ρR by using the inversion formula

P (Y = η) =
∑
ξ≥η

E

[
N∏
i=1

Yi!

(Yi − ξi)!

(−1)ξi−ηi

ξi!

(
ξi
ηi

)]
(XII.90)

In a next step [38,39] an integral representation of the stationary measure has been found.

THEOREM XII.13 (Stationary measure). The stationary measure of the boundary-driven
harmonic model with parameters ρL, ρR can be written as a mixture of product measures
as follows:

µρL,ρR(η) = E

[
N∏
i=1

µΘ(ηi)

]
(XII.91)

where the random vector Θ = (Θ1, . . . ,ΘN) is defined by

Θi = ρL + (ρR − ρL)
i∑

j=1

Ri.

Here the random vector R = (R1, R2, . . . , RN+1) has the symmetric Dirichlet distribution
with parameter α which takes values on the (N + 1)−dimensional simplex

∑N+1
i=1 ri = 1

and has probability density

f(r1, . . . , rN+1) =
Γ(α(N + 1))

Γ(α)N+1

N+1∏
i=1

rα−1
i 1l{∑N+1

i=1 ri=1} (XII.92)

As a consequence one has the closed formula

µρL,ρR(η) =
Γ(α(N + 1))

Γ(α)N+1(ρR − ρL)n

∫ ρR

ρL

dθ1

∫ ρR

θ1

dθ2 · · ·
∫ ρR

θN−1

dθN

[
N+1∏
i=1

(θi − θi−1)
α−1

]

·

[
N∏
i=1

1

ηi!

Γ(α + ηi)

Γ(α)

(
θi

1 + θi

)ηi ( 1

1 + θi

)α]
PROOF. It is convenient to work with generating functions. One starts by recalling that
for a random variable X with negative binomial distribution (XII.87) the generating
function is given by

E(ehX) =
(

1

1 + (1− eh)θ

)α
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Using the factorial moments of Theorem XII.12, one can computes the generating function
of the random variables (Y1, . . . , YN). The result is

E
[
e
∑N

i=1 hiYi
]
=

Γ(α(N + 1))

Γ(α)N+1

∫ 1

0

du1

∫ 1

u1

du2 · · ·
∫ 1

uN−1

duN

N+1∏
i=1

(ui − ui−1)
α−1

·
N∏
i=1

( 1

1 + (1− ehi)
(
ρL + (ρR − ρL)ui

))α
with the convention u0 = 0 and uN+1 = 1. From this expression one recognizes the
structure of a mixed measure, i.e.

E
[
e
∑N

i=1 hiYi
]
= E

[
E
[ N∏
i=1

ehiYi |Θ
]]

where

Θi = ρL + (ρR − ρL)Vi

and U = (U1, . . . , UN) is the vector with probability density

fU1,...,Un(u1, . . . , uN) =
Γ(α(N + 1))

Γ(α)N+1

N+1∏
i=1

(ui − ui−1)
α−11l{0≤u1≤...≤uN≤1}.

The representation of the stationary measure in integral form is useful to establish large
deviations for the empirical density profile as predicted by the Macroscopic Fluctuation
Theory 1 [22, 26]. Furthermore, the Markov property of the ordered Dirichlet distribu-
tion implies an additivity formula which was first established for the boundary-driven
symmetric exclusion process [71].

THEOREM XII.14 (Large deviation principle and additivity principle). Consider the
boundary-driven harmonic model with parameters ρL, ρR. Then we have

1. The empirical profiles

πN =
1

N

N∑
i=1

ηiδ i
N

satisfies a large deviation principle

Prob
[
πN(dx) ≈ ρ(x)dx

]
∼ e−NI(ρ)

1The Macroscopic Fluctuation Theory (MFT) can strictly speaking not be applied to the harmonic
process, because MFT is based on a dynamical large deviation principle which is currently not available
for the harmonic process. The reason is that the stationary measures have exponential tails, and the
proof of the dynamical large deviation principle, based on super-exponential replacement lemmas, requires
super-exponential tails of the stationary measures.
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with rate function

I(ρ) = inf
θ:[0,1]→R+
monotone
θ(0)=ρL
θ(1)=ρR

α

∫ 1

0

dx
[ρ(x)
α

ln
ρ(x)
α

θ(x)
+ (1 +

ρ(x)

v
) ln

1 + θ(x)

1 + ρ(x)
α

− ln
θ′(x)

ρR − ρL

]

2. The pressure

P (h) = lim
N→∞

1

N
logE

[
eN⟨πN ,h⟩

]
satisfies the following variational problem

P (h) = sup
θ:[0,1]→R+
monotone
θ(0)=ρL
θ(1)=ρR

α

∫ 1

0

dx
[
ln
( 1

1 + (1− eh(x))θ(x)

)
+ ln

θ′(x)

ρR − ρL

]

3. Furthemore the pressure satisfies the following additivity principle:

P̃ [0,1]
ρL,ρR

(h) = sup
ρL≤ρm≤ρR

[
P̃ [0,x]
ρL,ρm

(h1) + P̃ [x,1]
ρm,ρR

(h2)
]

0 < x < 1

where

P̃ [a,b]
ρa,ρb

(h) := P [a,b]
ρa,ρb

(h) + α(b− a) log
(ρR − ρL

b− a

)
and

P [a,b]
ρa,ρb

(h) = sup
θ
α

∫ b

a

[
ln
( 1

1 + (1− eh(x))θ(x)

)
+ ln

((b− a)θ′(x)

ρb − ρa

)]
dx

The proof can be found in [38]. We state in words the main arguments. Items 1. and 2.
are obtained by a contraction principle that can be applied to the joint large deviations of
the empirical density profile of an inhomogeneous product measure and of the empirical
profile of the ordered Dirichlet distribution. The former can be analyzed by standard
techniques [128], i.e. Cramer/Sanov theorem, the latter is known from statistics [77] . Item
3. follows by exploiting the Markov properties of the ordered Dirichlet distribution [5].

XII.10 Additional notes

The integrable XXX spin chain has been known for a long time [85]. In high-energy
physics, the version with non-compact spins has been studied from different perspectives,
especially those related to AdS/CFT correspondence and high-energy QCD [14, 33, 86,
148,169].

The fact that the integrable XXX Hamiltonian with non-compact spins can be in-
terpreted as a Markov process is more recent and is due to Frassek-Giardinà-Kurchan
[102,103]. As already remarked above (see Section XII.3), the asymmetric version of the
harmonic process was already considered by Sasamoto-Wadati [198] for parameter α = 1
(the so-called MADM process) and by Povolotsky [187] and Barraquand-Corwin [10] for
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generic values of α (the so-called q-Hahn process). Remarkably these asymmetric models
were studied in relation to KPZ universality class just constructing them in the frame-
work of Bethe ansatz, without making an explicit connection with integrable spin chains.
This was established in [100], where it was show that they arise from the integrable XXZ
Hamiltonian with non-compact spins.

The boundary driven set-up of the symmetric harmonic model was also introduced
in [102,103] by using duality to identify integrable boundaries for the open spin chain. The
recent solution for the stationary measure [101], [92], [39], [38] opens up a new perspective
on non-equilibrium steady states as a mixture of local Gibbs measures. See also [65] in
the context of the KMP process. From the duality perspective, this is related to the
identification of a proper intertwiner which then yields propagation of mixed local Gibbs
measure over time.



Appendix A

Markov processes

In this appendix we provide some basic background material on Markov processes, in
view of what is needed in the book. Most of this material can be found in standard
books, but we have collected here the basic notions which we need in the book in a spirit
of “pragmatism” and self-consistency, i.e., avoiding unnecessary technicalities of measure
theoretic or functional analytic nature. For more background and detailed accounts on
Markov process theory we refer to [84], [140], [167], [166]. For more background on
random walks we refer to [209], [156], and on Brownian motion [177], [160]. For basics on
probability theory and its measure theoretic background we refer to [124], [227]. For more
background on ergodic theory and analytic aspects of transition operators and semigroups,
we refer to [149], [225]. For basics on functional analytic background on semigroups we
refer to [79], and for general analytic background to [195]. The material on Hille-Yosida
theory is based on chapter 1 of [167], and [79].

A.1 Discrete-time Markov chains

We start with the simplest case of a discrete-time Markov chain on a countable set S. In
doing so, we will set up notation and provide proofs which can be easily transferred to
the setting of a Markov process in discrete time on more much general state spaces.

A.1.1 Path space

The space of discrete-time trajectories, also called path space, is SN, with N = {0, 1, 2, . . .}
and elements of SN are denoted by Greek letters ω, ζ. For ω ∈ SN a trajectory, we denote
ω(t) ∈ S its state at time t ∈ N. We equip this path space SN with the canonical σ-algebra
F generated by cylinders, i.e., the smallest σ algebra which makes the projections

πt : S
N → S : ω → ω(t)

measurable. We denote also Fn the σ-algebra generated by the projections πt, 0 ≤ t ≤ n.
On path space we define the shift θnω(t) = ω(t+n). A measurable subset A ∈ F is called
shift invariant if θnA = A for all n ∈ N.

DEFINITION A.1 (Stationarity and Ergodicity). 1. A probability measure P on Ω,F
is called stationary if P ◦ θn = P for all n ∈ N.

341
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2. A stationary probability measure P on Ω is called ergodic if for all shift invariant
sets A ∈ F, P(A) = 0 or P(A) = 1.

One of the equivalent and useful characterisations of ergodicity is given in the following
proposition.

PROPOSITION A.2. A stationary probability measure P on Ω is ergodic if and only if for
all f, g ∈ L2(dP) one has

lim
N→∞

∫
1

N

N∑
n=1

f ◦ θngdP =

∫
fdP

∫
gP (A.1)

PROOF. See [139].

A.1.2 Transition matrix, Markov property

A transition probability a matrix Pxy, x, y ∈ S is matrix indexed by elements of S such
that

0 ≤ Pxy ≤ 1 for all x, y ∈ S∑
y∈S

Pxy = 1 for all x ∈ S (A.2)

The transition matrix encodes the one-step transition probabilities.
The powers of the transition matrix P are defined via usual matrix multiplication

(P n)xy =
∑
z∈S

PxzP
n−1
zy

where by definition P 0
xy = δx,y. We call the matrix irreducible if for all x, y ∈ S there exist

n ∈ N such that P n
xy > 0.

With the transition matrix we build the discrete-time Markov process via

P(Xt1 = x1, . . . , Xtn = xn|Xt0 = x0) = P t1−t0
x0,x1

P t2−t1
x2,x1

. . . P tn−tn−1
xn−1,xn

(A.3)

This defines a unique collection of probability measures Px on the discrete-time path
space SN, endowed with the σ-algebra of cylinder events, indexed by the starting point
x ∈ S, and correspondingly a unique discrete-time stochastic process Xn, n ∈ N with
values in S. We denote by Px the joint distribution of X0, X1, . . . , Xn, . . . conditioned
on the event X0 = x, in particular Px(X0 = x) = 1, and Ex denotes the corresponding
expectation. More generally if µ is a probability measure on S, i.e., a collection of numbers
µ(x) ≥ 0 with

∑
x∈S µ(x) = 1 then Pµ :=

∑
x µ(x)Px is the trajectory measure when the

starting point X0 is distributed according to µ, and we denote by Eµ the corresponding
expectation.

As a consequence of the way we defined the finite dimensional marginals of the process,
namely via (A.3), we have the Markov property, i.e., the conditional distribution of the
trajectory after time n, i.e., the joint distribution of Xn+s, s ∈ N conditional on the past
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{X0, . . . , Xn} depends only on the past via the “current state” Xn. Let us formalize this
property. We call a function f : SN → R cylindrical if it depends only on a finite number
of coordinates, i.e., if there exists a finite subset A ⊂ N such that if ω, ω′ ∈ SN satisfy
ωA = ω′

A then f(ω) = f(ω′). For a trajectory ω ∈ SN we denote its shift over time n via
(θnω)(t) = ω(t + n), t ∈ N. The Markov property is then expressed as follows. For all
bounded cylindrical functions f : SN → R and for all n ∈ N:

E (f ◦ θn|X0, . . . , Xn) = E (f ◦ θn|Xn) =

∫
f(ω)dPXn(ω) (A.4)

The first equality expresses the Markov property, i.e., the distribution of the trajectory
after time n only depends on the state at time n and not on the further history. The second
equality expresses the time-homogeneity of the process, i.e., the transition probabilities
for a single step in the process do not depend on the time at which the step is taken.
More explicitly, (A.4) can be restated in terms of conditional probabilities

P(Xn+t1 = y1, . . . , Xn+tk = yk|X0 = x0, . . . , Xn = xn) = P(Xt1 = y1, . . . , Xtk = yk|X0 = xn)
(A.5)

for all k, n ∈ N, t1, . . . , tk ∈ N and y1, . . . , yk ∈ S, x0, . . . , xn ∈ S. This expresses both the
Markov property, i.e., the conditional probability in the lhs of (A.5) only depends on the
last time in the conditioning, i.e., the event Xn = xn, and on the time difference, i.e., not
explicitly on n.

A.1.3 Transition operator, invariant measures

Given the transition probabilities, we define the transition operator acting on bounded
f : S → R

Pf(x) =
∑
y∈S

Pxyf(y) = E(f(X1)|X0 = x) (A.6)

In this setting, a function can be thought of as a column vector, and the action of the
transition operator is by multiplying this column (on the left) with the transition matrix
P . The basic properties satisfied by the transition operator P are the following.

1. Normalization: P1 = 1.

2. Positivity: if f ≥ 0, then Pf ≥ 0.

3. Contraction in the sup-norm: ∥Pf∥∞ ≤ ∥f∥∞. Here ∥f∥∞ = supx∈S |f(x)|

We can then also define the action of the transition operator in probability measures
µ on S via ∫

Pfdµ =
∑
x

Pf(x)µ(x) =:

∫
fdµP (A.7)

where

µP (y) =
∑
x

µ(x)Pxy (A.8)
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µP represents the distribution at time 1 when the process at time zero is started from a
state distributed according to µ, i.e.,∫

fdµP = Eµf(X1) =

∫
Exf(X1)dµ(x)

In the matrix notation, (A.8) expresses the fact that a probability measure can be viewed
as a row vector, which after one time step evolves by multiplying (on the right) with the
transition matrix.

DEFINITION A.3 (Invariant and Ergodic measures). 1. A probability measure is called
invariant or stationary if µP = µ, or equivalently for all f : S → R bounded∫
Pfdµ =

∫
fdµ.

2. A probability measure µ is called reversible if for all f, g : S → R bounded functions∫
f(Pg)dµ =

∫
(Pf)gdµ (A.9)

3. A probability measure is called ergodic if Pf = f implies f =
∫
fdµ µ-almost surely.

The following proposition shows that this notion of ergodicity is consistent with the
previously defined notion of ergodicity on path space.

PROPOSITION A.4. µ is ergodic if and only if Pµ is ergodic in the sense of definition A.1

PROOF. Let µ be ergodic, and let A be a shift invariant set. Our aim is to show that
P(A) ∈ {0, 1}. Denote

fA(x) = Eµ(1A|F0)(x)

Then by shift invariance of A, we obtain PfA(x) = fA(x), which implies, by ergodicity of
µ that

fA(x) =

∫
fA(x)dµ(x) = Pµ(A) (A.10)

Similarly, denote

fnA(x1, . . . , xn) = Eµ(1A|Fn)(x1, . . . , xn)

By shift invariance of A, combined with the Markov property (A.4) and (A.10)

Eµ(1A|Fn)(x1, . . . , xn) = Eµ(1A ◦ θn|Fn)(x1, . . . , xn) = Eµ(1A|F0)(xn) = Pµ(A), Pµa.s.
(A.11)

Because Fn ↑ F as n→ ∞, Eµ(1A|Fn) → Eµ(1A|F) = 1A as n→ ∞. This combined with
(A.11) yields

1A = Pµ(A), Pµ a.s.

which shows that Pµ(A) ∈ {0, 1}.
Conversely, if Pµ is ergodic, and f is a bounded function such that Pf = f , then, Pµ

a.s. we have

Eµ(f ◦ π1|F0) = f(ω(0))
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which implies that for all g : S → R bounded∫
f(ω(1))g(ω(0))dPµ(ω) =

∫
f(ω(0))g(ω(0))dPµ(ω)

Similarly, because P nf = f , we obtain for all n ∈ N:∫
f(ω(n))g(ω(0))dPµ(ω) =

∫
f(ω(0))g(ω(0))dPµ(ω)

averaging over n gives

lim
N→∞

∫
1

N

N∑
n=1

f(ω(n))g(ω(0))dPµ(ω) =
∫
f(ω(0))g(ω(0))dPµ(ω) =

∫
fgdµ (A.12)

By the ergodicity of Pµ we have, using Proposition A.2,

lim
N→∞

∫
1

N

N∑
n=1

f(ω(n))g(ω(0))dPµ(ω) =
∫
gdµ

∫
fdµ (A.13)

Combining (A.13) and (A.12) gives∫
fgdµ =

∫
gdµ

∫
fdµ

for all g bounded. Then, by choosing f = g we obtain f =
∫
fdµ µ a.s.

The following lemma shows that different ergodic measures are singular.

LEMMA A.5. If µ and ν are two different ergodic measures, then µ and ν are mutually
singular.

PROOF. Assume the contrary, i.e., assume that µ is ergodic and

ν(A) =

∫
A

fdµ

with f ≥ 0 and
∫
fdµ = 1, and that also ν is ergodic. Then by invariance of both ν and

µ we obtain ∫
fP ngdµ =

∫
fgdµ

for all n ∈ N and g : S → R bounded. Averaging and using that 1
N

∑N
n=1 P

ng →
∫
gdµ,

µ a.s., we obtain ∫
fdµ

∫
gdµ =

∫
fgdµ

which yields f =
∫
fdµ µ a.s., which yields in turn that µ = ν.

We collect in the next proposition some basic properties of stationary, ergodic and re-
versible measures.
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PROPOSITION A.6. 1. If S is finite then there exists a stationary distribution.

2. If S is finite then the set of invariant measures I is a non-empty convex set and the
ergodic measures are the extreme points of I.

3. If µ is stationary, then the transition operator is a contraction on Lp(µ) for all
1 ≤ p ≤ ∞.

4. If S is finite and P is irreducible then there exists a unique stationary measure.

5. Reversibility implies stationarity.

6. Reversibility of a probability measure µ is equivalent with the detailed balance con-
dition

µ(x)Pxy = µ(y)Pyx (A.14)

for all x, y ∈ S.

PROOF.

1. For item 1, we provide a well-known and standard proof which is based on the
so-called Bogoliubov-Krylov argument and only uses that the set of probability
measures on S, denoted P(S) is compact. As a consequence, this argument is valid
on general state spaces as long as P(S) is compact (e.g. when S is a compact
metric space and P(S) is equipped with the weak topology). Notice that in the
context of countable state spaces, the statement can also be proved via the Perron-
Frobenius theorem, but this proof method is then restricted to that context where
the transition operator is a matrix, whereas the Bogoliubov-Krylov argument is
more general.

Consider µ ∈ P(S) and denote

ΓN :=
1

N

N∑
k=1

µP k

we estimate, for f : S → R∣∣∣∣∫ fdΓN −
∫
fdΓNP

∣∣∣∣ ≤ 1

N

(∫
|f |dµ+

∫
|f |dµPN+1

)
≤ 2∥f∥∞

N

which implies that

lim
N→∞

∣∣∣∣∫ fdΓN −
∫
fdΓNP

∣∣∣∣ = 0 (A.15)

By compactness, there exists a subsequence ΓNk
→ ν as k → ∞. By (A.15) we then

have ∫
fdν =

∫
fdνP

which shows that ν is invariant.
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2. Non-emptyness has already been obtained, and convexity of the set is clear because
the defining relation

∫
Pfdµ =

∫
fdµ for all f : S → R bounded is a linear relation.

It suffices to see that the ergodic measures are precisely the extreme points. Assume
that µ is not ergodic, then there exists A ⊂ S such that 0 < µ(A) < 1 and such
that P1A = 1A, µ a.s. We first show that this implies that µA = µ(·|A) is invariant.
Notice that P1A = 1A, µ a.s. implies for all g : S → R bounded∫

1A(ω(0))g(ω(0))dPµ =

∫
1A(ω(1))g(ω(0))dPµ

choosing g = 1A gives∫
1A(ω(0))1A(ω(0))dPµ =

∫
1A(ω(1))1A(ω(0))dPµ

which combined with stationarity of Pµ gives∫
(1A(ω(0))− 1A(ω(1)))

2dPµ = 0

which implies 1A(ω(1)) = 1A(ω(0)) Pµ a.s. This in turn implies∫
(Pg)1Adµ =

∫
g(ω(1))1A(ω(0))dPµ =

∫
g(ω(1))1A(ω(1))dPµ =

∫
g1Adµ

which implies the invariance of µA. Then we have

µ = µ(A)µA + (1− µ(A))µAc

which is a non-trivial convex decomposition of µ in the set I, showing that µ is
not extreme in I. Assume now that µ ∈ I is not extreme and ergodic. We show
that this leads to a contradiction. By the assumed non-extremality there exists
0 < λ < 1, and µ1 ̸= µ2 such that

µ = λµ1 + (1− λ)µ2

This implies that for the corresponding path space measures

Pµ = λPµ1 + (1− λ)Pµ2

This in turn implies Pµ1 << Pµ. Put F =
dPµ1

dPµ
. Because both Pµ and Pµ1 are

shift invariant, it holds that F is shift invariant. By ergodicity of µ, this implies via
Proposition A.4 that Pµ is ergodic, and therefore combining this with translation
invariance of F , we conclude F =

∫
FdPµ = 1 Pµ a.s. This implies Pµ1 = Pµ and

hence µ1 = µ = µ2, which is a contradiction.

3. If µ is invariant, then we have∫
|Pf |pdµ =

∫
|Exf(X1)|pdµ(x) ≤

∫
Ex(|f |p(X1))dµ(x) =

∫
|f |p(x)dµ(x)

where we used Jensen’s inequality combined with the stationarity of µ.
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4. Assume the contrary, then there exists two different ergodic measures µ, ν. These
measures are mutually singular. So there exists A with µ(A) = 0 and ν(A) = 1.
Choose x ∈ A such that µ(x) > 0 and y ∈ Ac. Then choose n such that P n

x,y > 0
which is possible by irreducibility. Then we have

Pµ(ω(n) ∈ Ac) = µ(Ac) = 0

on the other hand
Pµ(ω(n) ∈ Ac) ≥ µ(x)P n

x,y > 0

which is a contradiction.

5. If µ is reversible then choosing g = 1 in (A.9), gives, using P1 = 1, that for all f
bounded

∫
Pfdµ =

∫
fdµ, which is invariance of µ.

6. If µ is reversible then we have, by definition,∫
fPgdµ =

∫
gPfdµ

choose f(z) = δx,z, g(z) = δy,z, then we obtain

µ(x)Px,y = µ(y)Py,x

Conversely, if detailed balance holds, then∫
fPgdµ =

∑
x,y

µ(x)f(x)Px,yg(y) =
∑
x,y

µ(y)Py,xf(x)g(y) =

∫
gPfdµ

A.2 Continuous-time jump processes

In continuous time, we will first restrict to the simplest case of a countable state space S.
We will find back many of the results from the discrete time setting. The continuous-time
setting, in its simplest form already provides the notion of semigroup, generator, and
Dynkin martingale which are important in the general theory.

A.2.1 Path space

In continuous-time setting, the path space is Ω := D([0,∞), S) which is the space of
trajectories ω : [0,∞) → S which are right-continuous at any t ≥ 0 and have left limits at
any t > 0. We call such paths cadlag, from the French “continu à droite, limité à gauche”.
We denote by Ft the σ-algebra generated by the projections πs : ω → ω(s), s ≤ t and
F = σ (∪t≥0Ft). On the path space we have the shift θt(ω)(s) = ω(s + t). We call a
measure P on path space stationary if P ◦ θt = P for all t > 0. We call a set A ∈ F

invariant if θt(A) = A for all t > 0, and we call a measure on path space ergodic under
time shifts if every invariant set has measure zero or one.
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A.2.2 Markov processes, transition rates

In continuous-time jump processes, starting from a state x ∈ S, the process waits an
exponential time with parameter λx after which it jumps with probability p(x, y) to a
new state y. The fact that the jump times have to be exponentially distributed is to
ensure the Markov property, via the memoryless property of the exponential distribution.
First we formulate the Markov property. As before, to the process starting from x ∈ S
is associated a probability measure Px on path space Ω. We denote by Ex expectation
w.r.t. this probability measure. We say that the process {Xt, t ≥ 0} is time-homogeneous
Markov if for all bounded cylindrical functions f : Ω → R we have

Ex (f ◦ θt|Ft) = EXt(f) (A.16)

As in the discrete case, this expresses the fact that conditional on the past up to time
t > 0, the distribution of the future, i.e., of {Xt+s, s ≥ 0} is determined by Xt only, and
not by any information about the further past. The time homogeneity is expressed by
the fact that this distribution of the future does not explicitly depend on t.

In the following lemma we show that this implies that jump times have to be expo-
nentially distributed.

LEMMA A.7. Denote Tx := inf{t > 0 : Xt ̸= x} then there exists λx > 0 such that

Px(Tx > t) = e−λxt (A.17)

PROOF. By the Markov property we have

Px(Tx > t+ s|Tx > t) = Px(Tx > t+ s|Xs = x,∀0 ≤ s ≤ t) = Px(Tx > s)

This implies Px(Tx > t + s) = Px(Tx > t)Px(Tx > s), which is a characterization of the
exponential distribution.
The process {Xt, t ≥ 0} can then be defined via transition rates c(x, y) ≥ 0, which can
be thought of as “transition probability per unit of time”. When starting from x ∈ S the
process waits an exponential time with parameter λx =

∑
y c(x, y), after which it jumps

to a new state y ∈ S with probability p(x, y) = c(x, y)/λx. In order to ensure that the
process is well-defined we assume

sup
x
λx <∞ (A.18)

This is not necessary but sufficient to ensure that the process does not escape in fi-
nite time to “infinity”, and that it admits a version with cadlag paths. We call the
process irreducible if for all x, y ∈ S there exists x1, . . . , xn with x1 = x, xn = y and∏n−1

i=1 c(xi, xi+1) > 0.
The process {Xt, t ≥ 0} admits the following graphical representation. For each

pair (x, y) ∈ S × S, we consider a Poisson process {Nxy
t , t ≥ 0} with rate c(x, y). For

different x, y, these Poisson processes are independent. At each event time of the Poisson
process we draw an arrow from x to y. The process, with given initial point x is then
constructed by “following the arrows”. This graphical representation then provides a
coupling of the processes {Xx

t , t ≥ 0} with different initial conditions Xx
0 = x. I.e.,

given the realization of all the Poisson processes {Nxy
t , t ≥ 0}, x, y ∈ S, the processes

{Xx
t , t ≥ 0} are deterministic functions of this realization.
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A.2.3 Semigroups, generators and invariant measures

In this section we review the connection generator-semigroup-Markov process in the simple
setting of Markovian jump processes of the previous section. As we did before in the
discrete case, in doing so, we set up notation and provide proofs which can be used in
much wider context without too much adaptation. To the Markov process {Xt, t ≥ 0} we
associate the collection of operators

S(t)f(x) = Exf(Xt) (A.19)

working on bounded f : S → R. Let us denote B(S) the set of bounded functions.
Notice that because S is discrete, this space coincides of course with the space of bounded
continuous functions. The following proposition collects the basic properties of S(t), t ≥ 0

PROPOSITION A.8. The collection of operators {S(t) : t ≥ 0} satisfies the following
properties.

1. S(0) = I, where I denotes the identity.

2. Normalization: S(t)1 = 1.

3. Positivity: f ≥ 0 implies S(t)f ≥ 0.

4. Contraction in sup-norm: ∥S(t)f∥∞ ≤ ∥f∥∞.

5. Semigroup property: S(t+ s) = S(t)S(s) for all t, s ≥ 0.

6. Right continuity (in the supremum norm)

lim
t→0

sup
x

|S(t)f(x)− f(x)| = 0

then the result follows from the assumption supx λx <∞.

PROOF. The first four properties are immediate from the definition. We prove the fifth
property, which is intimately connected to the Markov property:

S(t+ s)f(x) = Ex(f(Xt+s))

= Ex (Ex(f(Xt+s)|Ft))
= Ex (EXt(f(Xs)))

= Ex(S(s)f(Xt))

= (S(t)(S(s)f))(x) (A.20)

Finally, to prove right continuity, notice that

|S(t)f(x)− f(x)| ≤ 2∥f∥∞Px(Tx ≤ t) = 2∥f∥∞(1− e−λxt) (A.21)

Then use (A.18) to conclude.
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REMARK A.9. The semigroup S(t) can be viewed as a matrix S(t)xy, indexed by ele-
ments of the countable state space S. The matrix element S(t)xy is simply the transition
probability pt(x, y) = Ex(I(Xt = y)), and the semigroup property is equivalent with the
Chapman-Kolmogorov equation

pt+s(x, y) =
∑
z

pt(x, z)ps(z, y)

We can now introduce the generator. Notice that because we have restricted here to
the case supx λx < ∞, the generator will be a bounded operator (on the set of bounded
functions f : S → R) so we will not (yet) have to deal with domain problems, or problems
on how to define the exponential of the generator.

DEFINITION A.10. The generator of the semigroup is defined as the limit

Lf = lim
t→0

S(t)f − f

t
(A.22)

where the limit is in the uniform topology, i.e., such that

lim
t→0

∥∥∥∥S(t)f − f

t
− Lf

∥∥∥∥
∞

= 0 (A.23)

The domain of the generator is

D(L) =

{
f : lim

t→0

S(t)f − f

t
exists

}
(A.24)

PROPOSITION A.11. Under condition (A.18), L is a bounded operator, i.e., D(L) = B(S),
and we have the “exponentiation” relation between the generator and the semigroup

S(t) = etL =
∞∑
n=0

tnLn

n!
(A.25)

where the sum converges in the uniform operator topology. The generator is explicitly
given by

Lf(x) =
∑
y

c(x, y)(f(y)− f(x)) (A.26)

PROOF. Assume the process starts from X0 = x. Let us denote Nt the total num-
ber of jumps of the process in time [0, t]. Then we have Px(Nt ≥ 2) = o(t), i.e,
limt→0 supx Px(Nt ≥ 2)/t = 0. Therefore, we can write

Exf(Xt) = Ex(f(Xt)I(Nt = 0)) + Ex(f(Xt)I(Nt = 1)) + o(t)

= f(x)(e−λxt) +
∑
y

p(x, y)tλxe
−λxtf(y) + o(t) (A.27)

As a consequence, using that c(x, y) = p(x, y)λx and
∑

y p(x, y) = 1 we obtain

lim
t→0

Exf(Xt)− f(x)

t
=
∑
y

c(x, y)(f(y)− f(x))
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The fact that the limit is uniform in x follows from (A.18). From the fact L = limt→0
S(t)−I

t

we obtain
d

dt
S(t) = LS(t) = S(t)L

which leads to S(t) = etL.
In the following we collect some basic properties of the generator. The simple proof is left
to the reader. Notice that in matrix notation, the generator has as off-diagonal elements
Lxy the jump rate c(x, y) and on the diagonal Lxx = −λx, which implies that the row sums
are zero, which corresponds to the normalization property of the semigroup (S(t)1 = 1).

PROPOSITION A.12. The generator satisfies the following properties.

1. L1 = 0

2. L satisfies the maximum principle, i.e., if f(x) = maxy f(y) then Lf(x) ≤ 0.

We can then define the Kolmogorov forward and backward equations. In the physics
literature, the Kolmogorov forward equation is called the master equation. For a proba-
bility measure µ ∈ P(S) we define the measure at time t > 0, which we denote µt = µS(t)
via ∫

S(t)fdµ =

∫
fdµS(t)

In matrix notation, the measure at time t is obtained by multiplying the row matrix µ
(on the right) with the matrix S(t). As a consequence we have the following differential
equations for mut and S(t)f , which we give without proof, because the statements follow
immediately from S(t) = etL, and as a consequence

dS(t)f

dt
= LS(t)f

for all f .

THEOREM A.13. 1. Kolmogorov backwards equation. The function ft(x) = S(t)f(x)
is the unique solution of the differential equation

dft(x)

dt
=
∑
y

c(x, y)(ft(y)− ft(x)) (A.28)

with initial condition f0(x) = f(x). This equation is called the Kolmogorov back-
wards equation.

2. Kolmogorov forward equation or master equation. The function µt(x) = µS(t)({x})
is the unique solution of the differential equation

dµt(x)

dt
=
∑
y

(µt(y)c(y, x)− µt(x)c(x, y)) (A.29)

Next, we define the notions of invariant, reversible, ergodic measures in this context
of continuous-time Markov jump processes.
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DEFINITION A.14. 1. A probability measure is called invariant if µt = µ for all t > 0,
where µt is defined via ∫

S(t)fdµ =

∫
fdµt

for all f : S → R bounded. The set of invariant measures is denoted I.

2. An element of I is called ergodic if the corresponding process measure Pµ =
∫
Pxdµ(x)

is ergodic under time shifts.

3. A probability measure is called reversible if∫
(S(t)f)gdµ =

∫
f(S(t)g)dµ (A.30)

for all t ≥ 0, f, g : S → R bounded.

We have the following basic properties of invariant measures, which are the analogues
of the properties listed in proposition A.6 for the continuous-time setting.

PROPOSITION A.15. 1. µ ∈ I if and only if
∫
Lfdµ = 0 for all f ∈ D(L).

2. µ is ergodic if and only if S(t)f = f for all t > 0 implies f =
∫
fdµ, µ-a.s.

3. The set of ergodic measures is the set of extreme points of the convex set I.

4. If S is finite, then I is non-empty.

5. If µ ∈ P(S), then S(t) is a semigroup of contractions in Lp(µ) for all p ∈ [1,∞].

6. If µ is reversible, then µ is invariant.

7. µ is reversible if and only if µ satisfies the detailed balance relation

µ(x)c(x, y) = µ(y)c(y, x) (A.31)

for all x, y ∈ S.

PROOF. The proofs of items 2-7 are the obvious modification of the proofs of the corre-
sponding discrete time statements in proposition A.6 (i.e. replacing discrete time averages
by integrals). For item 1, if µ ∈ I∫

Lfdµ =

∫
lim
t→0

S(t)f − f

t
dµ = lim

t→0

1

t

∫
(S(t)f − f)dµ = 0

where we are allowed to pull the limit out of the integral because of uniformity of the
limit. Conversely, if

∫
Lfdµ = 0 for all f ∈ D(L), then for all such f and for all t > 0

d

dt

∫
S(t)fdµ = 0

which implies that
∫
S(t)fdµ =

∫
S(0)fdµ =

∫
fdµ for all t > 0.

In the following proposition we show how from the generator natural martingales can be
generated
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PROPOSITION A.16. For all f : S → R bounded, the process

Mt = f(Xt)− f(X0)−
∫ t

0

Lf(Xs)ds (A.32)

is a martingale. The quadratic variation of this martingale is given by

[M,M ]t =

∫ t

0

Γ(f)(Xs)ds (A.33)

where the quadratic form Γ(f) is given by

Γ(f)(x) = L(f 2)− 2fLf =
∑
y

c(x, y)(f(y)− f(x))2 (A.34)

PROOF. We prove that for all 0 ≤ s < t, E(Mt −Ms|Fs) = 0. We compute, using the
Markov property, combined with the definition of the semigroup

E(Mt −Ms|Fs) = E
(
f(Xt)− f(Xs)−

∫ t

s

Lf(Xr)dr|Fs
)

= S(t− s)f(Xs)− f(Xs)−
∫ t

s

LS(r − s)f(Xs)dr

= S(t− s)f(Xs)− f(Xs)−
∫ t

s

d

dr
S(r − s)f(Xs)dr = 0 (A.35)

To prove the formula for the quadratic variation, it suffices to prove that

E
(
(Mt −Ms)

2 −
∫ t

s

Γ(f)(Xr)dr
∣∣∣Fs) = o(t− s) (A.36)

as t− s→ 0. We put s = 0, the case s > 0 is analogous. We then have to prove

Ex
(
M2

t −
∫ t

0

Γ(f)(Xr)dr

)
= o(t) (A.37)

as t → 0. Working out the square, and neglecting obvious o(t) terms gives that we have
to prove that

Ex
(
M2

t −
∫ t

0

Γ(f)(Xr)dr

)
= Ex

(
f 2(Xt)− 2f(Xt)f(x) + f(x)2 −

∫ t

0

Lf 2(Xr)dr + 2

∫ t

0

f(Xr)Lf(Xr)dr

)
+ o(t)

= Ex
(
f 2(x) +

∫ t

0

Lf 2(Xr)dr − 2f(x)2 + 2

∫ t

0

f(x)Lf(Xr)−
∫ t

0

Lf 2(Xr)dr

+ 2

∫ t

0

f(Xr)Lf(Xr)dr

)
+ o(t)

= Ex
∫ t

0

Lf(Xr)(f(Xr)− f(x)) + o(t) = o(t) (A.38)

Finally, the expression (A.34) follows by computing explicitly Lf 2 − 2fLf for the gener-
ator (A.26).

REMARK A.17. The martingale (A.32) is called the Dykin martingale, whereas the quadratic
form Γ(f) = Lf 2 − 2fLf is called the “carré du champ” operator.
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A.2.4 Examples

Two state Markov chain

The simplest example of a continuous-time Markov chain is the chain with two states 1, 2,
hopping from 1 to 2 at rate α > 0 and from 2 to 1 at rate β. Its generator is given by the
two by two matrix

L =

(
−α α
β −β

)
The semigroup, which is the exponential of this matrix can be obtained explicitly by
diagonalization and is given by

S(t) = etL =

(
β

α+β
α

α+β
β

α+β
α

α+β

)
+
e−(α+β)t

α + β

(
α −α
−β β

)
From this we see that the unique invariant and reversible measure is given by ν =
( β
α+β

, α
α+β

), and for each f : {1, 2} → R, S(t)f converges exponentially fast to
∫
fdν.

The fact that the invariant measure is automatically reversible is because we have two
states. As soon as the number of states is 3 or larger, invariant measures can be non-
reversible.

Poisson process with intensity λ.

The Poisson process is the process {N(t) : t ≥ 0} on N characterized by

1. Independent Poissonian increments: for 0 = t0 < t1 < t2 . . . < tn the random
variables N(ti) − N(ti−1), i = 1, . . . , n are independent Poisson distributed with
parameter λ(ti − ti−1), i.e.,

P (N(ti)−N(ti−1) = n) =
(λ(ti − ti−1))

n

n!
e−λ(ti−ti−1), n = 0, 1, 2, . . .

2. Starting at N0 = 0.

Equivalently, the Poisson process can be described starting from a family Tn, n = 1, 2, . . .
of independent exponential (with parameter λ) random variables via

N(t) = sup{k ∈ N :
k∑
i=1

Ti ≤ t}

The Poisson process starting from n ∈ N is then defined as {Nt + n, t ≥ 0}. The Poisson
process is a Markov process with generator defined on bounded functions f : N → R by

Lf(n) = λ(f(n+ 1)− f(n)) (A.39)

this can be extended to functions with at most exponential growth at infinity. The
corresponding semigroup is given by

S(t)f(n) =
∞∑
k=0

(λt)k

k!
f(n+ k)

From the independent Poissonian increments property, one derives that the following
processes are martingales w.r.t. the natural filtration Ft = σ{N(s) : 0 ≤ s ≤ t}
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1. The compensated Poisson process: X(t) = N(t)− λt

2. The Poissonian exponential martingale: Xα(t) = eαN(t)−λ(eα−1)t

3. The compensated variance X(t) = (N(t)− λt)2 − λt

Notice that the martingales (1) and (3) can be obtained as Dynkin martingale as in
proposition A.16 via

L(n) = λ(n+ 1− n) = λ

which gives that N(t) − λt is a martingale with quadratic variation computed via the
carré du champ

L(n2)− 2nL(n) = λ((n+ 1)2 − n2)− 2nλ = λ

i.e., the quadratic variation of N(t) − λt equals λt and therefore (N(t) − λt)2 − λt is a
martingale. Notice that the martingales (1) and (3) can be obtained by taking derivatives
of Xα(t) w.r.t. α, and then putting α = 0.

Continuous-time simple random walk on Zd

The continuous-time simple random walk with edge rate λ on Zd is described by the
generator

Lf(x) =
∑
e:|e|=1

λ(f(x+ e)− f(x))

The process, when started at x waits an exponential time with parameter λ2d, after which
it jumps with equal probability to one of the 2d neighbors of x. This can alternatively
been described as follows: to each oriented nearest neigbor edge we associate a Poisson
process with rate λ, where the processes are independent for different edges. At each
event time (=jump time) of the Poisson process associated to the edge (xy) we put
an arrow from x to y. The random walk Xx(t) starting from x is then obtained by
“following the outgoing arrows”. This Poisson process construction has the advantage
that it provides a joint coupling of Xx(t) for different starting points x ∈ Zd. The process
X(t) = (X1(t), . . . , Xd(t)) has independent components which evolve according to the
continuous-time simple random walk on Z. If we have two independent copies X(t), Y (t)
of the process with generator L, then the difference Z(t) = X(t)− Y (t) is a continuous-
time simple random walk with edge rate 2λ on Zd. A simple representation in d = 1 of
the process X(t) starting from zero is given by

X(t) = N+(t)−N−(t)

where N+ and N− are two independent Poisson processes of rate λ. From this one obtains
the generating function

E0e
αX(t) = eλt(e

α+e−α−2)

as well as the characteristic function

E0e
iqX(t) = e−4λt sin2(q/2)



A.3. GENERATORS AND SEMIGROUPS: GENERAL CASE 357

Symmetric exclusion process on a finite set

Let (V,E) be a finite unoriented and connected graph with vertices V and edges E. A
configuration of the exclusion process is an element of Ω = {0, 1}V where for η ∈ Ω,
i ∈ V , ηi ∈ {0, 1} is interpreted as the number of particles at i in the configuration
η. Furthermore, by ηx,y we denote the configuration where occupancies at x and y are
interchanged, i.e.,

ηx,yz =


ηx if z = y

ηy if z = x

ηz otherwise

The generator of the symmetric exclusion process {η(t) : t ≥ 0} on V,E is then given by

Lf(η) =
∑

(xy)∈E

(f(ηx,y)− f(η))

More generally, if κ : E → (0,∞), then we call the symmetric exclusion process with edge
rate κ the process with generator

Lf(η) =
∑

(xy)∈E

κ(x, y)(f(ηx,y)− f(η))

Denote by νρ the Bernoulli product measure on Ω with ν(ηx = 1) = ρ for all x ∈ V .
Then it holds, νρ(η

x,y) = νρ(η) for all η, and x, y ∈ V . As a consequence, the measures
νρ are reversible, for any choice of (connected) graph (V,E) and edge rates κ. Because
the total number of particles |η| =

∑
x∈V ηx is conserved, these measures are not ergodic.

Instead, the “canonical measures” on the set of configurations with n particles given by
conditioning the Bernoulli measure on having n particles are both reversible and ergodic.
These measures are given by

ν(n)(η) = νρ(η||η| = n) =

{
1
Zn

if
∑

x∈V ηx = n

0 otherwise

with Zn =
(|V |
n

)
. Notice that when V is infinite, the situation changes drastically, be-

cause the “total number of particles” can be infinite. In that case, the Bernoulli product
measures are reversible and ergodic under reasonable conditions on the graph (and or the
edge rates). See [167], Chapter 8 for a detailed study.

A.3 Generators and semigroups: general case

In general setting, Markov semigroups and their generators are still related by “exponen-
tiation” but this exponentiation is no longer defined via the sum of the classical Taylor
series, because the generator is in general an unbounded operator. In a suitable function
space, which is depending on the process under consideration, the Markov semigroup acts
as a semigroup of positive contractions, and therefore, one can use Hille-Yosida theory to
define the exponential of the generator via the resolvents (Laplace transform), i.e., using
the so-called Yosida-approximants. In general, it is not easy to explicitly characterize the
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domain of the generator of a Markov semigroup. The strategy is usually to start from
a “pregenerator”, i.e., an operator which is defined on a smaller set of functions (e.g.
smooth functions in diffusion process context or local functions in the context of interact-
ing particle systems) and has “all the properties of a Markov generator”, except for not
being closed. The challenge is then to prove that the closure of this operator generates a
Markov semigroup.

A.3.1 Hille Yosida theory of Markov semigroups

Following [167], chapter 1, we give here an overview of this theory in the case where the
state space of the Markov process is a compact metric space Ω, and the corresponding
function space on which the Markov semigroup acts is the space C (Ω) of continuous
functions equipped with the supremum norm.

DEFINITION A.18. A collection of operators {S(t) : t ≥ 0} is called a Markov semigroup
(also called Feller semigroup) when the following properties are satisfied.

1. Contraction: S(t) : C (Ω) → C (Ω) satisfies ∥S(t)f∥∞ ≤ ∥f∥∞.

2. Normalization S(t)1 = 1.

3. Positivity: f ≥ 0 implies S(t)f ≥ 0.

4. Right continuity: for all f ∈ C (Ω): limt→0 ∥S(t)f − f∥∞ = 0.

5. Semigroup property: S(0) = I and S(t+ s) = S(t)S(s) for all s, t ≥ 0.

To a Markov semigroup corresponds a unique Markov process in the following sense.

PROPOSITION A.19. Let S(t), t ≥ 0 be a Markov semigroup then there exists a unique
process {Xt, t ≥ 0} on Ω, such that

1. The process has a version with paths in D([0,∞),Ω), i.e., the joint distribution of
{Xt, t ≥ 0} conditioned on X0 = x is a probability measure Px on D([0,∞),Ω).

2. The relation between the Markov semigroup and the process is given by

S(t)f(x) = Ex(f(Xt)) =

∫
f ◦ πt(ω)dPx(ω) (A.40)

where πt(ω) = ω(t) is the projection at time t on path space.

REMARK A.20. For the uniqueness it is important that we specify that we choose the
cadlag version, i.e., such that {Xt, t ≥ 0} has trajectories in D([0,∞),Ω). The semigroup
determines the finite dimensional distributions via the Markov property. By Kolomogorov
theorem this leads, for a given starting point x ∈ Ω to a unique probability measure Px

on the product space Ω[0,∞) equipped with the cylinder σ-algebra. It is then via the right-
continuity of the semigroup that one proves that this further leads to a cadlag process Px
satisfying (A.40). See [84], for full details.
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We now discuss the relation between the semigroup and the generator, which is an
appropriate generalization of the simple relation S(t) = etL which we encountered in the
finite or countable state space case.

Following [167], chapter 1, we define the notion of a pregenerator.

DEFINITION A.21. An operator L with domain D(L) ⊂ C (Ω) is called a pregenerator if

a) 1 ∈ D(L), and L1 = 0.

b) D(L) is dense in C (Ω) with the supremum norm.

c) If f ∈ D(L), λ ≥ 0 and (I − λL)f = g then

min
η∈Ω

f(η) ≥ min
η∈Ω

g(η) (A.41)

REMARK A.22. As a consequence of item c, applying it to f and −f , and using ∥f∥ =
max{−minη f(η),−minη(−f(η))}, we obtain that if (I − λL)f = g, then ∥f∥ ≤ ∥g∥.
This means that (I − λL)−1 acts as a contraction when it is defined.

In particular, f is uniquely determined by (I − λL)f = g. Indeed, if (I − λL)f1 =
(I − λL)f2 = g, then (I − λL)(f1 − f2) = 0 and therefore ∥f1 − f2∥ = 0, which gives
f1 = f2.

The following proposition shows that item c) from definition A.21 follows from the
so-called maximum principle.

PROPOSITION A.23. Suppose L is a linear operator with domain D(L) such that for
f ∈ D(L), we have that if f(η) = minξ∈Ω f(ξ), then

Lf(η) ≥ 0. (A.42)

Then L satisfies item c) of definition A.21

PROOF. Put f ∈ C (Ω), λ ≥ 0 and g = (I−λL)f . Let η be such that f(η) = minζ∈Ω f(ζ)
(such η exists by compactness of Ω and continuity of f). Then λLf(η) ≥ 0 by assumption,
and hence

min
ζ∈Ω

f(ζ) ≥ f(η)− λLf(η) = g(η) ≥ min
ζ∈Ω

g(ζ)

REMARK A.24. 1. Coming back to the finite state space case, where St = etL. We
then have

(I − λL)−1 =

∫ ∞

0

e−t(I−λL)dt (A.43)

=

∫ ∞

0

e−tS(λt)dt (A.44)

= E(S(X)) (A.45)
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where in the last equality X is a random variable having an exponential distribution
with expectation λ. Therefore if (I − λL)f = g we have

f(x) =

∫ ∞

0

e−tS(λt)g(x) dt ≥ min
x
g(x)

∫ ∞

0

e−tS(λt)1 dt = min
x
g(x)

and therefore item c of definition A.21 automatically follows. So we see that this
item is related to positivity and normalization of the semigroup.

2. The maximum principle (A.42) in the finite case simply follows from Stf(η) ≥
minζ f(ζ) = f(η) therefore Lf(η) = limt→0(Stf(η) − f(η))/t ≥ 0. In the case of
processes of the type Brownian motion (see Section A.3.2 below), the generator is
of the type “second derivative with positive coefficients”, which is positive where
the function attains a minimum.

DEFINITION A.25 (closability). 1. A linear operator L with domain D(L) ⊂ C is
called closed if the graph

G(L) = {(f, Lf) : f ∈ D(L)}

is a closed subset of C × C .

2. For a linear operator L with domain D(L) we call the operator closable if for any
sequence such that fn → 0, fn ∈ D(L), Lfn → h, it holds that h = 0.

Closability implies that if fn → f , f ′
n → f , Lfn → h, Lf ′

n → h′ then h − h′ = 0 and
so we can define the closure of the operator via L̄f = h. In other words, an operator is
closable if the closure of the graph {(f, Lf) : f ∈ D(L)} is the graph of an operator. This
is then the smallest closed extension of the operator. An operator is called closed if it is
equal to its closure. It is a general property of generators of right continuous contraction
semigroups to be closed, as we will prove below. Therefore, starting from a pregenerator,
we need to consider its closure in order to have a candidate generator of a contraction
semigroup. The following proposition shows that the closure of a Markov pregenerator is
again a Markov pregenerator.

PROPOSITION A.26. A Markov pregenenerator L is closable and its closure L̄ is again a
Markov pregenerator.

PROOF. First we show that L is closable. Let fn ∈ D(L) and fn → 0, Lfn → h. Choose
g ∈ D(L) then we have

∥(I − λL)(fn + λg)∥ ≥ ∥fn + λg∥

Taking the limit n→ ∞ gives

∥λg − λh− λ2Lg∥ ≥ ∥λg∥

which leads to

∥g − h∥ ≥ ∥g∥
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Because this holds for all g ∈ D(L) and D(L) is dense by assumption, we conclude that
h = 0. To show that L̄ is a pregenerator, we only have to verify item c for L̄. So assume

f − λL̄f = g

Choose sequence fn ∈ D(L) such that fn → f, Lfn → L̄f . Define

fn − λLfn = gn

then because L is a pregenerator

min
ζ
fn(ζ) ≥ min gn(ζ)

Since fn, gn both uniformly converge to f, g we can take the limit and obtain

min
ζ
f(ζ) ≥ min

ζ
g(ζ)

PROPOSITION A.27. Let L be a closed Markov progenerator. Then for all λ ≥ 0. The
range R(I − λL) is closed.

PROOF. Assume
fn − λLfn = gn (A.46)

and gn → g. Then
fn − fm − λL(fn − fm) = gn − gm

Because gn → g, gn is a Cauchy sequence and therefore, ∥gn−gm∥ → 0 as n,m→ ∞. We
then obtain from remark A.22 that ∥fn − fm∥ → 0 as n,m → ∞, hence fn is a Cauchy
sequence converging to some f (because C (Ω) is complete, i.e., every Cauchy sequence
converges), and from (A.46) we then obtain that Lfn also converges to -say- h. As a con-
sequence, since L is a closed operator by assumption, h = Lf and we obtain f − Lf = g
showing that g ∈ R(I − λL).

DEFINITION A.28. A Markov generator is a closed Markov pregenerator which satisfies
R(I − λL) = C (Ω) for all λ sufficiently small.

For the next proposition, let us remind that we call an operator A bounded if ∥Af∥ ≤
C∥f∥ for all f , and then we define the norm of the operator ∥A∥ = supf :∥f∥=1 ∥Af∥

PROPOSITION A.29. a) A bounded Markov pregenerator is a Markov generator.

b) A Markov generator satisfies.

R(I − λL) = C (Ω) (A.47)

for all λ ≥ 0.
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PROOF.

a) For λ < ∥L∥−1

(I − λL)−1 =
∞∑
n=0

λnLn

b) Suppose we know that R(I − λL) = C , we then have to show that for all γ > λ:
R(I − γL) = C . I.e., for g ∈ C we have to solve

(I − γL)f = g

which is equivalent with

(I − λL)f =
λ

γ
g +

γ − λ

γ
f

or

f =
λ

γ
(I − λL)−1g +

γ − λ

γ
(I − λL)−1f (A.48)

To see that such f exists, consider the map

Th =
λ

γ
(I − λL)−1g +

γ − λ

γ
(I − λL)−1h

then (A.48) reads Tf = f , i.e., we have to show that f has a unique fixed point.
We have

∥Th1 − Th2∥ =
γ − λ

γ
∥(I − λL)−1(h1 − h2)∥ ≤ γ − λ

γ
∥h1 − h2∥

Therefore, T is a contraction and hence has a unique fixed point.

We call for λ > 0 R(λ, L) = (λ − L)−1 the resolvent: this is well defined for a Markov
generator, and we have λR(λ, L) = (I − λ−1L)−1 is a contraction, hence ∥λR(λ, L)∥ ≤ 1.
This is the basic ingredient of the Hille Yosida theorem which defines etL -the semigroup
associated to the generator L- via these resolvents. In fact we have the following basic
theorem of Hille and Yosida. For a general linear operator A with domain D(A) we denote
ρ(A) the set of λ ∈ C such that (λ−A) has a bounded inverse, i.e., such that (λ−A)−1 is
a well-defined and bounded operator. We can then state the Hille-Yosida theorem. Notice
that to distinguish this general theorem from the context of Markov processes, we slightly
changed notation, calling A the generator, and {T (t) : t ≥ 0} its associated semigroup.
For this theorem we follow the proof of [79].

THEOREM A.30. For an operator A with domain D(A) the following are equivalent

a) A is the generator of a strongly continuous contraction semigroup

b) A is closed, D(A) is dense and for every λ > 0, λ ∈ ρ(A) R(λ,A) = (λ − A)−1 is
well defined and satisfies ∥λR(λ,A)∥ ≤ 1.



A.3. GENERATORS AND SEMIGROUPS: GENERAL CASE 363

PROOF. First we will show that D(A) is dense and A is closed whenever A is the generator
of a contraction semigroup. First to see that D(A) is dense, define

ψ(t, f) =

∫ t

0

T (s)f

We will show that ψ(t, f) is in he domain of the generator, and Aψ(t, f) = T (t)f − f . By
right-continuity we have that

ψ(t, f)

t
→ f

as t→ 0 and therefore, D(A) is dense. To see that ψ(t, f) ∈ D(A), notice that

T (ϵ)ψ(t, f)− ψ(t, f)

ϵ
=

∫ t+ϵ
t

T (s)f −
∫ ϵ
0
T (s)f

ϵ

This, using the right-continuity of the semigroup converges to T (t)f −f as ϵ→ 0. There-
fore, we indeed obtain that ψ(t, f) is in he domain of the generator, and Aψ(t, f) =
T (t)f − f . To see that A is a closed operator, let fn → f and Afn → g then we have to
show that f ∈ D(A) and Af = g. To see this write

T (t)fn − fn =

∫ t

0

T (s)Afn

and take the limit n→ ∞, using the assumption fn → f and Afn → g, together with the
fact that T (s) is a contraction, to obtain

T (t)f − f =

∫ t

0

T (s)g

which shows that f ∈ D(A) and Af = g. Indeed, by right continuity

1

t

(∫ t

0

T (s)g

)
→ g as t→ 0

Next, we will not give the full proof of the rest of the theorem (see e.g. [79] for this which
we follow here partly) but we will explain how the resolvents are used to construct the
semigroup, under the assumption ∥λR(λ,A)∥ ≤ 1. The clue is the Yosida approximation
of the generator, i.e., we consider

An := nAR(n,A) = n2R(n,A)− nI (A.49)

The second equality follows from the general fact

AR(λ,A) = A(λ− A)−1 = −(λ− A)(λ− A)−1 + λR(λ,A) = −I + λR(λ,A)

Moreover, we have
λAR(λ,A)f → Af

as λ→ ∞ for all f ∈ D(A).
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We see from (A.49) that An is a bounded operator, and therefore we can define

Tn(t) = etAn

This is a contraction semigroup because

∥Tn(t)∥ = ∥e−nt+n2tR(n,A)∥ ≤ e−nt∥en2R(n,A)t∥ ≤ e−nte∥n
2R(n,A)∥ ≤ e−ntent = 1

where in the last step we used the assumption ∥λR(λ,A)∥ ≤ 1.

The next step is to show that as n → ∞, the sequence of semigroups {Tn(t) : t ≥ 0}
converges to a limiting semigroup. To prove this, one shows that for all f ∈ D(A), t ≥ 0
Tn(t)f form a Cauchy sequence. We have

Tn(t)f − Tm(t)f =

∫ t

0

d

ds
(Tm(t− s)Tn(s)) ds

=

∫ t

0

Tm(t− s)Tn(s)(Anf − Amf)

Therefore, using that Tn(t) are contractions:

∥Tn(t)f − Tm(t)∥ ≤ t∥Anf − Amf∥

Remember now that Anf → Af for f ∈ D(A). Therefore, for f ∈ D(A) we have that
Tn(t)f is a Cauchy sequence which has a limit, which we then call T (t)f . Since both
Tn(t) and T (t) are contraction semigroups, this convergence Tn(t)f → T (t)f can then be
extended to the whole space C (Ω) by approximation with elements from D(A). Then it
is not very hard to show that T (t) has generator A, see [79] for further details.

The application of the Hille Yosida theorem to the context of Markov generators then
gives the following.

THEOREM A.31. There is a one-to-one correspondence between a Markov generator L
and a Markov semigroup {S(t), t ≥ 0} via

a) The domain D(L) is given by

D(L) =

{
f : lim

t→0

S(t)f − f

t
exists

}
(A.50)

and for f ∈ D(L)

Lf = lim
t→0

S(t)f − f

t

b) The semigroup is given by

S(t) = lim
n→∞

(
I − t

n
L

)−n

(A.51)
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c) For f ∈ D(L), S(t)f ∈ D(L) and

d

dt
S(t)f = S(t)Lf = LS(t)f (A.52)

Moreover, S(t)f is the unique solution of the differential equation

dψt
dt

= Lψt

with initial condition ψ0 = f .

REMARK A.32. Remark that

(I − tL)−1 =

∫ ∞

0

1

t
e−u/tS(u)du = ES(U(t, 1)) = E(S(U(t, 1))

where U(t, 1) is an exponential random variable with parameter 1/t, and E denotes ex-
pectation w.r.t. this random variable. Similarly(

I − t

n
L

)−n

= E

(
S

(
1

n

n∑
i=1

Ui(t, 1)

))

where Ui(t, 1) are i.i.d. exponential random variables with parameter 1/t. As a conse-
quence of the strong law of large numbers 1

n

∑n
i=1 Ui(t, 1) → t as n→ ∞, which provides

an intuitive explanation for the convergence of
(
I − t

n
L
)−n

to S(t).

The logic of the general functional analytic construction of a process from a “can-
didate generator” in the area of interacting particle systems, i.e., as in [167] runs then
schematically as follows.

1. One starts from a pregenerator L, and then to shows that for λ small enough the
range R(I−λL) is dense in C (Ω). This is sufficient to conclude that L̄ is a Markov
generator. This is also the difficult step which is needed to show that the closure of
L is a Markov semigroup.

2. To perform this step, one introduces an auxiliary space D(Ω) ⊂ D(L) of “smooth
functions” with stronger norm ∥.∥S (called the “triple norm” in [167]) such that for
g ∈ D, and (f − λLf) = g, one has a priori estimates of ∥f∥S.

3. One then proceeds by approximating L by bounded pregenerators Ln (usually this
is naturally done by finite-volume approximations). One then defines, for g ∈ D

fn − λLnfn = g

shows that fn ∈ D and defines

gn = (I − λL)fn = (I − λL)(I − λLn)
−1g

and shows that gn → g. This then shows that D ⊂ R(I − λL), which implies
R(I − λL̄) = C (Ω), and hence that L̄ is a Markov generator.
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4. An important notion is “a core” which is a smaller domain D ⊂ D(L) (smaller
than the full domain D(L)) of the generator L but is such that the closure of the
generator L restricted to D is still the full generator. In the context of interacting
particle systems, where Ω = EZd

with E a finite set, this core is in most cases the set
of local functions, i.e., functions depending only on a finite number of coordinates.

Let us give a two simple examples from interacting particle systems.

1. Independent spin-flip dynamics. Ω = {−1, 1}Zd
. The process {σ(t), t ≥ 0} is

defined by letting the symbols {σx(t) : t ≥ 0} flip independently for different x at
the event times of a Poisson process of rate λ > 0. This is obviously a Markov
process on Ω. A core for the generator is the set of local functions

D = {f : ∃A ⊂ Zd, |A| <∞ such that σA = ηA impliesf(σ) = f(η)}

and the generator reads, for f ∈ D

Lf(σ) =
∑
x∈Zd

λ(f(σx)− f(σ))

Notice that L is not a bounded operator, as can be seen e.g. via L
∏

i∈A σi =
−2|A|

∏
i∈A σi, which implies that ∥L

∏
i∈A σi∥∞ diverges when A ↑ Zd, whereas

∥
∏

i∈A σi∥∞ = 1.

2. Local spin-flip dynamics. Ω = {−1, 1}Zd
. The process {σ(t), t ≥ 0} is defined by

letting the symbols {σx(t) : t ≥ 0} flip at rate c(x, σ), which depends on σ locally
around x (e.g. on σy for y neighbor of x). More formally, one defines

Γx,y := supσ|c(x, σy)− c(x, σ)|

and requires supx
∑

y Γxy <∞. A core for the generator is the set of local functions

D = {f : ∃A ⊂ Zd, |A| <∞ such that σA = ηA impliesf(σ) = f(η)}

and the generator reads, for f ∈ D

Lf(σ) =
∑
x∈Zd

c(x, σ)(f(σx)− f(σ))

An alterative core for the generator is the functions of finite “triple” seminorm,
defined via ∥f∥S =

∑
x∈Zd δxf with δxf(σ) = supσ∈Ω f(σ

x) − f(σ) where σx is the
configuration obtained from σ by flipping the symbol at x and leaving all other
coordinates unchanged.

D′ = {f : ∥f∥S <∞}

This set is closed under the action of the semigroup, i.e., S(t)D′ ⊂ D′, a property
which in fact implies that D′ is a core, see e.g. [79] for a proof.
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A.3.2 Brownian motion and diffusion processes

Here we shortly review the expressions for the generators of (Markovian) solutions of
stochastic differential equations. For more background on this subject, see [213], [12].

When the state space Ω = Rd is locally compact (but not compact), one has to choose
other function spaces (than C (Ω)) on which the Markov semigroup acts.

Brownian motion

We denote by {W (t) : t ≥ 0} Brownian motion and denote Ex for the expectation under
the path space measure of {x +W (t), t ≥ 0} (which is “Brownian motion starting from
x”).

For the readers convenience we recall the definition of Brownian motion

DEFINITION A.33 (Brownian motion). A process {W (t) : t ≥ 0} is called Brownian
motion if

1. Starting point zero. W (0) = 0.

2. Normally distributed increments: for 0 ≤ s ≤ t the increment W (t) − W (s), is
normally distributed with expectation zero and variance t − s. We denote this by
W (t)−W (s) ≃ N(0, t− s).

3. Independent increments: for 0 ≤ t1 < t2 . . . < tn, the increments W (ti) −W (ti−1)
are jointly independent.

4. Continuous trajectories: the map t 7→ W (t) is continuous.

Brownian motion started from x is then defined as W (t) + x. Brownian motion is
a Markov process, and at the same time a Gaussian process with covariance function
cov(W (t),W (s)) = min t, s. Brownian motion on Rd is then defined as (W (1)(t), . . . ,W (d)(t)),
where W (i)(t), i = 1, . . . , d are independent one dimensional Brownian motions.

For Brownian motion, the state space Ω = R is locally compact, and the function
space on which the semigroup acts is C0(R) the continuous functions vanishing at infinity.
The smooth test functions D are defined as the C ∞ functions with compact support.
Another class of smooth test functions is S, the set of Schwartz functions, defined as
those functions of which all derivatives vanish at infinity faster than any polynomial.
More explicitly,

S = {f : R → R : ∀n ∈ N, α > 0 lim
|x|→∞

|x|αf(x) = 0} (A.53)

The semigroup of Brownian motion, defined via

S(t)f(x) = Exf(X(t)) = E(f(x+W (t))) =

∫
1√
2π
e−(x−y)2/2tf(y)dy (A.54)

This semigroup leaves the Schwartz space invariant, therefore the Schwartz space is a core
for the generator (as we saw earlier, a set of functions in the domain of the generator and
closed under the action of the semigroup is automatically a core), and for f ∈ S

Lf =
1

2
f ′′(x) (A.55)
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The fact that the action of the generator is f ′′(x) can be obtained from the simple com-
putation

S(t)f(x)− f(x) = Ef(x+N(0, t))− f(x)

= f ′(x)E(N(0, t)) +
1

2
f ′′(x)EN2(0, t) + o(t) =

1

2
f ′′(x) + o(t)

where, as before, we denoted N(0, t) for a normal random variable with mean zero and
variance t. In this case we can in fact explicitly define the domain of the generator

D(L) = {f : f ′, f ′′ ∈ C0(R)} (A.56)

and the action of L is given by (A.55). In Rd, the generator of Brownian motion on the
core of the Schwartz functions is given by

Lf(x) =
1

2
∆f(x) =

d∑
i=1

∂2f

∂2xi
(x) (A.57)

Markov diffusion processes

If a Markovian diffusion process X(t) on R is the solution of the stochastic differential
equation

dX(t) = b(X(t))dt+ σ(X(t))dW (t) (A.58)

where b, σ are smooth real-valued functions, and σ > 0, then on smooth functions the
generator is given by

Lf(x) = b(x)f ′(x) +
1

2
σ2(x)f ′′(x) (A.59)

Notice that this form of the generator on smooth functions can be derived via Itô’s formula
which yields

f(X(t))−f(X(0))−
∫ t

0

b(X(s))f ′(X(s))−1

2

∫ t

0

σ2(X(s))f ′′(X(s)) =

∫ t

0

f ′(X(s))σ(X(s))dW (s)

which gives that

f(X(t))− f(X(0))−
∫ t

0

Lf(X(s)) =Mt

with Mt, t ≥ 0 a martingale.
More generally, if we have a Markovian diffusion process X(t) on Rd which solves the

SDE
dX(t) = b(X(t))dt+

√
a(X(t))dW (t) (A.60)

with now b : Rd → Rd and a : Rd → M+
n smooth functions, with M+

n the set of n × n
positive definite matrices. Via the d-dimensional Itô’s formula one can derive the action
of the generator on smooth functions

Lf(x) =
d∑
i=1

bi(x)
∂f

∂xi
(x) +

1

2

∑
ij

aij(x)
∂2f

∂xi∂xj
(A.61)
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Further examples of diffusion processes and their generators

1. Ornstein Uhlenbeck process. Is the process on R which solves the stochastic differ-
ential equation

dX(t) = −κX(t)dt+ dW (t)

with κ > 0. The solution when X(0) = x can be written explicitly as

Xx(t) = xe−κt +

∫ t

0

e−κ(t−s)dW (s)

From this one sees that Xx(t) is normally distributed with expectation xe−κt and
variance

∫ t
0
e−2κ(t−s)ds = 1−e−2κt

2κ
. The semigroup is therefore given explicitly by

S(t)f(x) = Ef(Xx(t)) =

∫
R
f

(
e−κtx+

√
1− e−2κt

2κ
y

)
e−y

2/2

√
2π

dy (A.62)

This formula for the semigroup is called “the Mehler formula” and plays a crucial role
in the harmonic analysis of the Ornstein Uhlenbeck generator. We see from (A.62)
that the Ornstein-Uhlenbeck process has as its unique invariant (reversible) measure
the normal N(0, 1

2κ
) We can also derive from (A.62) that for smooth functions f the

action of the generator of the process {X(t) : t ≥ 0} is given by

Lf(x) = −κx df
dx

+
1

2

d2f

dx2
(A.63)

The process {X(t) : t ≥ 0} provides us with a simple example of so-called Laplace
duality. Consider D(y, x) = exy, then we have that D satisfies

LD(y, ·)(x) = LD(·, x)(y)

where

L = −κy d
dy

+
1

2
y2

The semigroup associated to L can be computed via the Feynman-Kac formula as
follows

etLf(y) = e
∫ t
0

1
2
Y y(s)2dsf(Y y(s))

where Y y(t) is the deterministic process generated by −κyd/dy, i.e., Y y(t) = ye−κt.
This gives the “duality relation”

ExD(X(t), y) = ExeX(t)y = exp

(
y2

2

1− e−2κt

2κ

)
eyxe

−κt

= (etLex·)(y)

2. Brownian motion on [0,∞). In domains D ⊂ Rd, the generator of Brownian motion
depends on the boundary behavior. This boundary behavior is encoded in the do-
main of the generator. It shows that not only the action of the generator determines
the process, but in the case of domains also the boundary conditions, encoded in
the domain of the generator. We illustrate this for the domain [0,∞) ⊂ R.
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a) Brownian motion absorbed at zero, i.e., once its hits zero it stays at zero has
as a generator

L =
1

2

d2

dx2

on the domain

D(L) = {f ∈ C0([0,∞)) : f ′, f ′′ ∈ C0([0,∞)), f ′′(0) = 0}

It is the boundary condition f ′′(0) = 0 which corresponds to the “absorbing
behavior”. It can be understood easily that Lf(0) = 0 is a necessary condition
to be in the domain of the generator, because S(t)f(0) = f(0) by the absorbing
property of the Brownian motion, which implies Lf(0) = 0.

b) Brownian motion reflected at zero has as a generator

L =
1

2

d2

dx2

on the domain

D(L) = {f ∈ C0([0,∞)) : f ′, f ′′ ∈ C0([0,∞)), f ′(0) = 0}

It is the Neumann boundary condition f ′(0) = 0 which corresponds to the
“absorbing behavior”.

c) Brownian motion killed at zero. The semigroup is given by

S(t)f(x) = Exf(Xx(t ∧ τ)I(τ > t)) (A.64)

where τ denotes the hitting time of zero and where Xx(t) denotes Brownian
motion starting from x. This process is not “mass-preserving”, i.e., S(t)1 ̸= 1,
in this sense, S(t) is a semigroup but not a Markov semigroup as we defined
before. The semigroup (A.64) has as a generator

L =
1

2

d2

dx2

on the domain

D(L) = {f ∈ C0([0,∞)) : f ′, f ′′ ∈ C0([0,∞)), f(0) = 0}

It is the Dirichlet boundary condition f(0) = 0 which corresponds to the
“killing when hitting the boundary”. From (A.64) one see that S(t)f(0) = 0
which implies that to be in the domain of the generator, f(0) = 0 is a necessary
condition.

A.4 Coupling

Coupling is a widely applied technique in Markov process theory, interacting particle
systems and probability theory in general. Here we briefly review some essential elements
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of this theory, focussing on the results needed in the book. Excellent books on coupling
are [219], [168] and chapter 2 of [167]. For X, Y two random variables with values in E,
resp. E ′, we call a coupling of X and Y a E ×E ′-valued random variable (X1, X2), such
that the distribution of X1 equals the distribution of X and the distribution of X2 equals
that of Y . The simplest coupling is given by the independent joining of X and Y , but
many more interesting coupling are possible. As a starting example consider two random
variables X, Y with values in R, and with distribution functions FX , FY . Then whenever
U1, U2 are two uniform random variables on [0, 1], X1 = F−1

X (U1), X2 = F−1
Y (U2) provides

a coupling of X and Y . Choosing U1 = U2 = U is the co-called maximal coupling which
minimizes the probability of mismatch P(X1 ̸= X2).

If the distributions of X and Y are ordered in the sense FX(x) ≤ FY (x) for all
x ∈ R, then for the maximal coupling X1 ≤ X2 with probability one. For a simple
example: if X = Ber(p) and Y = Ber(p′) with p < p′, the maximal coupling is given
by P(X1 = 1, X2 = 1) = p,P(X1 = 0, X2 = 1) = p′ − p,P(X1 = 1, X2 = 0) = 0,P(X1 =
0, X2 = 0) = 1− p′

Let {X(t), t ≥ 0} and {Y (t) : t ≥ 0} denote two Markov processes with states spaces
Ω, resp. Ω′. A coupling is a process {(X1(t), X2(t) : t ≥ 0} on the product space Ω× Ω′

such that {X(t), t ≥ 0} is equal to {X1(t), t ≥ 0} in distribution, and {Y (t) : t ≥ 0} is
equal to {X2(t), t ≥ 0} in distribution. A coupling always exist because one can consider
the independent joining of the processes {X(t), t ≥ 0} and {Y (t) : t ≥ 0}, which is the
so-called product coupling. The coupling time is defined as

τ = inf{t > 0 : X1(s) = X2(s), for all s ≥ t} (A.65)

with the convention inf ∅ = +∞. The coupling is called successful if τ < ∞ with proba-
bility one.

DEFINITION A.34. Let {X(t), t ≥ 0} be a Markov process on a state space Ω and denote
by {Xx(t) : t ≥ 0}, x ∈ Ω the process with starting point x. We then say that the Markov
process admits a succesful coupling if for all x, y ∈ Ω there exists a succesfull coupling for
the processes {Xx(t), t ≥ 0} and {Xy(t) : t ≥ 0}.

The following proposition is from [167] chapter 2, and shows that existence of a suc-
cessful coupling implies that bounded harmonic functions are constant.

PROPOSITION A.35. Let {X(t), t ≥ 0} be a Markov process on a state space Ω, and
assume there exists a successful coupling. Let f be a bounded measurable function such
that S(t)f(x) = f(x) for all x ∈ Ω, t ≥ 0 (this is what we call a harmonic function). Then
f is a constant.

PROOF. Let x, y ∈ Ω, we will prove that f(x) = f(y). Denote by (X1(t), X2(t) the
successful coupling of {Xx(t), t ≥ 0} and {Xy(t) : t ≥}, with corresponding coupling time
τ .

|f(x)− f(y)| = |S(t)f(x)− S(t)f(y)| = |E(f(Xx(t))− f(Xy(t)))|
= |E(f(X1(t))− f(X2(t)))|
= |E(f(X1(t))− f(X2(t))I(τ > t))|
≤ 2∥f∥∞P(τ > t) (A.66)
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The proof is then concluded by letting t→ ∞.
In the next proposition we show that the existence of a successful coupling implies that
there exists at most one stationary (probability) measure. Moreover, the decay of the
coupling time is a measure of the speed of convergence to this unique stationary probability
measure (if it exists).

PROPOSITION A.36. Let {X(t), t ≥ 0} be a Markov process on a state space Ω, and as-
sume there exists a successful coupling. Then there exists at most one invariant probability
measure.

PROOF. Let us denote by τxy the coupling time of the successful coupling of {Xx(t), t ≥ 0}
and {Xy(t) : t ≥}. Assume that µ, ν are both invariant probability measures. Then we
have, for f a bounded measurable function∣∣∣∣∫ fdµ−

∫
fdν

∣∣∣∣ ≤ ∫ |S(t)f(x)− S(t)f(y)|dµ⊗ ν(x, y)

≤ 2∥f∥∞
∫

P(τx,y > t)dµ⊗ ν(x, y) (A.67)

Because by assumption P(τx,y > t) → 0 as t→ ∞ and 0 ≤ P(τx,y > t) ≤ 1, by dominated
convergence

∫
P(τx,y > t)dµ⊗ ν(x, y) → 0 as t→ ∞. Therefore, µ = ν.

In the next proposition we show that continuous-time simple random walk admits
a successful coupling. The coupling is the so-called coordinate-wise Ornstein coupling,
described e.g. in [117].

PROPOSITION A.37. Let {X(t), t ≥ 0} denote simple random walk on Zd with generator

Lf(x) =
∑

e∈Zd,|e|=1

(f(x+ e)− f(x))

Then there exists a successful coupling.

PROOF. We use that the components of the processX(t) are independent one-dimensional
random walkers, together with the fact that one-dimensional random walk is recurrent.
Moreover, as we saw before, the difference of two independent random walks is a random
walk at twice the rate, which in d = 1 is recurrent as well. The coupling is then described
as follows: first let all the components evolve independently, until the first components
meet. Then keep the first components equal, and continue the other components inde-
pendently until the second components meet, etc., until eventually all components are
equal.



Appendix B

Lie algebras and Lie groups

In this appendix we provide basic background on Lie algebras and Lie groups. This
appendix is coincise and aimed to present an elementary introduction of basic concepts
of Lie algebras and Lie groups, mainly via examples. The representation theory of Lie
algebras and Lie groups is a vast topic, for an extensive discussion we refer the reader
to some standard references, like the books “Introduction to Lie algebras and represen-
tation theory” by Humphreys [132], and also “Representation theory, a first course” by
Fulton and Harris [106]. A very readable monograph is “Lie groups, Lie algebras, and
Representations” by Hall [125].

B.1 Groups

Often, the two notions of Lie groups and Lie algebras comes together (for a good reason,
as we shall see later). These two mathematical concepts are used in physics to express
‘symmetries’, the invariance of a system under some specific transformations. Thus we
first recall the definition of a group together with some other standard definitions used in
group theory.

DEFINITION B.1. A group G is a set of elements equipped with a binary operation (denoted
by ·) satisfying the following properties:

1. if g1, g2 ∈ G then g1 · g2 ∈ G (closure);

2. if g1, g2, g3 ∈ G then (g1 · g2) · g3 = g1 · (g2 · g3) (associativity);

3. ∀g ∈ G, there exists i ∈ G such that g · i = i · g = g (identity);

4. ∀g ∈ G, there exists g−1 ∈ G such that g · g−1 = g−1 · g = i (inverse element).

Example: The set Z of integer numbers, with arithmetical addition as a composition
rule, is a group. The same set Z, with multiplication as a composition rule, is not a
group, since given z ∈ Z then 1

z
/∈ Z. Replacing Z with Q \ {0} a group is obtained for

the multiplication.

Some general definitions that are used to characterize groups are the following. The order
of a group is the number of elements in the group. A groups is said finite if the order is

373
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finite. For instance, the group Sn of permutations of n objects is finite, its order being n!.
A group is said to be continuous if the order is infinite non-denumerable. For instance,
the group SO(2) of 2-by-2 rotation matrices(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)
is continuous (and parametrized by the angle θ ∈ R/2πZ). A group is said abelian if
for all g1, g2 ∈ G one has g1 · g2 = g2 · g1. For example, the rotation group SO(2) is
abelian, whereas the rotation group SO(3) of 3-by-3 rotation matrices is not abelian:
indeed Euler’s rotation theorem asserts that every (non-identity) element of SO(3) is a
rotation about a uniquely defined axis, and in general two rotations in R3 around different
axis do not commute.

A subset H ⊂ G is said a subgroup of G if it is a group (in particular is closed) under
the same binary of G. For instance, the group SU(n) of the special n×n complex unitary
matrices with unit determinant is a subgroup of the group U(n) of all the n× n complex
unitary matrices (whose determinant is ±1). A subgroup H ⊂ G is said invariant (or
normal), written H◁G, if for all h ∈ H, g ∈ G one has g ·h ·g−1 = h′ for some h′ ∈ H. One
immediate result of this definition is that all subgroups of an abelian group are invariant
subgroups. A group G is said simple if the only invariant subgroups are the identity
and G itself. For example SU(n) is simple for all n ≥ 2. Any invariant subgroup has a
corresponding quotient group, formed from the larger group by eliminating the distinction
between elements of the subgroup.

Given two groups G1 and G2, the direct product group G1 ⊗ G2 is defined as the
cartesian product G1 ×G2 endowed with the binary operation · defined by

(g1, g2) · (g′1, g′2) := (g1 · g′1, g2 · g′2)

where (g1, g2) is an ordered couple with g1 ∈ G1 and g2 ∈ G2, resp. (g
′
1, g

′
2), is an ordered

couple with g′1 ∈ G1 and g′2 ∈ G2, and by abuse of notation we denoted with the same
symbol the binary operation in G1 and G2 (which may be different a-priori). An example
of direct product in physics is SO(3) ⊗ SU(2) describing the addition of the ‘orbital’
angular momentum to the ‘spin’ angular momentum. The definition of the direct product
can be extended to the direct product more than two groups (even an infinite number of
groups).

A closely related concept is the semidirect product, which is a generalization of the
direct product. Given a group G, a subgroup H ⊂ G and an invariant subgroup N ◁G, we
say that G is the semidirect product of N and H, written G = N ⋊H, if G is the product
of subgroups, G = NH, and these subgroups have trivial intersection containing only the
identity element. Equivalently, for every g ∈ G, there are unique n ∈ N and h ∈ H such
that g = nh. As an example, viewing U(1) as the subgroup of U(n) of all matrices that
are diagonal with eiθ in the upper left corner and 1 on the rest of the diagonal, we have
that U(n) = SU(n)⋊ U(1), that is U(n) is a semi-direct product of SU(n) and U(1).

Finally, we recall the concept of isomorphism between two groups. A bijective mapping
φ : G1 → G2 between two groups G1 and G2 is said to be an isomorphism if for all
g1, g

′
1 ∈ G1 one has

φ(g1 · g′1) = φ(g1) · φ(g′1)
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where again, by abuse of notation, we denote with the same symbol the binary operation
of the two groups. Thus a group isomorphism is a function between two groups that
sets up a one-to-one correspondence between the elements of the groups in a way that
respects the given group operations. If there exists an isomorphism between two groups,
then the groups are called isomorphic and it is written G1

∼= G2. From the standpoint of
group theory, isomorphic groups have the same properties and need not be distinguished.
If the map φ is just surjective then we speak about homomorphism. Furthermore if
G1 = G2 then isomorphism is replaced by automorphism, and homomorphism is replaced
by endomorphism. For example, the group Z of integers (with addition) is a subgroup
of R, and the quotient group R/Z is isomorphic to the group U(1) of complex numbers
of absolute value 1 (with multiplication) and to the rotation group SO(2) in two dimen-
sion: R/Z ∼= U(1) ∼= SO(2). For an example of homomorphism, since the determinant
of a unitary matrix is a complex number with norm 1, the determinant gives a group
homomorphism det : U(n) → U(1).

The homomorphism between SU(2) and SO(3): We show here that the ‘complex
rotation’ group SU(2) in two dimensions is homomorphic to the rotation group SO(3) in
three dimensions. Actually the mapping relating the two groups is almost an isomorphism,
the mapping φ : SU(2) → SO(3) being 2-to-1 and onto. Parametrizing a matrix U ∈
SU(2) as

U =

(
α −β̄
β ᾱ

)
with α, β ∈ C, |α|2 + |β|2 = 1, (B.1)

the mapping may be chosen as

φ(U) =

|α|2 − |β|2 −2Re(αβ) 2Im(αβ)
2Re(αβ̄) Re(α2 − β2) Im(β2 − α2)
2Im(αβ̄) Im(α2 + β2) Re(α2 + β2)

 . (B.2)

To construct such mapping, we identify the three dimensional Euclidean space with the
space V of two-dimensional complex matrices that are self-adjoint and traceless. If x =
(x1, x2, x3) ∈ R3 then the corresponding element of V is

X =

(
x1 x2 + ix3

x2 − ix3 −x1

)
. (B.3)

To each element U ∈ SU(2) we associate then another linear map φU : V → V defined as

φU(X) = UXU−1.

Using the parametrization (B.1) for the element U ∈ SU(2), the explicit form of φ(U)
in (B.2) is obtained as the matrix describing the action of the mapping φU on the three
dimensional space R3. It can be checked indeed that φ(U) is an orthogonal matrix with
unit determinant, thus a rotation in R3. To see this we first observe that, in view of (B.3),
the standard inner product between two vectors x, x′ in R3 can be written as

x · x′ = 1

2
trace(XX ′)
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As a consequence of the cyclic property of the trace we have

trace(φU(X)φU(X
′)) = trace(XX ′)

Thus, φU preserves the inner product and φ(U) is an orthogonal 3-by-3 matrix. Further-
more φU1U2 = φU1φU2 as for any X ∈ V

φU1U2(X) = U1U2X(U1U2)
−1 = U1U2XU

−1
2 U−1

1 = φU1(φU2(X)).

It follows that the map U 7→ φ(U) is a homomorphism of SU(2) into the group of
orthogonal linear transformations of R3, that is, into O(3). The fact that φ(U) must
actually be in SO(3) can be checked from (B.2) by evaluating the determinant, which turns
out to be equal to one. Alternatively, one could argue as follows. Being the determinant
of an orthogonal matrix, the value must be either 1 or -1 for every U ∈ SU(2). But this
determinant takes the value one at U = 12 ∈ SU(2) and, for U parametrized as in (B.1)
with α = a+ib, β = c+id with a2+b2+c2+d2 = 1, the determinant is clearly a continuous
function of a, b, c, d. Since SU(2) is homeomorphic to S3, it is connected and therefore
the value of the determinant must be 1 for all U ∈ SU(2). As a final remark, one can
show that φ is surjective. Furthermore one has that φ(U) = 13 iff U = ±12. Thus, the
kernel of φ is {12,−12} ∼= Z2 and so φ is precisely two-to-one, carrying ±U onto the same
element of SO(3). The homomorphism φ between SU(2) and SO(3) is called in physics
the “spinor map”. Both groups are connected. The 2-to-1 property reflects the fact that
SU(2) is simply connected (all closed paths on SU(2) can be continuously contracted to
a point) while SO(3) is not simply connected. SU(2) is the universal cover of SO(3).

A final comment: while the homomorphism φ shows that the group SU(2) has a
different global topological structure than SO(3), we shall prove later that the groups
SU(2) and SO(3) are “locally indistinguishable”, i.e. their respective Lie algebras are
related by an isomorphism.

B.2 Lie groups

DEFINITION B.2. A Lie group is a set G endowed simultaneously with the structures of
a group and a smooth manifold. The binary operation and the inverse operations in the
group are required to be smoooth maps. This is equivalent to the requirement that the map
(x, y) → x−1y is a smooth mapping of the product manifold G×G into G.

Several Lie groups are matrix groups, with matrix product as binary operation. In partic-
ular, it can be proved that any closed subgroup of GL(n,C) is a matrix Lie groups. Here
GL(n,C) denotes the general linear group over the complex numbers, i.e. the group of all
n×n invertible matrices with complex entries. Examples of matrix Lie groups, including
some relevant to this book, are:

1. GL(n,C) and GL(n,R): clearly GL(n,C) is a subgroup of itself and is closed, thus
is a Lie group; similarly GL(n,R), the group of all n × n invertible matrices with
real entries, is a subgroup of GL(n,C) and is closed.

2. SL(n,C) and SL(n,R): these are the groups of invertible n × n matrices with
complex, respectively real, entries and having determinant one.
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3. U(n) and SU(n): the unitary group U(n) includes all the n × n complex unitary
matrices. As a unitary matrix U is such that U †U = UU † = I, it follows then that
this group preserves the complex scalar product ⟨u, v⟩ =

∑n
i=1 uivi. Indeed, for all

n-dimensional complex vectors u, v, we have

⟨Uu, Uv⟩ = ⟨U †Uu, v⟩ = ⟨u, v⟩.

As det(U †) = det(U) it follows that | det(U)| = 1. Then the special unitary group
SU(n) is the subgroup of complex unitary n× n matrices with determinant 1.

4. O(n) and SO(n): the orthogonal group O(n) includes all the n× n real orthogonal
matrices. As an orthogonal matrix O is such that OtrO = OOtr = I, it follows then
that this group preserves the real scalar product ⟨u, v⟩ =

∑n
i=1 uivi. Indeed, for all

n-dimensional complex vectors u, v, we have

⟨Ou,Ov⟩ = ⟨OtrOu, v⟩ = ⟨u, v⟩.

As det(Otr) = det(O) it follows that det(O) = ±1. Then the special orthogonal
group SO(n) is the subgroup of real orthogonal n × n matrices with determinant
1. Geometrically, elements of SO(n) are rotations, while the elements of O(n) are
either rotations or combinations of rotations and reflections.

5. U(n,m) and SU(n,m): the generalized unitary group U(n,m) is the group of n×n
complex matrices U such that U †JU = J , where J is the diagonal matrix J =
diag(1, . . . , 1,−1, . . . − 1). Thus now the complex scalar product with signature
(n,m) is conserved. SU(n,m) is the subgroup of those matrices further having
determinant one.

6. O(n,m) and SO(n,m): the generalized orthogonal group O(n,m) is the group
of n × n real matrices O such that OtrJO = J , where J is the diagonal matrix
J = diag(1, . . . , 1,−1, . . . − 1). Thus now the real scalar product with signature
(n,m) is conserved. SO(n,m) is the subgroup of those matrices further having
determinant one. Of particular interest in physics (special relativity) is the Lorentz
group O(3, 1).

7. Sp(2n,R): the real symplectic group Sp(2n,R) is the set of all 2n × 2n matrices
that preserve the skew-symmetric bilinear form on R2n given by

q(v, w) =
n∑
i=1

(xi yn+i − xn+i yi)

Introducing the matrix

Ω =

(
0 I
−I 0

)
one can check that A belongs to Sp(2n,R) iff AtrΩA = Ω.

8. H3: The Heisenberg group H3 is the group of 3× 3 upper triangular matrices of the
form  1 a b

0 1 c
0 0 1
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It is easy to check that H3 is a subgroup of GL(3,R). It is possible to generalize the
definition to Hn. The Heisenberg group Hn and its Lie algebra hn originally arose in
the mathematical formalizations of quantum mechanics. Heisenberg actually never
considered this group since for most purposes in physics just the Lie algebra relations
are needed. It was first defined by Weyl and physicists often refer to it as the Weyl
group.

B.3 Lie algebras

We introduce the ‘abstract’ definition of Lie algebras and then we explain the relation
between Lie algebras and Lie groups in Section B.4. There, the exponential map provides
a connection between matrix Lie groups and the underlying Lie algebra.

DEFINITION B.3. A real (or complex) Lie algebra is a real (or complex) vector space g,
equipped with a bilinear map [·, ·] : g × g → g, referred to as bracket operation, with the
following properties:

1. [X, Y ] = −[Y,X] for all X, Y ∈ g (skew symmetric);

2. [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0 for all X, Y, Z ∈ g (Jacobi identity).

Examples: A first example of a Lie algebra is obtained considering g = R3 and [x, y] :
R3 × R3 → R3 be given by [x, y] = x × y, where x × y is the cross product (or vector
product). Then g is a Lie algebra.

The second example shows how to find a Lie algebra from an associative algebra. Let g
be a subspace of an associative algebraA such thatXY −Y X ∈ g for allX, Y ∈ g. Then g
is a Lie algebra with bracket operation given by the commutator: [X, Y ] = XY −Y X. We
observe that, to verify the Jacobi identity, associativity of the algebra A is essential: each
of the 6 possible ‘words‘ of the three letters X, Y, Z appears in the identity with different
signs and different groupings (e.g. we have X(Y Z) and −(XY )Z). Conversely it can
be proved [125, Chapter 9] that every Lie algebra g can be embedded into an associative
algebra A in such a way that the bracket becomes XY − Y X. See the discussion about
‘universal envelopping algebras’ in section B.7.

Several definitions that we encountered in the context of groups have their obvious
analogous in the context of algebras. For instance, a Lie algebra g is commutative if the
commutator [X, Y ] = 0 for all X, Y ∈ g. A subalgebra of a real or complex Lie algebra
g is a subspace h of g such that [H1, H2] ∈ h for all H1, H2 ∈ h. The role of normal
subgroups in group theory is played by ideals in algebra theory. A subalgebra h of a Lie
algebra g is said to be an ideal in g if [X,H] ∈ h for all X ∈ g and H ∈ h. A Lie algebra
g is called irreducible if the only ideals in g are g and 0. A Lie algebra g is called simple
if it is irreducible and dim g ≥ 2.

The direct sum of two Lie algebras g1 and g2 is the vector space direct sum of g1 and
g2, with bracket given by

[(X1, X2), (Y1, Y2)] = ([X1, Y1], [X2, Y2]).
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One says that a Lie algebra g decomposes as the Lie algebra direct sum of g1 and g2 if
g is the direct sum of g1 and g2 as vector spaces and [X1, X2] = 0 for all X1 ∈ g1 and
X2 ∈ g2.

If g and h are Lie algebras, then a linear map φ : g → h is called a Lie algebra
homomorphism if φ([X, Y ]) = [φ(X), φ(Y )] for all X, Y ∈ g. If, in addition, it is a
bijection then it is called a Lie algebra isomorphism. A Lie algebra isomorphism of a Lie
algebra with itself is called a Lie algebra automorphism.

The center of a Lie algebra g is the set of all X ∈ g for which [X, Y ] = 0 for all Y ∈ g.
A finite dimensional Lie algebra g is often defined by its structure constats {cijk}, which
are defined as follows: let X1, . . . , Xn be a base of g as a vector space, then

[Xi, Xj] =
n∑
k=1

cijkXk .

From the properties of the bracket operation (skew symmetry and Jacobi identity) it
follows the structure constants satisfy

cijk + cjik = 0 ,

n∑
m=1

(cijmcmkl + cjkmcmil + ckimcmjl) = 0 .

B.4 Lie algebra of a matrix Lie group

We discuss here the case in which a Lie algebra is constructed starting from a matrix Lie
group.

DEFINITION B.4. The Lie algebra of matrix Lie group G, denoted by g, is the set of
all matrices X such that etX ∈ G for all t ∈ R, equipped with the bracket operation
[·, ·] : g× g → g defined by the commutator

[X, Y ] := XY − Y X .

Thus X is in g if and only if the one-parameter subgroup generated by X lies in G.
The fact that the Lie algebra g of matrix Lie group G is a vector space follows from the
Lie-Trotter product formula

et(aX+bY ) = lim
n→∞

(
e

taX
n e

tbY
n

)n
which is valid for all matrices X, Y and reals a, b. Being the space of all complex matrices
an associative algebra A, the bracket operation is naturally defined as the commutator,
provided one shows that g is a subspace of A such that XY − Y X ∈ g for all X, Y ∈ g.
To show this one uses that etXY e−tX ∈ g and

XY − Y X =
d

dt

(
etXY e−tX

)∣∣∣∣
t=0

so that XY − Y X ∈ g since g is a closed subset of all complex matrices.

Examples of Lie algebras constructed starting from a matrix Lie group, including some
relevant to this book, are:
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1. gl(n,C) and gl(n,R): the Lie algebra gl(n,C) of the Lie group GL(n,C) is the space
of all n× n matrices with complex entries. Similarly the Lie algebra gl(n,R) of the
Lie group GL(n,R) is the space of all n× n matrices with real entries.

2. sl(n,C) and sl(n,R): the Lie algebra sl(n,C) of the Lie group SL(n,C) is the space
of all n× n complex matrices with zero trace. Similarly the Lie algebra sl(n,R) of
the Lie group SL(n,R) is the space of all n× n real matrices with zero trace. This
follows from

det(etX) = et trace(X) .

3. u(n) and su(n): the Lie algebra u(n) of the unitary group U(n) includes all the
n × n complex anti-hermitian matrices. This follow from the fact that the matrix
U = etA is unitary iff A† = −A. The Lie algebra su(n) of the special unitary group
SU(n) has the additional requirement of A being traceless.

In this book we extensively used the Lie algebra su(2), consisting of all 2-by-2 anti-
hermitian complex matrices with zero trace that can be parametrized as

A =

(
−ix3 −x2 − ix1

x2 − ix1 ix3

)
with x1, x2, x3 ∈ R. (B.4)

The Lie algebra su(2) is generated by the following matrices

E1 =
1

2

(
0 −i
−i 0

)
E2 =

1

2

(
0 −1
1 0

)
E3 =

1

2

(
−i 0
0 i

)
(B.5)

Namely, we have that the matrix A in (B.4) can be obtained via the linear com-
bination A = 2

∑3
i=1 xiEi. The commutator Lie bracket relations satisfied by the

generators are
[Ej, Ek] = ϵjklEl, (B.6)

so that the structure constants are given by the antisymmetric Levi-Civita symbol
ϵjkl. The generators in (B.5) are related to the Pauli matrices by Ej = − i

2
σj, where

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
, (B.7)

with commutation relations

[σj, σk] = 2iϵjkl σl .

4. o(n) and so(n): the Lie algebra o(n) of the orthogonal group O(n) includes all
the n × n real anti-symmetric matrices. This follow from the fact that the matrix
O = etA is orthogonal iff Atr = −A. It follows that A has trace 0 (since the diagonal
entries are all zero), and thus every element of the Lie algebra of O(n) is also in the
Lie algebra of SO(n).

A well-know example is the Lie algebra so(3) associate with rotations in three di-
mensions. The following elements form a basis for so(3):

F1 =

0 0 0
0 0 −1
0 1 0

 F2 =

 0 0 1
0 0 0
−1 0 0

 F3 =

0 −1 0
1 0 0
0 0 0

 (B.8)



B.5. REPRESENTATIONS 381

whose commutation relations read

[Fj, Fk] = ϵjklFl (B.9)

Since the generators E1, E2, E3 of the su(2) Lie algebra in (B.5) satisfy the same
commutation relations as the generators F1, F2, F3 of the so(3) Lie algebra in (B.8),
it follows that the two Lie algebras are isomorphic.

5. u(n,m) and su(n,m): the Lie algebra u(n,m) of the generalized unitary group
U(n,m) is the group of n × n complex matrices A such that JA†J = −A, where
J is the diagonal matrix J = diag(1, . . . , 1,−1, . . . − 1). This follows from the fact
that the matrix U = etA belonging to the generalized unitary group U(n,m) has to
satisfy the condition U †JU = J . The Lie algebra su(n,m) of SU(n,m) is the same
as that of U(n,m).

6. o(n,m) and so(n,m): the Lie algebra o(n,m) of the generalized orthogonal group
O(n,m) is the group of n × n real matrices A such that JAtrJ = −A, where J
is the diagonal matrix J = diag(1, . . . , 1,−1, . . . − 1). This follows from the fact
that the matrix O = etA belonging to the generalized unitary group O(n,m) has to
satisfy the condition OtrJO = J . The Lie algebra of SO(n,m) is the same as that
of O(n,m).

7. sp(2n,R): the Lie algebra sp(2n,R) of the real symplectic group Sp(2n,R) is the
set of all 2n× 2n matrices A such that

ΩAtrΩ = A

where

Ω =

(
0 I
−I 0

)
8. h3: the Lie algebra h3 of the Heisenberg group H3 is the space of all matrices of the

form  0 a b
0 0 c
0 0 0


It is immediately seen that the Lie algebra of the Heisenberg group H3 is isomorphic
to the real Lie algebra with basis elements {P,Q,C} and commutation relation
[P,Q] = C, where

P =

 0 1 0
0 0 0
0 0 0

 Q =

 0 0 0
0 0 1
0 0 0

 C =

 0 0 1
0 0 0
0 0 0


B.5 Representations

Given a vector space V , let GL(V ) denote the general linear group, i.e. the space of all
linear invertible maps of V to itself. In the finite dimensional case where V is a real
(resp. complex) vector space with dim(V ) = n, the group GL(V ) can be identified with
GL(n,R) (resp. GL(n,C)), the group of n-by-n real (resp. complex) invertible matrices.
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DEFINITION B.5. A representation of a group G on a vector space V is a group homo-
morphism from G to GL(V ). Namely, a representation is a map Π : G → GL(V ) such
that, for all g1, g2 ∈ G, one has

Π(g1 · g2) = Π(g1)Π(g2) .

A faithful representation Π is one in which the homomorphism G→ GL(V ) is injective.

The dimension of vector space V is called the dimension of the representation. Re-
stricting to matrix Lie group G, a representation allows to represent G as a group of
matrices. This explains the origin of the name “representation”. The general aim of
representation theory of a matrix Lie group G is to identify all the ways G can act as a
group of matrices. Let Π be a representation of a matrix Lie group G, acting on a space
V . A subspace W of V is called invariant if Π(g)w ∈ W for all w ∈ W and g ∈ G. A
representation such that the only invariant subspaces are V itself and the empty set is
called irreducible.

Given two vector spaces V andW , two representations Π1 : G→ GL(V ) and Π2 : G→
GL(W ) are said to be equivalent if there exists a vector space isomorphism φ : V → W
such that for all g ∈ G, one has

φ ◦ Π1(g) ◦ φ−1 = Π2(g) .

An intertwining is a map φ : V → W such that for all g ∈ G, one has

φ ◦ Π1(g) = Π2(g) ◦ φ .

Thus, two representations are equivalent if the intertwining map relating them is invert-
ible.

For Lie algebras, the definition of representation is analogous to the one given for
representations of Lie groups. The main difference is that the representation will map the
Lie albebra into gl(V ), the space of endomorphisms of a vector space V , i.e., the space of
all linear maps of V to itself. Note that gl(V ) can be made into a Lie algebra by defining
the bracket operation as the commutator.

DEFINITION B.6. Let g be a Lie algebra and let V be a vector space. A representation of
g on V is a Lie algebra homomorphism π : g → gl(V ). That is, π is a linear map that
satisfies

π([X, Y ]) = π(X)π(Y )− π(Y )π(X)

for all X, Y in g. The representation π is said to be faithful if it is injective.

It is natural to ask what is the relation between the representations of a Lie group
G and the representations of the corresponding Lie algebra g. It turns out that if the
group is simply connected one can obtain Lie group representations from Lie algebra
representations.

THEOREM B.7.
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1. Each representation of a Lie group G gives rise to a representation of its Lie algebra
g. Namely, if Π : G → GL(V ) is a group representation for some vector space V
then there exists a unique representation π : g → gl(V ) such that

Π(eX) = eπ(X) ∀X ∈ g.

The Lie algebra representation can be found from the Lie group representation by

π(X) =
d

dt
Π(etX)

∣∣∣∣
t=0

2. If the Lie group G is simply connected, then every representation π of its Lie algebra
g comes from a representation Π of G itself. Namely, if the Lie group G is simply
connected, and a representation π : g → gl(V ) of its Lie algebra is given, then there
exists a unique representation Π : G→ GL(V ) such that

Π(eX) = eπ(X) ∀X ∈ g.

The proof of this theorem can be found in standard textbooks (e.g. item 1. is proved
in Theorem 3.28 of [125] and item 2. is proved in Theorem 5.6 of [125]). The theorem
establishes that, to find representations of simple connected Lie groups it is enough to
study representations of their Lie algebras.

Example: SU(2) has more representations than SO(3). Here we discuss the content
of the theorem by considering the examples of the SU(2) group and of the SO(3) group.
Their Lie algebras are isomorphic (as remark after eq. (B.8)) and thus there are as
many representations of su(2) as many as of so(3). However, there are strictly more
representations of the SU(2) group than there are of the group SO(3), the reason for
this being that SU(2) is simply connected, whereas SO(3) is not (it is just connected).
To understand this, first consider a representation Π : SO(3) → GL(n,R) of SO(3).
Composing with the map φ : SU(2) → SO(3) defined in (B.2) then gives a representation
Π̃ = Π ◦ φ : SU(2) → GL(n,R) of SU(2). Thus, every representation of SO(3) comes
from a representation of SU(2). The converse is not true, however. That is, a given
representation Π̃ : SU(2) → GL(n,R) of SU(2) will not induce a representation of SO(3)
unless Π̃ is constant on the fibers of φ, i.e., unless Π̃(−U) = Π̃(U) for every U ∈ SU(2).

B.6 The dual representation

We recall that the dual space V ∗ of a vector space V is the space of linear functionals on
V , i.e. the space of linear maps of V into R. In particular, interpreting the vector space
Rn as the space of columns of n real numbers, its dual space is the space of rows of n real
numbers.

DEFINITION B.8. Let π : g → gl(V ) be a representation of a Lie algebra g acting on a
finite-dimensional vector space V . Then the dual representation π∗ : g → gl(V ∗) is the
representation of g acting on the dual vector space V ∗ and given by

π∗(X) = −π(X)tr ∀X ∈ g (B.10)
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where π(X)tr : V ∗ → V ∗ denotes the transpose operator of π(X) : V → V defined by

(π(X)trφ)(v) = φ(π(X)v)

for any functional φ ∈ V ∗ and any vector v ∈ V .

REMARK B.9. If dim(V ) = n then π(X) is associated to a n-by-n matrix A with respect
to a base of V . In this case the transpose operator π(X)tr is represented by the transpose
matrix AT with respect to the dual bases of V ∗. Equivalently, π(X) is associated to a
matrix acting on the left on column vectors, and π(X)tr is associated to the same matrix
acting on the right on row vectors.

REMARK B.10. The minus sign in (B.10) is essential for π∗ to be a representation, namely
to verify that

π∗([X, Y ]) = [π∗(X), π∗(Y )].

This can be proved using the property

(π∗(X)π∗(Y ))tr = (π∗(Y ))tr(π∗(X))tr

that is easily verified from the definition of transpose operator.

The dual representation of a group can also be defined.

DEFINITION B.11. Let Π be a representation of a Lie group G acting on a finite dimen-
sional vector space. Then the dual representation Π∗ is the representation of G acting on
V ∗ and given by

Π∗(g) = [Π(g−1)]tr.

In the definition above it is now crucial to use the inverse element in order to guarantee
that Π∗ is a representation.

B.7 Universal enveloping algebra of a Lie algebra

It was observed in Section B.3 already that any associative algebra A, equipped with
product operation denoted by ⋆, may be turned into a Lie algebra g whose multiplication
operation [·, ·] is given by the commutator bracket [x, y] := x ⋆ y − y ⋆ x.

A natural question is if the converse is true. Generally speaking, a Lie algebra is
not associative, since Lie brackets are not associative in general. Nevertheless, there is a
canonical procedure to construct an associative algebra out of a Lie algebra g, which is
called the universal enveloping algebra and is denoted by U(g). More precisely, the idea
of the universal enveloping algebra is to embed a Lie algebra g into the unique largest
associative algebra A with identity in such a way that:

1. the abstract bracket operation in g may be computed as the commutator x⋆y−y⋆z,
where ⋆ denotes the product in A;

2. the algebra A is generated by the elements of g.
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The word “largest” is used above in the sense that the universal enveloping algebra U(g)
of g has the property that every other enveloping algebra of g is a quotient of U(g).

In general, the universal enveloping algebra U(g) of a Lie algebra g is constructed
starting from the tensor algebra T (g), that is the algebra which contains all possible
tensor products of all possible elements in g:

T (g) =
∞⊕
n=0

g⊗n.

Then the universal enveloping algebra U(g) of a Lie algebra g is obtained as a quotient
of the tensor algebra T (g),

U(g) = T (g)/I

where the quotienting is done using the equivalence relation ∼ defined by the Lie bracket,
i.e. I is the smallest two-sided ideal of T (g) containing all elements of the form

X ⊗ Y − Y ⊗X − [X, Y ].

In more concrete terms, a useful characterization of the universal enveloping algebra U(g)
of a Lie algebra g is obtained via the Poincaré–Birkhoff–Witt theorem (see e.g. Theorem
9.9 in [125] ) which states that ordered monomials form a base of the universal envelop-
ing algebra U(g). Suppose, in particular, that the Lie algebra g is finite-dimensional,
with basis X1, . . . Xn and structure constants cijk. Then the universal enveloping algebra
U(g) of a Lie algebra g is the associative algebra (with identity) generated by elements
X1, . . . Xn subject to the relations XiXj − XjXi =

∑n
k=1 cijkXk and no other relations.

By the Poincaré–Birkhoff–Witt theorem elements of the universal enveloping algebra will
be linear combinations of products of the generators in ascending order. In other words
the elements

Xk1
1 X

k2
2 · · ·Xkn

n

with kj ≥ 0 for all j, span the enveloping algebra and are linearly independent. It follows
that the universal enveloping algebra of a Lie algebra is always infinite dimensional.
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Appendix C

Overview of dualities

In this appendix we provide a schematic overview of the duality results that have been
considered in this book. The grouping of the Markov processes is based on their algebraic
structure and, more precisely, on the underlying Lie algebras. The Markov processes are
models for the exchange of particles or, respectively, energy, among the sites of a lattice
V . The processes considered are either “discrete”, i.e. they have a single-site state space
which is a subset of N, or “continuous”, i.e. the single-site state space is a non-countable
subset of R. The discrete processes (that will be marked with a ⋄) will essentially be jump
processes. The continuous processes (marked with a ⋆) will essentially be diffusions, or
jump processes obtained by “thermalization” (see below).

We will use the notation L for the generators of the discrete processes (interacting
particle systems) defined on state spaces of the type Ω ⊆ NV , i.e. spaces of particle
configurations. The latter will be denoted by η or ξ. On the other hand we will use
the symbol L to denote the generators of continuous processes (diffusion processes) with
state spaces of the type Ω ⊆ RV , whose elements are, in most of cases, interpretable as
energy configurations that will be denoted by ζ or υ. Both types of generators can be
decomposed as combinations of single-edge generators, i.e. they are of the form

L =
1

2

∑
x,y∈V

p(x, y)Lx,y, L =
1

2

∑
x,y∈V

p(x, y)Lx,y (C.1)

where p : V × V → R is an irreducible, symmetric transition function and Lx,y and Lx,y

are the single-edge generators whose specific form depends on the models. In Sections
C.1, C.2 and C.3 we will give the specific forms of the single-edge generators Lx,y and Lx,y,
corresponding to each of the three Lie algebras considered in this book, i.e. the Heisenberg
Lie algebra in Section C.1, the su(1, 1) Lie algebra in Section C.2 and the su(2) Lie algebra
in Section C.3. Several of the processes considered in this appendix, in their most general
form, are labelled by parameters collected into a vector α = {αx, x ∈ V }. Here αx
denotes the so-called local attraction intensity, that takes values in a set that is process
dependent and will be specified below case by case.

All the models considered in the next sections exhibit duality relations. These involve
processes belonging to the same algebraic class and are of three types. We have what we
will informally call discrete-discrete (⋄ ⋄) duality relations between two discrete processes.
We have duality relations between a discrete and a continuous processes (⋄ ⋆), and finally

387
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duality relations between two continuous (⋆ ⋆) processes. We will see that dualities of the
type ⋄ ⋄ and ⋆ ⋆ are in most cases self-duality properties. For these three different types
of duality functions we will use three different notations as we will see below. The duality
functions are, in general, parametrized by the intensity vector α. Moreover they all have
a product form, i.e. they factorize in single-site duality functions depending on the local
intensity αx. In what follows we will use the following notation:

• discrete-discrete case (⋄ ⋄): for a discrete system having generator L of the form
(C.1), we have self-duality relations of the type

[LDα(ξ, ·)](η) = [LDα(·, η)](ξ)

with self-duality functions of product form

Dα(ξ, η) =
∏
x∈V

dαx(ξx, ηx), (C.2)

with single-site self-duality functions dα that can be of cheap, triangular or orthog-
onal type (see tables C.1-C.2-C.4).

• discrete-continuous case (⋄ ⋆): we have duality relations between a continuous
system with generator of the form L defined in (C.1) and the corresponding discrete
system (i.e. belonging to the same algebraic class) with generator L as in (C.1),

[LDα(ξ, ·)](ζ) = [LDα(·, ζ)](ξ)

with duality functions of product form

Dα(ξ, ζ) =
∏
x∈V

dαx(ξx, ζx); (C.3)

with single-site duality functions dα that can be of cheap, triangular or orthogonal
type (see tables C.1-C.2-C.4).

• continuous-continuous case (⋆ ⋆): for a continuous system having generator L
of the form (C.1), we have self-duality relations of the type

[LDα(v, ·)](ζ) = [LDα(·, ζ)](v)

with self-duality functions of product form

Dα(v, ζ) =
∏
x∈V

dαx(vx, ζx). (C.4)

with single-site duality functions dα that can be of cheap, triangular or orthogonal
type (see tables C.1-C.2-C.4).

The specific form of the single-site duality functions dα, dα and dα depends on the
model and are given in Tables C.1, C.2 and C.4 below. Each table contains three types of
duality functions which are called “cheap”, “triangular” and “orthogonal”. These names
originate in the discrete setting. The “cheap” self-dualities are diagonal and associated
to a reversible measure. The “triangular” self-dualities are associated to a triangular
matrix. The “orthogonal” self-dualities satisfy an orthogonality relation in the L2 space
weighted with a reversible measure. For simplicity we use these names also in the settings
of discrete-continuous duality and continuous-continuous duality.
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Instantaneous thermalization limits

Duality properties are conserved in the process of thermalization. As a consequence, all
self-duality and duality relations holding for processes with generators of the form L and
L as in (C.1) are valid also for the corresponding “thermalized processes”. These are the
processes whose generators, denoted by Lth and Lth are obtained from the “instantaneous
thermalization” of (C.1), i.e.

Lth =
1

2

∑
x,y∈V

p(x, y)Lth
x,y, Lth =

1

2

∑
x,y∈V

p(x, y)Lth
x,y (C.5)

where
Lth
x,y = lim

t→∞
(etLx,y − I), Lth

x,y = lim
t→∞

(etLx,y − I) (C.6)

The following duality relations hold for the corresponding thermalized models:

• discrete-discrete case (⋄ ⋄): for a discrete thermalized processes having generator
Lth of the form (C.5)-(C.6), we have self-duality relations of the type

[LthDα(ξ, ·)](η) = [LthDα(·, η)](ξ)

with self-duality functions of product form

Dα(ξ, η) =
∏
x∈V

dαx(ξx, ηx), (C.7)

with single-site self-duality functions dα that can be of cheap, triangular or orthog-
onal type (see tables C.1-C.2-C.4).

• discrete-continuous case (⋄ ⋆): we have duality relations between a continuous
system with generator of the form Lth defined in (C.5)-(C.6) and the corresponding
discrete system (i.e. belonging to the same algebraic class) with generator Lth as in
(C.1),

[LthDα(ξ, ·)](ζ) = [LthDα(·, ζ)](ξ)
with duality functions of product form

Dα(ξ, ζ) =
∏
x∈V

dαx(ξx, ζx); (C.8)

with single-site duality functions dα that can be of cheap, triangular or orthogonal
type (see tables C.1-C.2-C.4).

• continuous-continuous case (⋆ ⋆): for a continuous system having generator Lth

of the form (C.5)-(C.6), we have self-duality relations of the type

[LthDα(v, ·)](ζ) = [LthDα(·, ζ)](v)

with self-duality functions of product form

Dα(v, ζ) =
∏
x∈V

dαx(vx, ζx). (C.9)

with single-site duality functions dα that can be of cheap, triangular or orthogonal
type (see tables C.1-C.2-C.4).
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Hypergeometric functions and orthogonal polynomials.

We recall here the definition of hypergeometric functions that we will use in the duality
tables below. In general, the hypergeometric function rFs is defined as the infinite series

rFs

(
a1, . . . , ar
b1, . . . , bs

∣∣∣∣ z) =
∞∑
k=0

(a1)k · · · (ar)k
(b1)k · · · (bs)k

zk

k!

where (a)k denotes the Pochhammer symbol defined in terms of the Gamma function as

(a)k :=
Γ(a+ k)

Γ(a)
.

Whenever one of the factors of the numerator is a negative integer, the hypergeometric
function rFs turns into a finite sum, i.e. a polynomial. It is possible now to introduce
the three classes of polynomials that will be involved in the definition of the orthogonal
duality functions. We define

• the Krawtchouk polynomials

K(x, y; p) = 2F1

(
−x,−y
−2j

∣∣∣∣ 1p
)

for x, y = 0, 1, . . . , 2j ,

• the Meixner polynomials

M(x, y; p) = 2F1

(
−x,−y

2k

∣∣∣∣ 1− 1

p

)
for x, y ∈ N ,

• the Charlier polynomials

C(x, y;λ) = 2F0

(
−x,−y

−

∣∣∣∣−1

λ

)
for x, y ∈ N .

Below for each of the three Lie algebras considered (Heisenberg, su(1, 1) and su(2)),
we list processes of the type (C.1) and (C.5)-(C.6) by giving their state spaces Ω and their
single-edge generators.

C.1 Heisenberg Lie algebra

Fix α = {αx, x ∈ V } with αx ∈ (0,∞). In the table below we define the independent
random walkers process with parameters α, IRW(α). Its thermalization limit process Th-
IRW(α), its continuous dual Dual-IRW(α) and the corresponding thermalization limit
Dual-Th-IRW(α). The latter two are not generators of a Markov process. The processes
have generators of the form L,L as in (C.1) and Lth,Lth as in (C.5)-(C.6) with single-edge
terms given in the following table.
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⋄ Independent random walkers IRW(α), Ω = NV ,

Lx,yf(η) = ηxαy[f(η
x,y)− f(η)] + ηyαx[f(η

y,x)− f(η)]

⋄ Th-IRW(α), Ω = NV ,

Lth
x,yf(η) =

ηx+ηy∑
n=0

[f(η + (n− ηx)(δx − δy))− f(η)]
(
ηx+ηy
n

) αn
xα

ηx+ηy−n
y

(αx+αy)
ηx+ηy

⋆ Dual-IRW(α), Ω = [0,∞)V ,

Lx,yf(ζ) = (αyζx − αxζy)

(
∂

∂ζy
− ∂

∂ζx

)
f(ζ)

⋆ Dual-Th-IRW(α), Ω = [0,∞)V ,

Lth
x,yf(ζ) =

[
f(ζ + αxζy−αyζx

αx+αy
(δx − δy))− f(ζ)

]

The processes with generators L and L above satisfy duality and self-duality relations of
the types (C.2), (C.3) and (C.4). Analogously the thermalized processes with generators
Lth and Lth satisfy duality and self-duality relations of the types (C.7),(C.8) and (C.9).
The duality functions are products of single-site functions. These are listed in Table C.1
and can be of three different forms: cheap, triangular and orthogonal. The orthogonal
duality functions are labeled by a parameter ρ ∈ [0,∞). The triangular duality functions
can be obtained from the triangular ones as a special case by taking the limit as ρ→ 0.

Cheap Triangular Orthogonal

⋄⋄ dα(k, n) = δk,n k!
1
αk

n!
(n−k)! 1k≤n (−ρ)k 2F0

[
−k −n

− ;− 1
ρα

]

⋄⋆ dα(k, z) = zk e−z
(
z
α

)k (
z
α
− ρ
)k

⋆⋆ dα(v, z) = ezv−z−v e(
z
α
−1)v e(

z
α
−1−ρ)v

Table C.1: Single-site duality functions for processes in the Heisenberg-Lie algebra class.

Notice that the single-site ⋄⋄ orthogonal self duality function appearing in the right-upper
corner of Table C.1 can be written in terms of Charlier polynomials as follows

dorthα (k, n) = (−ρ)kCk(n;αρ) (C.10)
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with

Ck(n;λ) := 2F0

(
−k,−n

−

∣∣∣∣−1

λ

)
for k, n ∈ N . (C.11)

Other models. Here we give four more models fitting in the Heisenberg class. The
first one is the Aldous averaging process, treated in Section VII.2, this coincides with the
Dual-Th-IRW(1/2) (i.e. α is the flat intensity profile with αx = 1/2 for all x ∈ V ). The
Aldous averaging process is then dual to the Th-IRW(1/2) with product duality function
whose single-site terms are equal to the function d1/2, appearing in the second line of
Table C.1. The duality result holds true for any of the three possible choices in the table
(i.e. cheap, triangular or orthogonal duality function).

⋆ Aldous averaging process, Ω = [0,∞)V ,

LAldous
x,y f(ζ) =

[
f(ζ + ζy−ζx

2
(δx − δy))− f(ζ)

]

The second model is the Ginzburg-Landau process (see Section VII.5). This is a diffusion
process whose single-bond generator is given by:

⋆ Ginzburg-Landau process, Ω = RV ,

LGL
x,y f(ζ) = − (ζx − ζy)

(
∂

∂ζx
− ∂

∂ζy

)
+

(
∂

∂ζx
− ∂

∂ζy

)2

The Ginzburg-Landau process is dual to the IRW(1) whose single-bond generator is given
in the first line of the table in the previous page, with the choice αx = 1 for all x ∈ V .
The duality function is given by

D(η, ζ) =
∏
x∈V

Hηx(ζx) (C.12)

where Hk(·) is the Hermite polynomial of degree k, i.e.

Hk(z) = (2z)k2F0

(
−k/2,−(k − 1)/2

−

∣∣∣∣− 1

z2

)
, z ∈ R (C.13)

The last two models we consider are the generalized versions of Moran model and Wright-
fisher diffusion (see Section VII.6). Fix two parameters α1, α2 ≥ 0, then the single-bond
generators of these models are defined below.
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⋄ Generalized Moran model, Ω = {0, 1, . . . , N}, N ∈ N,

LMoranf(n) = n(N − n+ α2)[f(n− 1)− f(n)] + (N − n)(n+ α1)[f(n+ 1)− f(n)]

⋆ Generalized Wright-Fisher diffusion, Ω = [0, 1],

LWFf(z) = z(1− z)
d2

dz2
+
(
α1(1− z)− α2z

) d
dz

The generalized Moran model and the generalized WF model are dual with duality func-
tion D : {0, 1, . . . , N} × [0, 1] → R given by

D(n, z) = zn(1− z)N−n Γ(α1)

Γ(α1 + n)

Γ(α2)

Γ(α2 +N − n)
. (C.14)

C.2 su(1, 1) Lie algebra

Let α = {αx, x ∈ V } with αx ∈ (0,∞). We define the SIP(α), symmetric inclusion
process with intensities α (corresponding to the reference process with parameter θ = 1),
its thermalization limit process Th-SIP(α), the brownian energy process, BEP(α), that
is a diffusion process dual to the SIP(α), and the corresponding thermalization limit Th-
BEP(α). The latter is an instantaneous energy redistribution model. The processes have
generators of the form L, L as in (C.1) and Lth, Lth as in (C.5)-(C.6) with single-edge
terms given below.

⋄ SIP(α), Ω = NV ,

Lx,yf(η) = ηx(αy + ηy)[f(η
x,y)− f(η)] + ηy(αx + ηx)[f(η

y,x)− f(η)]

⋄ Th-SIP(α), Ω = NV ,

Lth
x,yf(η) =

ηx+ηy∑
n=0

[f(η + (n− ηx)(δx − δy))− f(η)]
(
ηx+ηy
n

)B(αx+n,ηx+ηy+αy−n)
B(αx,αy)

⋆ BEP(α), Ω = [0,∞)V ,

Lx,yf(ζ) =

{
(αyζx − αxζy)

(
∂

∂ζy
− ∂

∂ζx

)
+ ζxζy

(
∂

∂ζy
− ∂

∂ζx

)2}
f(ζ)

⋆ Th-BEP(α), Ω = [0,∞)V ,

Lth
x,yf(ζ) =

∫ 1

0

d u [f(ζ + ((u− 1)ζx + uζy)(δx − δy))− f(ζ)] uαx−1(1−u)αy−1

B(αx,αy)

Here we used the notation B for the Beta function B(α, β) = Γ(α)Γ(β)
Γ(α+β)

. The processes with
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generators L and L above satisfy duality and self-duality relations of the types (C.2),
(C.3) and (C.4). Analogously the thermalized processes with generators Lth and Lth

satisfy duality and self-duality relations of the types (C.7),(C.8) and (C.9). The duality
functions are products of single-site terms. These are given in Table C.2 and can be of
three forms: cheap, triangular or orthogonal. The orthogonal duality functions are labeled

Cheap Triangular Orthogonal

⋄⋄ dα(k, n) = δk,n
k!Γ(α)
Γ(α+k)

Γ(α)
Γ(α+k)

n!
(n−k)! 1k≤n (−ρ)k 2F1

[
−k −n
α

;−1
ρ

]

⋄⋆ dα(k, z) =
Γ(α)

Γ(α+k)
zk e−z Γ(α)

Γ(α+k)
zk (−ρ)k 1F1

[
−k
α
; z
ρ

]

⋆⋆ dα(v, z) = e−z−v 0F1

[−
α
; zv
]

e−v 0F1

[−
α
; zv
]

e−(ρ+1)v
0F1

[−
α
; zv
]

Table C.2: Single-site duality functions for processes in the su(1, 1)-Lie algebra class.

by ρ ∈ [0,∞). By taking the limit as ρ→ 0 one recovers the triangular dualities. Notice
that the single-site orthogonal duality functions appearing in the right column of Table
C.2 can be rewritten as follows.

• The single-site ⋄⋄ orthogonal self-duality function can be written in terms of Meixner
polynomials:

dorthα (k, n) = (−ρ)kMk(n;α,
ρ

1+ρ
) (C.15)

with

Mk(n;α, p) = 2F1

(
−k,−n
α

∣∣∣∣ 1− 1

p

)
for k, n ∈ N ; (C.16)

• the single-site ⋄⋆ orthogonal self-duality function can be written in terms of Laguerre
polynomials:

dorthα (k, n) = (−ρ)k k!Γ(α)

Γ(α + k)
Lk(

z
ρ
;α− 1) (C.17)

with

Lk(z;λ) :=
Γ(λ+ 1 + k)

k!Γ(λ+ 1)
1F1

[
−k
λ+ 1

; z

]
. (C.18)

Other models. Here we give three further models within the su(1, 1) class. The first
one is the Brownian energy process, BMP, that has been introduced in Section V.7. It is
related to the BEP(1/2) through the change of variable ζ → ζ2 applied to the momenutm
variable of each lattice-site. More precisely, if {ζ(t) = {ζx(t)}x∈V , t ≥ 0} is a BMP then
the process {υ(t) : t ≥ 0}, with υx(t) = ζ2x(t) is a BEP(1/2). The BMP is dual to the
SIP(1/2) with a product duality function whose single-site terms are given in Table C.3
below. The second process is the KAC model that has been studied in Section VII.4. This
can be obtained as a thermalization limit of the BMP. As a consequence, the KAC model
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is thus dual to the Th-SIP(1/2) with duality function that is the same as the duality
function between the BMP and the SIP(1/2) given in Table C.3.

⋆ BMP, Ω = RV ,

Lbmp
x,y f(ζ) =

(
ζx

∂

∂ζy
− ζy

∂

∂ζx

)2

f(ζ)

⋆ KAC, Ω = RV ,

Lkac
x,y f(v) =

1

2π

∫ 2π

0

dθ
[
f(R(θ)

x,yv)− f(v)
]

with

R(θ)
x,yv = v − δxvx + δx(vx cos θ + vy sin θ)

−δyvy + δy(−vx sin θ + vy cos θ)

The processes above satisfy the following duality relations:

[LbmpD(ξ, ·)](ζ) = [Lsip(1/2)D(·, ζ)](ξ), [LkacD(ξ, ·)](v) = [Lth−sip(1/2)D(·, v)](ξ)

with the same duality function D(ξ, ζ) =
∏

x∈V d(ξx, ζx) and single-site duality d(·, ·),
given in the following table, that can be of three types: cheap, triangular or orthogonal.
Notice that the single-site ⋄⋆ duality function appearing in the right column of Table C.3

Cheap Triangular Orthogonal

⋄⋆ d(k, z) = z2k

(2k−1)!!
e−z

2 z2k

(2k−1)!!

(
−1

2

)k
1F1

(
−k
1
2

∣∣∣ z2)

Table C.3: Single-site duality functions between BMP and SIP(1/2) and between KAC
and Th-SIP(1/2).

can be rewritten in terms of Hermite polynomials as follows:

dorth(k, z) =
H2k(z)

(2k − 1)!!
(C.19)

withHk(·) as defined in (C.13). The last model we consider is the KMP, Kipnis-Marchioro-
Presutti, that has been treated in Section VII.3. This coincides with the Th-BEP(1/2).

⋆ KMP, Ω = [0,∞)V ,

Lkmp
x,y f(ζ) =

∫ 1

0

du [f(ζ + ((u− 1)ζx + uζy)(δx − δy))− f(ζ)]
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In agreement with the scheme given at the beginning of this section, the KMP is dual to
the Th-SIP(1) with a product duality function

[LkmpD1(ξ, ·)](ζ) = [Lth−sip(1)D1(·, ζ)](ξ), D1(ξ, ζ) =
∏
x∈V

d1(ξx, ζx) (C.20)

whose single-site term is the function d1 appearing in the middle line of Table C.2. The
duality property holds true for the three choices: cheap, triangular and orthogonal.

C.3 su(2) Lie algebra

Fix α = {αx, x ∈ V } with αx ∈ N. We define the SEP(α), symmetric exclusion process
with intensities α (reference process with θ = −1) and its thermalization limit process
Th-SEP(α). These processes have generators, respectively, of the form L as in (C.1) and
Lth as in (C.5)-(C.6) with single-edge terms given below.

⋄ SEP(α), Ω = ⊗x∈V {0, 1, . . . , αx},

Lx,yf(η) = ηx(αy − ηy)[f(η
x,y)− f(η)] + ηy(αx − ηx)[f(η

y,x)− f(η)]

⋄ Th-SEP(α), Ω = ⊗x∈V {0, 1, . . . , αx},

Lth
x,yf(η) =

ηx+ηy∑
n=0

[f(η + (n− ηx)(δx − δy))− f(η)]
(
ηx+ηy
n

)(αx+αy−ηx−ηy
αx−n )

(αx+αy
αx

)

The process with generator L and the thermalized process with generator Lth above satisfy
self-duality relations as in (C.2), resp. (C.7), with product duality functions whose single
site terms, given in Table C.4, can be of three forms: cheap, triangular and orthogonal.
The orthogonal self-duality function is labeled by ρ ∈ [0, 1]. The triangular self-duality

Cheap Triangular Orthogonal

dα(k, n) = δk,n
k!(α−k)!

α!
(α−k)!
α!

n!
(n−k)! 1k≤n (−ρ)k 2F1

[
−k −n
−α ; 1

ρ

]

Table C.4: Single-site duality functions for processes in the su(2)-Lie algebra class.

function can be obtained as a limit of this by letting ρ→ 0.

Notice that the single-site ⋄⋄ orthogonal self-duality function appearing in the right col-
umn of Table C.4 can be written in terms of Krawtchouk polynomials:

dorthα (k, n) = (−ρ)kKk(n;α, ρ) (C.21)

with

Kk(n;α, p) = 2F1

(
−k,−n
−α

∣∣∣∣ 1p
)

for k, n ∈ {0, 1, . . . , α} . (C.22)
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C.4 Adding reservoirs

The processes above preserve a duality property when properly adding reservoirs. For
each of the processes defined in the previous sections we define the corresponding process
with reservoirs by giving their infinitesimal generators, for which we will keep using the
notation L for the discrete-valued processes and L for the continuous ones. The reservoirs
that we add are located in a reservoir set V res that, whereas the set of bulk sites will keep
being denoted by V . The state space of each of the processes with reservoirs is the same
of the corresponding process without reservoirs and will keep being denoted by Ω. The
infinitesimal generators of the processes with reservoirs consist then of the sum of a bulk
term and a reservoir term:

L = Lbulk + Lres, L = Lbulk +Lres . (C.23)

The bulk terms Lbulk and Lbulk are of the form

Lbulk =
1

2

∑
x,y∈V

p(x, y)Lbulk
x,y , Lbulk =

1

2

∑
x,y∈V

p(x, y)Lbulk
x,y (C.24)

as in (C.1), whereas the reservoir terms are of the form

Lres =
∑
x∈V
y∈V res

p(x, y)αy L
res
x,y, Lres =

∑
x∈V
y∈V res

p(x, y)αyL
res
x,y (C.25)

where p is now a transition function on the extended edge set, p : V × V res → [0,∞),
and α = {αx, x ∈ V ∪ V res} is the extended intensity vector. The specific forms of the
reservoir generators depend on the form of the corresponding closed model.

In the table below we provide a scheme for the processes with reservoirs, grouping
them according to the referring Lie algebra, as done in Sections C.1-C.2-C.3 for the
closed systems. For each of the processes considered here, we define the single-bond
generators, considering separately the bulk and the reservoir terms. Notice that in all
cases the bulk generator coincides with the one of the corresponding process in the closed
systems defined in Sections C.1-C.2-C.3. As in the case of closed systems, the bulk
generators depend only on the intensity vector α = {αx, x ∈ V }, whereas the reservoir
generators depend also on reservoir parameters. These are, respectively, the reservoir
density profile ρres = {ρy, y ∈ V res} for discrete processes, and the reservoir temperature
profile T res = {Ty, y ∈ V res} in the case of continuous processes

Lres = Lres
ρres , Lres = Lres

T res .

with ρy and Ty, taking values in a model-dependent subset of [0,∞). In the next paragraph
we will provide duality statements for all the models defined below.

Heisenberg Lie algebra

Fix αx ∈ (0,∞), x ∈ V , and ρy, Ty ∈ [0,∞), y ∈ V res, we define:
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⋄ IRW(α) with reservoirs, Ω = NV ,

Lbulk
x,y f(η) = ηxαy[f(η

x,y)− f(η)] + ηyαx[f(η
y,x)− f(η)]

Lres
x,yf(η) = ηx[f(η − δx)− f(η)] + ρyαx[f(η + δx)− f(η)]

⋆ Dual-IRW(α) with reservoirs, Ω = [0,∞)V ,

Lbulk
x,y f(ζ) = (αyζx − αxζy)

(
∂

∂ζy
− ∂

∂ζx

)
f(ζ)

Lres
x,yf(ζ) = (Tyαx − ζx)

∂

∂ζx
f(ζ)

su(1, 1) Lie algebra

Fix αx ∈ (0,∞), x ∈ V , and ρy, Ty ∈ [0,∞), y ∈ V res, we define:

⋄ SIP(α) with reservoirs, Ω = NV ,

Lbulk
x,y f(η) = ηx(αy + ηy)[f(η

x,y)− f(η)] + ηy(αx + ηx)[f(η
y,x)− f(η)]

Lres
x,yf(η) = ηx(1 + ρy)[f(η − δx)− f(η)] + ρy(αx + ηx)[f(η + δx)− f(η)]

⋆ BEP(α) with reservoirs, Ω = [0,∞)V ,

Lbulk
x,y f(ζ) =

{
(αyζx − αxζy)

(
∂

∂ζy
− ∂

∂ζx

)
+ ζxζy

(
∂

∂ζy
− ∂

∂ζx

)2}
f(ζ)

Lres
x,yf(ζ) =

{
(Tyαx − ζx)

∂

∂ζx
+ Ty ζx

∂2

∂ζ2x

}
f(ζ)

su(2) Lie algebra

Fix αx ∈ N, x ∈ V , and ρy ∈ [0, 1], y ∈ V res, we define:

⋄ SEP(α) with reservoirs, Ω = ⊗x∈V {0, 1, . . . , αx},

Lbulk
x,y f(η) = ηx(αy − ηy)[f(η

x,y)− f(η)] + ηy(αx − ηx)[f(η
y,x)− f(η)]

Lres
x,yf(η) = ηx(1− ρy)[f(η − δx)− f(η)] + ρy(αx − ηx)[f(η + δx)− f(η)]

Duality with systems with absorbing sites

All the processes with reservoirs defined in the previous scheme exhibit a duality relation.
The corresponding dual models are processes with absorbing sites. These are defined on
the extended lattice V ∪ V res and have state space that is a subset of [0,∞)V ∪V res

. In
the discrete-discrete and continuous-continuous cases dual processes behave in the bulk
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as the original ones whereas the sites in the set V res are absorbing sites. More precisely
the dual processes have generators, respectively, of the forms

Ldual = Lbulk + Labs, Ldual = Lbulk +Labs . (C.26)

The bulk terms of the generators Lbulk, Lbulk coincide with the ones of the corresponding
original processes in (C.23), whereas the absorbing terms of the generators Labs, Labs can
be decomposed in single-bond terms as follows with

Labs =
∑
x∈V
y∈V res

p(x, y)αy L
abs
x,y , Labs =

∑
x∈V
y∈V res

p(x, y)αyL
abs
x,y . (C.27)

Differently from the reservoir generators, the absorbing generators do not depend on the
specific model but only on wether the process is discrete or continuous. More precisely
the single-bond absorbing terms of the generators are the following, respectively for all
discrete models and for all continuous models

Labs
x,yf(ξ) = ξx[f(ξ

x,y)− f(ξ)], Labs
x,y f(v) = vx

(
∂

∂vy
− ∂

∂vx

)
f(v). (C.28)

As in the case of closed systems, for couples of processes belonging to the same algebraic
class we have several duality relations. Duality relations hold true between a process with
reservoirs and a process with absorbing boundaries. In all cases duality functions are the
product of a bulk term and a reservoir term. These can be of three types.

• discrete-discrete case (⋄ ⋄): we have duality relations between a discrete system
with reservoirs having generator L defined in (C.23) and the corresponding discrete
system with absorbing boundaries with generator Ldual defined in (C.26):

[LDα,ρres(ξ, ·)](η) = [LdualDα,ρres(·, η)](ξ); (C.29)

for each couple of models of this type the duality function is of the form

Dα,ρres(ξ, η) =
∏
x∈V

dαx(ξx, ηx) ·
∏

y∈V res

dresρy (ξy), (C.30)

where dα is one of the single-site self-duality functions of the closed system with
generator Lbulk and can be of triangular or of orthogonal type (see tables C.1-C.2-
C.4). The single-reservoir duality function dresρ can be of triangular or orthogonal
type as well (in agreement with the form of the corresponding bulk duality function).
Both these forms are given in Table C.5.

• discrete-continuous case (⋄ ⋆): we have duality relations between a continuous
system with reservoirs having generator L defined in (C.23) and the corresponding
discrete system with absorbing boundaries with generator Ldual defined in (C.26):

[LDα,T res(ξ, ·)](ζ) = [LdualDα,T res(·, ζ)](ξ) (C.31)

for each couple of models of this type the duality function is of the form

Dα,T res(ξ, ζ) =
∏
x∈V

dαx(ξx, ζx) ·
∏

y∈V res

dresTy (ξy), (C.32)
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where dα is one of the single-site duality functions between the closed continuous
system with generator Lbulk and the closed discrete system with generator Lbulk.
This can be of triangular or of orthogonal type (see tables C.1-C.2-C.4). Also the
single-reservoir duality function dresT can be of triangular or of orthogonal type (in
agreement with the form of the corresponding bulk duality function). Both forms
are given in table C.5.

• continuous-continuous case (⋆ ⋆): we have duality relations between a continu-
ous system with reservoirs having generatorL defined in (C.23) and the correspond-
ing continuous system with absorbing boundaries with generator Ldual defined in
(C.26):

[LDα,T res(v, ·)](ζ) = [LdualDα,T res(·, ζ)](v) (C.33)

for each couple of models of this type the duality function is of the form

Dα,T res(υ, ζ) =
∏
x∈V

dαx(υx, ζx) ·
∏

y∈V res

dresTy (υy), (C.34)

where dα is one of the single-site self-duality functions of the closed continuous
system with generator Lbulk. This can be of triangular or of orthogonal type (see
tables C.1-C.2-C.4). The single-reservoir duality function dresT can be of triangular
or orthogonal type as well (in agreement with the form of the corresponding bulk
duality function). Both these forms are given in table C.5.

The specific form of the single-site bulk-duality functions dα, dα and dα above (coincid-
ing with the duality functions of the corresponding closed systems), is model dependent
and can be found, respectively, in Tables C.1-C.2-C.4. These can be chosen either in
triangular or in orthogonal form. The forms of the single-site reservoir duality terms,
given in Table C.5 below, are instead model independent. They can also be chosen in
the triangular or in the orthogonal form accordingly with the corresponding bulk duality
function. Whereas cheap-duality functions between systems with reservoirs and systems
with absorbing sites do not exist.

Instantaneous thermalization limits

Duality relations are preserved in the thermalization limit, as a consequence, each of the
thermalized processes with reservoirs is dual to the corresponding thermalized process with
absorbing sites. We first define the instantaneous thermalization limits of the processes
considered at the beginning of this section, and then we give the duality statements.

The thermalization limit of a process with generator of the form L (discrete case),
resp. L (continuous case), as in (C.23)-(C.24)-(C.25) will be denoted by Lth, resp. Lth.
These consist of a bulk term and a reservoir term as follows

Lth = Lth−bulk + Lth−res, Lth = Lth−bulk +Lth−res . (C.35)

The bulk terms Lth−bulk and Lth−bulk are the thermalization limits of Lbulk and Lbulk

(defined in (C.24)), i.e.

Lth−bulk =
1

2

∑
x,y∈V

p(x, y)Lth−bulk
x,y , Lth−bulk =

1

2

∑
x,y∈V

p(x, y)Lth−bulk
x,y (C.36)
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Triangular Orthogonal

⋄⋄ dresρy (k) = ρky (ρy − ρ)k

⋄⋆ dresTy (k) = T ky (Ty − T )k

⋆⋆ dresTy (v) = e(Ty−1)v e(Ty−1−T )v

Table C.5: Single-site reservoir duality functions. The further parameters ρ and T , on
which the orthogonal duality functions depend, take value in [0,∞), except for the case of
exclusion processes, for which ρ takes values in [0, 1]. Notice that, as for the bulk duality
function, also for the reservoir terms we have that the triangular case can be recovered
from the orthogonal one by taking the limit ρ→ 0, resp. T → 0.

with

Lth−bulk
x,y = lim

t→∞
(etL

bulk
x,y − I), Lth−bulk

x,y = lim
t→∞

(etL
bulk
x,y − I) . (C.37)

Analogously, the reservoir terms Lth−res and Lth−res are the instantaneous thermalization
limits of Lres and Lres (defined in (C.25)), i.e.

Lth−res =
∑
x∈V
y∈V res

p(x, y)αy L
th−res
x,y , Lth−res =

∑
x∈V
y∈V res

p(x, y)αyL
th−res
x,y (C.38)

with

Lth−res
x,y = lim

t→∞
(etL

res
x,y − I), Lth−res

x,y = lim
t→∞

(etL
res
x,y − I) . (C.39)

In what follows below we give a scheme of the thermailzed processes with reservoirs,
grouping them according to the algebraic class. We define the processes via the single-
bond generators, by giving both the bulk and the reservoir terms. In all cases the bulk
generator coincides with the one of the corresponding thermalized process in the closed
systems defined in Sections C.1-C.2-C.3. While the bulk generators only depend on the
intensity vector α = {αx, x ∈ v}, the reservoir generators also depend on reservoir pa-
rameters, i.e. the reservoir density profile ρres = {ρy, y ∈ V res} for discrete processes, and
the reservoir temperature profile T res = {Ty, y ∈ V res} for continuous processes

Lth−res = Lth−res
ρres , Lth−res = Lth−res

T res .

with ρy and Ty, taking values in a model-dependent subset of [0,∞).

Heisenberg Lie algebra

Fix αx ∈ (0,∞), x ∈ V , and ρy, Ty ∈ [0,∞), y ∈ V res, we define:
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⋄ Th-IRW(α):

Lth
x,yf(η) =

ηx+ηy∑
n=0

[f(η + (n− ηx)(δx − δy))− f(η)]
(
ηx+ηy
n

) αn
xα

ηx+ηy−n
y

(αx+αy)
ηx+ηy

Lth−res
x,y f(η) =

∞∑
n=0

[f(η + (n− ηx)δx)− f(η)] (ρyαx)n

n!
e−ρyαx

⋆ Dual-Th-IRW(α):

Lth
x,yf(ζ) =

[
f(ζ + αxζy−αyζx

αx+αy
(δx − δy))− f(ζ)

]
Lth−res
x,y f(ζ) = [f(ζ + (Tyαx − ζx)δx)− f(ζ)]

su(1, 1) Lie algebra

Fix αx ∈ (0,∞), x ∈ V , and ρy, Ty ∈ [0,∞), y ∈ V res, we define:

⋄ Th-SIP(α):

Lth
x,yf(η) =

ηx+ηy∑
n=0

[f(η + (n− ηx)(δx − δy))− f(η)]
(
ηx+ηy
n

)B(αx+n,ηx+ηy+αy−n)
B(αx,αy)

Lth−res
x,y f(η) =

∞∑
n=0

[f(η + (n− ηx)δx)− f(η)] Γ(αx+n)
n!Γ(αx)

ρny
(1+ρy)αx+n

⋆ Th-BEP(α):

Lth
x,yf(ζ) =

∫ 1

0

d u [f(ζ + ((u− 1)ζx + uζy)(δx − δy))− f(ζ)] uαx−1(1−u)αy−1

B(αx,αy)

Lth−res
x,y f(ζ) =

∫ ∞

0

du [f(ζ + (u− ζx)δx)− f(ζ)] 1
Γ(αx)T

αx
y
uαx−1e−u/Ty

su(2) Lie algebra

Fix αx ∈ N, x ∈ V , and ρy, Ty ∈ [0, 1], y ∈ V res, we define:
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⋄ Th-SEP(α):

Lth
x,yf(η) =

ηx+ηy∑
n=0

[f(η + (n− ηx)(δx − δy))− f(η)]
(
ηx+ηy
n

)(αx+αy−ηx−ηy
αx−n )

(αx+αy
αx

)

Lth−res
x,y f(ζ) =

∞∑
n=0

[f(η + (n− ηx)δx)− f(η)]
(
αx

n

)
(1− ρy)

αx−nρny

Duality with thermalized systems with absorbing sites

For all the processes defined above we have duality relation with a process with absorb-
ing sites. The duality relation is inherited from the duality relation between the non-
thermalized versions of these processes. The processes with absorbing sites are defined
on the extended lattice V ∪ V res and then state space that is a subset of [0,∞)V ∪V res

. In
the discrete-discrete and continuous-continuous cases dual processes behave in the bulk
as the original ones whereas the sites in the set V res are absorbing sites. More precisely
the dual processes have generators, respectively, of the forms

Lth−dual = Lth−bulk + Lth−abs, Lth−dual = Lth−bulk +Lth−abs (C.40)

with bulk terms Lth−bulk, resp. Lth−bulk, as in (C.36)-(C.37) and absorbing terms Lth−abs,
resp. Lth−abs, that are thermalization limits of Labs, resp. Labs, of the form (C.27), i.e.

Lth−abs =
∑
x∈V
y∈V res

p(x, y)αy L
th−abs
x,y , Lth−abs =

∑
x∈V
y∈V res

p(x, y)αyL
th−abs
x,y (C.41)

with
Lth−abs
x,y = lim

t→∞
(etL

abs
x,y − I), Lth−abs

x,y = lim
t→∞

(etL
abs
x,y − I) . (C.42)

As Labs
x,y , resp. L

abs
x,y , also (C.39) do not depend on the specific model but only on wether

the process is discrete or continuous, and more precisely, using (C.28) it follows that

Lth−abs
x,y f(ξ) = [f(ξ + ξx(δy − δx))− f(ξ)], Lth−abs

x,y f(v) = [f(v + vx(δy − δx))− f(v)].

As before, there are duality relations between a thermalized process with reservoirs and
the corresponding thermalized process with absorbing boundaries. The duality relation
is inherited from the one between the corresponding non-thermailzed models. as a conse-
quence the duality remains the same.

• discrete-discrete case (⋄ ⋄): we have duality relations between a discrete system
with reservoirs having generator Lth defined in (C.35)-(C.39) and the corresponding
discrete system with absorbing boundaries with generator Lth−dual defined in (C.40)-
(C.43):

[LthDα,ρres(ξ, ·)](η) = [Lth−dualDα,ρres(·, η)](ξ); (C.43)

for each couple of models of this type the duality function is of the form

Dα,ρres(ξ, η) =
∏
x∈V

dαx(ξx, ηx) ·
∏

y∈V res

dresρy (ξy), (C.44)
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where dα is one of the single-site self-duality functions of the closed system with
generator Lbulk and can be of triangular or orthogonal type (see tables C.1-C.2-
C.4)). The single-reservoir duality function dresρ can be of triangular or orthogonal
type (in agreement with the form of the corresponding bulk duality function). Both
these forms are given in Table C.5.

• discrete-continuous case (⋄ ⋆): we have duality relations between a continuous
system with reservoirs having generator Lth defined in (C.35)-(C.39) and the corre-
sponding discrete system with absorbing boundaries with generator Lth−dual defined
in (C.40)-(C.43):

[LthDα,T res(ξ, ·)](ζ) = [Lth−dualDα,T res(·, ζ)](ξ) (C.45)

for each couple of models of this type the duality function is of the form

Dα,T res(ξ, ζ) =
∏
x∈V

dαx(ξx, ζx) ·
∏

y∈V res

dresTy (ξy), (C.46)

where dα is one of the single-site duality functions between the closed continuous
system with generator Lbulk and the closed discrete system with generator Lbulk.
These can be of triangular or orthogonal type (see tables C.1-C.2-C.4). Also the
single-reservoir duality function dresT can be of triangular or orthogonal type (in
agreement with the form of the corresponding bulk duality function). Both forms
are given in table C.5.

• continuous-continuous case (⋆ ⋆): we have duality relations between a contin-
uous system with reservoirs having generator Lth defined in (C.35)-(C.39) and the
corresponding continuous system with absorbing boundaries with generatorLth−dual

defined in (C.40)-(C.43):

[LthDα,T res(v, ·)](ζ) = [Lth−dualDα,T res(·, ζ)](v) (C.47)

for each couple of models of this type the duality function is of the form

Dα,T res(υ, ζ) =
∏
x∈V

dαx(υx, ζx) ·
∏

y∈V res

dresTy (υy), (C.48)

where dα is one of the single-site self-duality functions of the closed continuous
system with generator Lbulk. These can be of triangular or of orthogonal type
(see tables C.1-C.2-C.4). Also the single-reservoir duality function dresT can be of
triangular or of orthogonal type (in agreement with the form of the corresponding
bulk duality function). Both these forms are given in table C.5.

C.5 Summary of discrete representations

In this section we provide a review of the self-duality properties for the main discrete
processes considered in Sections C.1, C.2 and C.3 and we briefly show how they emerge
from the underlying algebraic structure. More precisely, for each process we give the
abstract form of the single-bond generators written in terms of the generators of the
corresponding Lie algebra. We will then see how self-duality properties follow from a
change of representation of these operators.



C.5. SUMMARY OF DISCRETE REPRESENTATIONS 405

C.5.1 Heisenberg Lie algebra and self-duality of IRW(1)

Cheap self-duality

The single-bond generator of IRW(1) can be written in its abstract form as

Lirw(1)
x,y = −(ay − ax)(a

†
y − a†x) = −(a†y − a†x)(ay − ax) (C.49)

where a and a† are the operators working on functions f : N → R via{
af(n) = nf(n− 1)

a†f(n) = f(n+ 1)
(C.50)

with f(−1) = 0. These form a representation of the conjugate Heisenberg Lie algebra,
i.e. they satisfy the commutation relation

[a, a†] = −I (C.51)

and satisfy the duality relations

a
dcheap−−−→ a†, a†

dcheap−−−→ a (C.52)

via the function
dcheap(k, n) = δk,n k! . (C.53)

As a consequence, and since L
irw(1)
x,y has the same abstract form in terms of (a, a†), resp.

(a†, a), it follows that

Dcheap(ξ, η) =
∏
x∈V

dcheap(ξx, ηx) (C.54)

is a self-duality function of IRW(1), i.e.

Lirw(1) Dcheap

−−−→ Lirw(1) . (C.55)

Triangular self-duality

The single-bond generator of IRW(1) can be written in the same abstract form of (C.49):

Lirw(1)
x,y = −(ay − ax)(a

†
y − a†x) (C.56)

in terms of the operators working on functions f : N → R as{
af(n) = f(n) + nf(n− 1)

a†f(n) = f(n+ 1)

with f(−1) = 0. These form a representation of the conjugate Heisenberg Lie algebra,
i.e. they satisfy the commutation relation

[a, a†] = −I. (C.57)
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Moreover they are in duality relation with the operators a, a† defined in (C.50):

a
dtr−−→ a†, a†

dtr−−→ a (C.58)

via the function

dtr(k, n) =
n!

(n− k)!
1k≤n . (C.59)

As a consequence, since L
irw(1)
x,y has the same abstract form in terms of (a, a†), resp. (a†, a),

it follows that
Dtr(ξ, η) =

∏
x∈V

dtr(ξx, ηx) (C.60)

is a self-duality function of IRW(1), i.e.

Lirw(1) Dtr

−−→ Lirw(1) . (C.61)

Orthogonal self-duality

The single-bond generator of IRW(1) can be written in the same abstract form of (C.49):

Lirw(1)
x,y = −(Ay − Ax)(A

†
y − A†

x) = −(A†
y − A†

x)(Ay − Ax) (C.62)

in terms of the operators working on functions f : N → R as{
A†f(n) = f(n)− n

λ
f(n− 1)

Af(n) = λf(n)− λf(n+ 1)

with f(−1) = 0. These form a representation of the Heisenberg Lie algebra, i.e. they
satisfy the commutation relation

[A,A†] = I (C.63)

and are in duality relation with the operators a, a† defined in (C.50):

a
dorth−−→ A, a†

dorth−−→ A† (C.64)

via the triangular single-site orthogonal self-duality function of IRW(1)

dorth(k, n) = eλCk(n;λ) (C.65)

where Ck(·) are the Charlier polynomials defined in (C.11). As a consequence, since L
irw(1)
x,y

has the same abstract form in terms of (a, a†), resp. (A†, A), it follows that

Dorth(ξ, η) =
∏
x∈V

dorth(ξx, ηx) (C.66)

is a self-duality function of IRW(1), i.e.

Lirw(1) Dorth

−−−→ Lirw(1) . (C.67)
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C.5.2 su(1, 1) Lie algebra and self-duality of SIP(α)

Cheap self-duality

The single-bond generator of SIP(α) can be written in its abstract form as

Lsip(α)
x,y = K+

x K
−
y +K−

x K
+
y − 2K0

xK
0
y +

α2

2
(C.68)

where the operators K±, K0, working on functions f : N → R as
K+f(n) = (α + n)f(n+ 1),

K−f(n) = nf(n− 1),

K0f(n) =
(
α
2
+ n
)
f(n)

(C.69)

with f(−1) = 0. These form a representation of the conjugate su(1, 1) Lie algebra, i.e.
they satisfy the commutation relations

[K±, K0] = ±K± ,

[K+, K−] = 2K0 (C.70)

and satisfy the duality relations

K+ dcheap−−−→ K−, K− dcheap−−−→ K+, K0 dcheap−−−→ K0 (C.71)

via the function

dcheap(k, n) =
Γ(α)k!

Γ(α + k)
δn,k . (C.72)

As a consequence, since L
sip(α)
x,y has the same abstract form in terms of (K+, K−, K0),

resp. (K−, K+, K0), it follows that

Dcheap(ξ, η) =
∏
x∈V

dcheap(ξx, ηx) (C.73)

is a self-duality function of SIP(α), i.e.

Lsip(α) Dcheap

−−−→ Lsip(α) . (C.74)

Triangular self-duality

The single-bond generator of SIP(α) can be written in the same abstract form of (C.68)
as

Lsip(α)
x,y = k+x k

−
y + k−x k

+
y − 2k0xk

0
y +

α2

2
(C.75)

in terms of the operators k±, k0. These work on functions f : N → R and are defined by
k+f(n) = (α + n)f(n+ 1)− 2(α

2
+ n)f(n) + nf(n− 1)

k−f(n) = nf(n− 1)

k0f(n) = (n+ α
2
)f(n)− nf(n− 1)

(C.76)
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with f(−1) = 0. k± and k0 form a representation of the conjugate su(1, 1) Lie algebra,
i.e. they satisfy the commutation relations

[k±, k0] = ±k± ,

[k+, k−] = 2k0 (C.77)

and are in duality relation with the operators K±, K0 defined in (C.69)

K+ dtr−−→ k−, K− dtr−−→ k+, K0 dtr−−→ k0. (C.78)

via the function

dtr(k, n) =
n!

(n− k)!

Γ(α)

Γ(α + k)
1{k≤n} . (C.79)

As a consequence, since L
sip(α)
x,y has the same abstract form in terms of (K+, K−, K0),

resp. (k−, k+, k0), it follows that

Dtr(ξ, η) =
∏
x∈V

dtr(ξx, ηx) (C.80)

is a self-duality function of SIP(α), i.e.

Lsip(α) Dtr

−−→ Lsip(α) . (C.81)

Orthogonal self-duality

The single-bond generator of SIP(α) can be written in the same abstract form of (C.68)
as

Lsip(α)
x,y = K +

x K −
y + K −

x K +
y − 2K 0

x K 0
y + α2

2
(C.82)

in terms of the operators K ±, K 0. These work on functions f : N → R and are defined
by 

K +f(n) = ρ(α + n)f(n+ 1) + (1 + ρ)(α + 2n)f(n)− (1 + ρ)nf(n− 1)

K −f(n) = ρ(α + n)f(n+ 1) + ρ(α + 2n)f(n)− ρnf(n− 1)

K 0f(n) = ρ(α + n)f(n+ 1) + (2 + ρ)(n+ α
2
)f(n)− (1 + ρ)nf(n− 1)

(C.83)

with f(−1) = 0. They form a representation of the su(1, 1) Lie algebra, i.e. they satisfy
the commutation relations

[K 0,K ±] = ±K ±

[K +,K −] = −2K 0 .

Moreover they are in duality relations with the operators K±, K0 defined in (C.69)

K+ dorth−−→ K +, K− dorth−−→ K −, K0 dorth−−→ K 0 (C.84)

via the function
d(n, x) = (1 + ρ)αMn(x;α,

ρ
1+ρ

) ,
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whereMn(x;α, p) are the Meixner polynomials defined in (C.16). As a consequence, since

L
sip(α)
x,y has the same abstract form in terms of (K+, K−, K0), resp. (K +,K −,K 0), it

follows that

Dorth(ξ, η) =
∏
x∈V

dorth(ξx, ηx) (C.85)

is a self-duality function of SIP(α), i.e.

Lsip(α) Dorth

−−−→ Lsip(α) . (C.86)

C.5.3 su(2) Lie algebra and self-duality of SEP(α)

Cheap self-duality

The single-bond generator of SEP(α) can be written in its abstract form as

Lsep(α)
x,y = J+

x J
−
y + J−

x J
+
y + 2J0

xJ
0
y − α2

2
(C.87)

where the operators J±, J0 work on functions f : {0, . . . , α} → R and are defined by
J+f(n) = (α− n)f(n+ 1)

J−f(n) = nf(n− 1)

J0f(n) = (−α
2
+ n)f(n)

(C.88)

with f(−1) = 0. These form a representation of the conjugate su(2) Lie algebra, i.e. they
satisfy the commutation relations

[J±, J0] = ±J±

[J+, J−] = −2J0. (C.89)

and satisfy the duality relations

J+ dcheap−−−→ J−, J− dcheap−−−→ J+, J0 dcheap−−−→ J0. (C.90)

via the function

dcheap(k, n) =
Γ(α− k + 1)k!

Γ(α)
δn,k . (C.91)

As a consequence, since L
sep(α)
x,y has the same abstract form in terms of (J+, J−, J0), resp.

(J−, J+, J0), it follows that we have that

Dcheap(ξ, η) =
∏
x∈V

dcheap(ξx, ηx) (C.92)

is a self-duality function of SEP(α), i.e.

Lsep(α) Dcheap

−−−→ Lsep(α) . (C.93)
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Triangular self-duality

The single-bond generator of SEP(α) can be written in the same abstract form of (C.87)
as

Lsep(α)
x,y = j+x j

−
y + j−x j

+
y + 2j0xj

0
y − α2

2
(C.94)

where the operators j±, j0 work on functions f : {0, . . . , α} → R and are defined by
j+f(n) = (α− n)f(n+ 1)− 2(α

2
− n)f(n)− nf(n− 1)

j−f(n) = nf(n− 1)

j0f(n) = (n− α
2
)f(n)− nf(n− 1)

(C.95)

with f(−1) = 0. These form a representation of the conjugate su(2) Lie algebra, i.e. they
satisfy the commutation relations

[j±, j0] = ±j±

[j+, j−] = −2j0 . (C.96)

Moreover they are in duality relation with the operators J±, J0 defined in (C.88)

J+ dtr−−→ j−, J− dtr−−→ j+, J0 dtr−−→ j0. (C.97)

via the function

dtr(k, n) =
n!

(n− k)!

Γ(α− k + 1)

Γ(α)
1{k≤n} . (C.98)

As a consequence, since L
sep(α)
x,y has the same abstract form in terms of (J+, J−, J0), resp.

(j−, j+, j0), it follows that we have that

Dtr(ξ, η) =
∏
x∈V

dtr(ξx, ηx) (C.99)

is a self-duality function of SEP(α), i.e.

Lsep(α) Dtr

−−→ Lsep(α) . (C.100)

Orthogonal self-duality

The single-bond generator of SEP(α) can be written in the same abstract form of (C.87)
as

Lsep(α)
x,y = J+

x J
−
y + J−

x J
+
y + 2J0

xJ
0
y − α2

2
(C.101)

where the operators J±, J0 working on functions f : {0, . . . , α} → R as
J+f(n) = ρ(α− n)f(n+ 1) + (1− ρ)(α− 2n)f(n)− n

ρ
(1− ρ)2f(n− 1)

J−f(n) = ρ(α− n)f(n+ 1) + ρ(α− 2n)f(n) + ρnf(n− 1)

J0f(n) = −ρ(α− n)f(n+ 1) + (n− α
2
)(1− 2ρ)f(n)− n(1− ρ)f(n− 1)

(C.102)
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with f(−1) = 0. These form a representation of the su(2) Lie algebra, i.e. they satisfy
the commutation relations

[J0,J±] = ±J±

[J+,J−] = 2J0 .

Moreover they are in duality relation with the operators J±, J0 defined in (C.88)

J+ dorth−−→ J+, J− dorth−−→ J−, J0 dorth−−→ J0 (C.103)

via the function
dorth(k, n) = (1− ρ)αKk(n;α, ρ) ,

where Kn(x;α, p) are the Krawtchouk polynomials defined in (C.22). As a consequence,

since L
sep(α)
x,y has the same abstract form in terms of (J+, J−, J0), resp. (J+,J−,J0), it

follows that
Dorth(ξ, η) =

∏
x∈V

dorth(ξx, ηx) (C.104)

is a self-duality function of SEP(α), i.e.

Lsep(α) Dorth

−−−→ Lsep(α) . (C.105)

C.6 Summary of continuous representations

In this section we review again some of the duality properties considered in Sections C.1,
C.2 and C.3. Here we will focus on duality properties between discrete processes and
continuous ones belonging to the same algebraic class. As in Section C.5 the goal here is
to show the emergence of duality as a consequence of the algebraic structure. At this aim,
for each of the continuous processes we will review the abstract form of the single-bond
generator written in terms of the generators of the corresponding Lie algebra. We will
then see how duality with the corresponding discrete process emerges by passing from a
continuous to a discrete representation of these operators.

C.6.1 Heisenberg Lie algebra and duality between IRW(1) and
the deterministic process

Triangular duality

The single-bond generator of the deterministic process with generator L defined in (III.3)
can be written in abstract form as

Lx,y = (A†
y −A†

x)(Ay −Ax) (C.106)

in terms of the operators A and A† working on smooth functions f : [0,∞) → R and
defined by {

A†f(z) = zf(z),

Af(z) = ∂
∂z
f(z).

(C.107)
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These form a representation of the Heisenberg Lie algebra, i.e. they satisfy the commu-
tation relations

[A,A†] = I. (C.108)

Moreover they are in duality relations with the operators a and a† defined in (C.50)

a
dtr−−→ A, a†

dtr−−→ A†. (C.109)

via the function

dtr(k, z) = zk . (C.110)

As a consequence, using the fact that L
irw(1)
x,y and Lx,y have the same abstract form, if

written, respectively, in terms of (a, a†) and (A,A†), it follows that

Dtr(ξ, η) =
∏
x∈V

dtr(ξx, ηx) (C.111)

is a duality function between the deterministic process and IRW(1), i.e.

Lirw(1) Dtr

−−→ L . (C.112)

C.6.2 su(1, 1) Lie algebra and duality between SIP(α) and BEP(α)

Triangular duality

The single-bond generator of BEP(α) can be written in abstract form as

Lbep(α)
x,y = K +

x K −
y + K −

x K +
y − 2K 0

x K 0
y + α2

2
(C.113)

where the operators K ±, K 0 working on smooth functions f : [0,∞) → R and defined
by 

K +f(z) = zf(z)

K −f(z) = zf ′′(z) + αf ′(z)

K 0f(z) = zf ′(z) + α
2
f(z).

(C.114)

These form a representation of the su(1, 1) Lie algebra, i.e. they satisfy the commutation
relations

[K +,K −] = −2K 0,

[K 0,K ±] = ±K ±.

K ±, K 0 are in duality relations with the operators K±, K0 defined in (C.69)

K+ dtr−−→ K +, K− dtr−−→ K −, K0 dtr−−→ K 0. (C.115)

via the function

dtr(k, z) =
Γ(α)

Γ(α + k)
zk . (C.116)
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As a consequence, using the fact that L
sip(α)
x,y and L

bep(α)
x,y have the same abstract form, if

written, respectively, in terms of (K+, K−, K0) and (K +,K −,K 0), it follows that

Dtr(ξ, η) =
∏
x∈V

dtr(ξx, ηx) (C.117)

is a duality function between BEP(α) and SIP(α), i.e.

Lsip(α) Dtr

−−→ Lbep(α) . (C.118)

Orthogonal duality

We recall the definition given in (C.95) of the operators k±, k0 that form a representation
of the conjugate su(1, 1) Lie algebra, i.e. they satisfy the commutation relations

[k±, k0] = ±k± ,

[k+, k−] = 2k0 (C.119)

as a consequence also −k±, k0 satisfy the same commutation relations. These are in
duality relation with the operators K ±, K 0 defined in (C.114)

−k+
dorth−−→ K +, −k−

dorth−−→ K −, k0
dorth−−→ K 0 (C.120)

via the function

dorth(k, z) =
k! Γ(α)

Γ(α + k)
Lk(z;α− 1) = 1F1

(
−k
α

∣∣∣∣ z) ,

where Lk(z;α) are the Laguerre polynomials defined in (C.18). As a consequence, using

the fact that L
sip(α)
x,y and L

bep(α)
x,y have the same abstract form, if written, respectively, in

terms of (−k+,−k−, k0) and (K +,K −,K 0), it follows that

Dorth(ξ, η) =
∏
x∈V

dorth(ξx, ηx) (C.121)

is a duality function between BEP(α) and SIP(α), i.e.

Lsip(α) Dorth

−−−→ Lbep(α) . (C.122)

C.6.3 su(1, 1) Lie algebra and duality between SIP(12) and BMP

Triangular duality

The single-bond generator of BMP can be written in its abstract form as

Lbmp
x,y = K+

xK−
y +K+

y K−
x − 2K0

xK0
y +

1

8
(C.123)
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in terms of the operators K±, K0 working on smooth compactly supported functions
f : R → R and defined by 

K+f(z) = 1
2
z2f(z)

K−f(z) = 1
2
f ′′(z)

K0f(z) = 1
4
(2zf ′(z) + f(z)).

(C.124)

These form a representation of the Lie algebra su(1, 1), i.e., they satisfy the commutation
relations

[K0,K±] = ±K±,

[K−,K+] = 2K0 (C.125)

and are in duality relation with the operators K±, K0 defined in (C.69) with α = 1
2
:

K+ dtr−−→ K+, K− dtr−−→ K−, K0 dtr−−→ K0 (C.126)

via the function

dtr(k, z) =
z2k

(2k − 1)!!
. (C.127)

As a consequence, using the fact that L
sip(1/2)
x,y and Lbmp

x,y have the same abstract form, if
written, respectively, in terms of (K+, K−, K0) and (K+,K−,K0), it follows that

Dtr(ξ, η) =
∏
x∈V

dtr(ξx, ηx) (C.128)

is a duality function between BMP(α) and SIP(1
2
), i.e.

Lsip(1/2) Dtr

−−→ Lbmp . (C.129)

Orthogonal duality

The single-bond generator of SIP(1/2) can be written in the same abstract form of (C.68)
as

Lx,y = k+
x k

−
y + k−

x k
+
y − 2k0

xk
0
y +

α2

2
(C.130)

in terms of the operators k±, k0. These work on smooth functions f : N → R and are
defined by 

k+f(n) = 2n+1
8
f(n+ 1) +

(
n+ 1

4

)
f(n)− nf(n− 1)

k−f(n) = 4nf(n− 1)

k0f(n) = (n+ 1
4
)f(n) + 2nf(n− 1)

(C.131)

with f(−1) = 0. These form a representation of the conjugate su(1, 1) Lie algebra, i.e.
they satisfy the commutation relations

[k±,k0] = ±k±

[k+,k−] = 2k0 .
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Then the operators K±, K0 defined in (C.124) are in duality relation with the operators
k±, k0

k+ dorth−−→ K+, k− dorth−−→ K−, k0 dorth−−→ K0

via the function

dorth(k, z) =
H2k(z)

(2k − 1)!!
,

where Hk(z) are the Hermite polynomials defined in (C.13). As a consequence, using the

fact that L
sip(1/2)
x,y and Lbmp

x,y have the same abstract form, if written, respectively, in terms
of (k+,k−,k0) and (K+,K−,K0), it follows that

Dorth(ξ, η) =
∏
x∈V

dorth(ξx, ηx) (C.132)

is a duality function between SIP(1
2
) and BMP(α), i.e.

Lsip(1/2) Dorth

−−−→ Lbmp . (C.133)
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polynomials and their q-analogues. Springer Science & Business Media, 2010.

[148] GP Korchemsky. Bethe ansatz for qcd pomeron. Nuclear Physics B, 443(1-2):255–
301, 1995.

[149] Ulrich Krengel. Ergodic theorems, volume 6. Walter de Gruyter, 2011.

[150] Jeffrey Kuan. Stochastic duality of asep with two particle types via symmetry of
quantum groups of rank two. Journal of Physics A: Mathematical and Theoretical,
49(11):115002, 2016.

[151] Jeffrey Kuan. A multi-species asep and-tazrp with stochastic duality. International
Mathematics Research Notices, 2018(17):5378–5416, 2018.

[152] Kevin Kuoch and Frank Redig. Ergodic theory of the symmetric inclusion process.
Stochastic Processes and their Applications, 126(11):3480–3498, 2016.

[153] Thomas G Kurtz. Approximation of population processes. SIAM, 1981.

[154] Claudio Landim, Aniura Milanés, and Stefano Olla. Stationary and nonequilibrium
fluctuations in boundary driven exclusion processes. arXiv preprint math/0608165,
2006.

[155] Günter Last and Mathew Penrose. Lectures on the Poisson process, volume 7.
Cambridge University Press, 2017.

[156] Gregory F Lawler and Vlada Limic. Random walk: a modern introduction, volume
123. Cambridge University Press, 2010.

[157] Alexandre Lazarescu. Exact large deviations of the current in the asymmetric simple
exclusion process with open boundaries. arXiv preprint arXiv:1311.7370, 2013.

[158] Alexandre Lazarescu. Matrix ansatz for the fluctuations of the current in the
asep with open boundaries. Journal of Physics A: Mathematical and Theoretical,
46(14):145003, 2013.

[159] Alexandre Lazarescu and Kirone Mallick. An exact formula for the statistics of the
current in the tasep with open boundaries. Journal of Physics A: Mathematical and
Theoretical, 44(31):315001, 2011.

[160] Jean-François Le Gall. Brownian motion, martingales, and stochastic calculus, vol-
ume 274. Springer, 2016.

[161] Yves Le Jan and Olivier Raimond. Sticky flows on the circle and their noises.
Probability Theory and Related Fields, 129(1):63–82, 2004.

[162] Yves Le Jan, Olivier Raimond, et al. Flows, coalescence and noise. The Annals of
Probability, 32(2):1247–1315, 2004.
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