A monotonicity property of the power function of multivariate tests

Piet Groeneboom and Donald R. Truax
Delft University of Technology and University of Oregon

Abstract

Let $S=\sum_{k=1}^{n} X_{k} X_{k}^{\prime}$, where the X_{k} are independent observations from a 2-dimensional normal $N\left(\mu_{k}, \Sigma\right)$ distribution, and let $\Lambda=\sum_{k=1}^{n} \mu_{k} \mu_{k}^{\prime} \Sigma^{-1}$ be a diagonal matrix of the form λI, where $\lambda \geq 0$ and I is the identity matrix. It is shown that the density ϕ of the vector $\tilde{\ell}=\left(\ell_{1}, \ell_{2}\right)$ of characteristic roots of S can be written as $G\left(\lambda, \ell_{1}, \ell_{2}\right) \phi_{0}(\tilde{\ell})$, where G satisfies the FKG condition on \mathbb{R}_{+}^{3}. This implies that the power function of tests with monotone acceptance region in ℓ_{1} and ℓ_{2}, i.e. a region of the form $\left\{g\left(\ell_{1}, \ell_{2}\right) \leq c\right\}$, where g is nondecreasing in each argument, is nondecreasing in λ. It is also shown that the density ϕ of $\left(\ell_{1}, \ell_{2}\right)$ does not allow a decomposition $\phi\left(\ell_{1}, \ell_{2}\right)=G\left(\lambda, \ell_{1}, \ell_{2}\right) \phi_{0}(\tilde{\ell})$, with G satisfying the FKG condition, if $\Lambda=\operatorname{diag}(\lambda, 0)$ and $\lambda>0$, implying that this approach to proving monotonicity of the power function fails in general.

Key words and phrases: monotonicity of power functions, noncentral Wishart matrix, characteristic roots, orthogonal groups, Euler angles, correlation inequalities, hypergeometric functions of matrix arguments, FKG inequality, pairwise total positive of order two.

1 Introduction

Let X be a normally distributed random $p \times n$ matrix with expectation $E X=\mu$ and independent columns with common covariance matrix Σ. Here and in the sequel we assume $n \geq p$. Let $\tilde{\ell}$ denote the vector of characteristic roots of $X X^{\prime}$ and let $\tilde{\lambda}$ denote the vector of characteristic roots of the noncentrality matrix $\mu \mu^{\prime} \Sigma^{-1}$. It is shown in Perlman and Olkin (1980) that any test of the hypothesis $\mu=0$ versus $\mu \neq 0$ with acceptance region $\{g(\tilde{\ell}) \leq c\}$, where g is nondecreasing in each argument, is unbiased. Furthermore they make the conjecture that the power function of such a test is nondecreasing in each component λ_{i} of the vector of noncentrality parameters $\tilde{\lambda}$ and suggest that this result could be proved by showing that the density of ϕ of $\tilde{\ell}$ can be written $\phi(\tilde{\ell})=G(\tilde{\lambda} \tilde{\ell}) \phi_{0}(\tilde{\ell})$, where G is pairwise $T P_{2}$ (totally positive of order 2) in the pairs $\left(\ell_{i}, \ell_{j}\right), i \neq j$, and $\left(\lambda_{i}, \ell_{j}\right), 1 \leq i, j \leq p$ (loc. cit. Proposition 2.6 (ii) and Remark 3.2).

We show in this note that the suggested $T P_{2}$ property does not hold in general (see section 4), but that the following partial result of this type does hold: if the dimension of the observations equals 2 and $\tilde{\lambda}=(\lambda, \lambda)$, then the density ϕ of $\tilde{\ell}$ can be written $\phi(\tilde{\ell})=$ $G(\lambda, \tilde{\ell}) \phi_{0}(\tilde{\ell})$, where G satisfies the $F K G$ condition on \mathbb{R}_{+}^{3} (we use the notation $\mathbb{R}_{+}=\{x \in$ $\mathbb{R}: x \geq 0\})$. This means

$$
\begin{equation*}
G\left(\lambda_{1}, \tilde{\ell}\right) G\left(\lambda_{2}, \tilde{\ell}\right) \leq G\left(\lambda_{1} \wedge \lambda_{2}, \tilde{\ell}_{1} \wedge \tilde{\ell}_{2}\right) G\left(\lambda_{1} \vee \lambda_{2}, \tilde{\ell}_{1} \vee \tilde{\ell}_{2}\right), \tag{1.1}
\end{equation*}
$$

for $\left(\lambda_{i}, \tilde{\ell}_{i}\right) \in \mathbb{R}_{+}^{3}, i=1,2$. Here we use the conventions $x \wedge y=\min (x, y), x \vee y=\max (x, y)$, if $x, y \in \mathbb{R}$ and $x \wedge y=\left(x_{1} \wedge y_{1}, \ldots, x_{n} \wedge y_{n}\right), x \vee y=\left(x_{1} \vee y_{1}, \ldots, x_{n} \vee y_{n}\right)$, if $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$. since in our case the function G is strictly positive on \mathbb{R}_{+}^{3}, proving that G satisfies the FGK condition on \mathbb{R}_{+}^{3} is equivalent to proving that G is pairwise $T P_{2}$ on \mathbb{R}_{+}^{3} (cf. Perlman and Olkin (1980), Remark 2.3). This means that the power function is monotone "on the diagonal" in the 2-dimensional case. We believe that this property holds generally (i.e. also for dimensions higher than 2), but were not able to adapt our method of proof to the higher dimensional case.

The key lemmas in our approach are given in Section 2. They give integral inequalities for diagonal elements of an orthogonal matrix under densities of an exponential type with respect to Haar measure on the orthogonal group. These lemmas are similar in spirit to correlation inequalities for spin configurations in Kelly and Sherman (1968).

The results in Section 3 follow easily from the Lemmas in Section 2 by using the integral representation of the hypergeometric function ${ }_{0} F_{1}\left(\frac{1}{2} n ; \frac{1}{4} \Lambda, L\right)$, where

$$
\Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}\right), L=\operatorname{diag}\left(\ell_{1}, \ell_{2}\right)
$$

which is given in James (1961). If $\Lambda=\lambda I$, with $\lambda \geq 0$, this integral reduces to an integral over the orthogonal group $O(n)$ (instead of a repeated integral involving the orthogonal groups $O(2)$ and $O(n))$. The density $\phi(\tilde{\ell})$ of the characteristic roots ℓ_{1} and ℓ_{2} of $X X^{\prime}$ can then be written

$$
\phi(\tilde{\ell})=G(\lambda, \tilde{\ell}) \phi_{0}(\tilde{\ell})
$$

where

$$
G(\lambda, \tilde{\ell})={ }_{0} F_{1}\left(\frac{1}{2} n ; \frac{1}{4} \lambda I, L\right) \exp (-\lambda)
$$

and ϕ_{0} is the density under the null hypothesis $\mu=0$. The $T P_{2}$ properties of the function G follow from the corresponding properties of the hypergeometric function ${ }_{0} F_{1}\left(\frac{1}{2} n ; \lambda I, L\right)$. The
monotonicity result for the power function follows from this by using the $F K G$ inequality due to Fortuin, Ginibre and Kasteleyn (1971). For an exposition on the $F K G$ inequality and its uses we refer to Kemperman (1977) and Perlman and Olkin (1980).

2 Some preparatory lemmas

Lemma 2.1 Let $a_{1} \geq a_{2} \geq 0$ and let H be an $n \times n$ orthogonal matrix, where $n \geq 2$. Then the diagonal elements h_{11} and h_{22} have a non-negative covariance under the density

$$
\begin{equation*}
f\left(h_{11}, h_{22}\right)=\exp \left\{\sum_{i=1}^{2} a_{i} h_{i i}\right\} / \int_{O(n)} \exp \left\{\sum_{i=1}^{2} a_{i} h_{i i}\right\} d H \tag{2.1}
\end{equation*}
$$

with respect to Haar measure on $O(n)$, where $d H$ denotes Haar measure on $O(n)$.

Proof. First consider the special orthogonal group $S O(n)$ of orthogonal matrices with determinant equal to one. Any $H \in S O(n)$ can be written as a product $H_{n-1} \ldots H_{1}$ of rotations H_{1}, \ldots, H_{n-1}, where

$$
\begin{equation*}
H_{k}=H^{(1)}\left(\theta_{1 k}\right) \ldots H^{(k)}\left(\theta_{k k}\right) \tag{2.2}
\end{equation*}
$$

and $H^{(i)}\left(\theta_{i k}\right)$ is a rotation by the angle $\theta_{i k}$ in the $\left(x_{i}, x_{i+1}\right)$-plane, oriented such that the rotation from the i -th unit vector e_{i} to the $(i+1)^{t h}$ unit vector e_{i+1} is positive. The range of the angles $\theta_{i k}$ is as follows:

$$
\begin{cases}0 \leq \theta_{i k}<2 \pi, & i=1 \tag{2.3}\\ 0 \leq \theta_{i k}<\pi, & i>1\end{cases}
$$

These parameters are called Euler angles, see e.g. Vilenkin (1968), chapter IX. In terms of these parameters, Haar measure on $S O(n)$ is given by

$$
\begin{equation*}
d H=c_{n} \prod_{k=1}^{n-1} \prod_{j=1}^{k} \sin ^{j-1} \theta_{j k} d \theta_{j k} \tag{2.4}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{n}=\prod_{k=1}^{n} \Gamma(k / 2) /\left(2 \pi^{k / 2}\right) \tag{2.5}
\end{equation*}
$$

see Vilenkin (1968), p. 439. By induction it is seen that

$$
\begin{equation*}
h_{n 1}=\prod_{k=1}^{n-1} \sin \theta_{k k}, h_{1 n}=(-1)^{n-1} \prod_{k=1}^{n-1} \sin \theta_{k, n-1} . \tag{2.6}
\end{equation*}
$$

Note that the distribution of $\left(h_{11}, h_{22}\right)$ under Haar measure on the orthogonal group is the same as the distribution of $\left(\epsilon_{1} h_{n 1}, \epsilon_{2} h_{1 n}\right)$, where ϵ_{1} and ϵ_{2} are independent random variables with the same distribution $P\left\{\epsilon_{i}=1\right\}=P\left\{\epsilon_{i}=-1\right\}=\frac{1}{2}$ and $\left(h_{n 1}, h_{1 n}\right)$ is distributed according to Haar measure on $S O(n)$, independent of $\left(\epsilon_{1}, \epsilon_{2}\right)$. Thus, taking the expectation
with respect to $\left(\epsilon_{1}, \epsilon_{2}\right)$, we get

$$
\begin{aligned}
& \int_{O(n)} h_{11} h_{22} f\left(h_{11}, h_{22}\right) d H \\
& =c_{1} E\left\{\epsilon_{1} \epsilon_{2} \int_{0}^{2 \pi} d \theta_{11} \int_{0}^{2 \pi} d \theta_{1, n-1} \int_{0}^{\pi} d \theta_{22} \int_{0}^{\pi} d \theta_{2, n-1}\right. \\
& \ldots \int_{0}^{\pi} \prod_{k=1}^{n=1}\left(\sin \theta_{k k} \sin \theta_{k, n-1}\right)\left(\sin \theta_{n-1, n-1}\right)^{n-2} \\
& \\
& \quad \prod_{k=1}^{n-2}\left(\sin ^{k-1} \theta_{k k} \sin ^{k-1} \theta_{k, n-1}\right) \\
& \left.\quad \cdot f\left(\epsilon_{1} a_{1} \prod_{k=1}^{n-1} \sin \theta_{k k}, \epsilon_{2} a_{2} \prod_{k=1}^{n-1} \sin \theta_{k, n-1}\right) d \theta_{n-1, n-1}\right\} \\
& =c_{2} \int_{0}^{\pi / 2} d \theta_{11} \int_{0}^{\pi / 2} d \theta_{1, n-1} \int_{0}^{\pi / 2} d \theta_{22} \int_{0}^{\pi / 2} d \theta_{2, n-1} \\
& \quad \ldots \int_{0}^{\pi / 2} \quad \prod_{k=1}^{n-1}\left(\sin \theta_{k k} \sin \theta_{k, n-1}\right) \sinh \left(a_{1} \prod_{k=1}^{n-1} \sin \theta_{k k}\right) \\
& \\
& \quad \cdot \sinh \left(a_{2} \prod_{k=1}^{n-1} \sin \theta_{k, n-1} \prod_{k=1}^{n-2} \sin ^{k-1} \theta_{k k} \sin ^{k-1} \theta_{k, n-1}\right) \\
& \\
& \quad \cdot \sin ^{n-2} \theta_{n-1, n-1} d \theta_{n-1, n-1}
\end{aligned}
$$

Note that for $n=2$ there is only one parameter θ_{11}, for $n=3$ there are three parameters $\theta_{11}, \theta_{22}, \theta_{33}, \theta_{13}, \theta_{23}$, etc. The constants c_{1} and c_{2} are defined by

$$
\begin{aligned}
c_{1}=\{ & \int_{0}^{2 \pi} d \theta_{11} \int_{0}^{2 \pi} d \theta_{1, n-1} \int_{0}^{\pi} d \theta_{22} \int_{0}^{\pi} d \theta_{2, n-1} \\
& \left.\ldots \int_{0}^{\pi} \prod_{k=1}^{n-2}\left(\sin ^{k-1} \theta_{k k} \sin ^{k-1} \theta_{k, n-1}\right) \sin ^{n-2} \theta_{n-1, n-1} d \theta_{n-1, n-1}\right\}^{-1}
\end{aligned}
$$

and

$$
\begin{aligned}
& c_{2}=\left\{\int_{0}^{\pi / 2} d \theta_{11} \int_{0}^{\pi / 2} d \theta_{1, n-1}\right. \\
& \ldots \int_{0}^{\pi / 2} \prod_{0}^{\pi / 2} \cosh \left(a_{1} \prod_{k=1}^{n-1} \sin \theta_{k k}\right) \cosh \left(a_{2} \prod_{k=1}^{n-1} \sin \theta_{k, n-1}\right) \\
&\left.\cdot\left(\prod_{k=1}^{n-2} \sin ^{k-1} \theta_{k k} \sin ^{k-1} \theta_{k, n-1}\right) \sin ^{n-2} \theta_{n-1, n-1} d \theta_{n-1, n-1}\right\}^{-1}
\end{aligned}
$$

Now let $S=[0, \pi / 2]^{2 n-3}$ and define the density q on S by

$$
q\left(\theta_{11}, \ldots, \theta_{n-1, n-1}, \theta_{1, n}, \ldots, \theta_{n-2, n-1}\right)
$$

$$
\begin{gather*}
=c_{2} \cosh \left(a_{1} \prod_{k=1}^{n-1} \sin \theta_{k k}\right) \cosh \left(a_{2} \prod_{k=1}^{n-1} \sin \theta_{k, n-1}\right) \tag{2.7}\\
\cdot\left\{\prod_{k=1}^{n-2} \sin ^{k-1} \theta_{k k} \sin ^{k-1} \theta_{k, n-1}\right\} \sin ^{n-2} \theta_{n-1, n-1}
\end{gather*}
$$

Let $\tilde{\theta}=\left(\theta_{11}, \ldots, \theta_{n-1, n-1}, \theta_{1, n-1}, \ldots, \theta_{n-2, n-1}\right)$, and

$$
\begin{gather*}
g_{1}(\tilde{\theta})=\left(\prod_{k=1}^{n-1} \sin \theta_{k k}\right) \tanh \left(a_{1} \prod_{k=1}^{n-1} \sin \theta_{k k}\right) \tag{2.8}\\
g_{2}(\tilde{\theta})=\left(\prod_{k=1}^{n-1} \sin \theta_{k, n-1}\right) \tanh \left(a_{2} \prod_{k=1}^{n-1} \sin \theta_{k, n-1}\right) \tag{2.9}
\end{gather*}
$$

Then

$$
\begin{align*}
& \int_{O(n)} h_{11} h_{22} f\left(h_{11}, h_{22}\right) d H \\
& =\int_{0}^{\pi / 2} d \theta_{11} \ldots \int_{0}^{\pi / 2}\left(\prod_{k=1}^{n-1} \sin \theta_{k k} \sin \theta_{k, n-1}\right) \\
& \quad \cdot \tanh \left(a_{1} \prod_{k=1}^{n-1} \sin \theta_{k k}\right) \tanh \left(a_{2} \prod_{k=1}^{n-1} \sin \theta_{k, n-1}\right) q(\tilde{\theta}) d \theta_{n-1, n-1} \tag{2.10}\\
& =E\left\{g_{1}(\theta) g_{2}(\theta)\right\}
\end{align*}
$$

where the expectation is taken with respect to the density q on S.
The density q is pairwise $T P_{2}$, since $=\frac{\partial^{2}}{\partial \theta_{i j} \partial \theta_{k l}} \log q(\tilde{\theta}) \geq 0$ for any pair of different components $\theta_{i j}$ and $\theta_{k l}$ of $\tilde{\theta}$, and since $q>0$ on S. Thus, again by the fact that $q>0$ on S, it follows that q satisfies the $F K G$ condition on S (cf. Perlman and Olkin (1980), Remark 2.3). Since g_{1} and g_{2} are both nondecreasing in each argument on S, the $F K G$ inequality implies

$$
\begin{equation*}
E\left\{g_{1}(\tilde{\theta}) g_{2}(\tilde{\theta})\right\} \geq E g_{1}(\tilde{\theta}) E g_{2}(\tilde{\theta}) \tag{2.11}
\end{equation*}
$$

(see e.g. Perlman and Olkin (1980), Remark 2.5). By computations similar to those used in computing $\int_{O(n)} h_{11} h_{22} f\left(h_{11}, h_{22}\right) d H$ it is seen that

$$
\begin{align*}
& \int_{O(n)} h_{11} f\left(h_{11}, h_{22}\right) d H=E g_{1}(\tilde{\theta}) \tag{2.12}\\
& \int_{O(n)} h_{22} f\left(h_{11}, h_{22}\right) d H=E g_{2}(\tilde{\theta}) \tag{2.13}
\end{align*}
$$

The result now follows from (2.10) to (2.13).

Lemma 2.2 Under the same conditions as in Lemma 2.1, the diagonal elements h_{11} and h_{22} of H satisfy

$$
\begin{equation*}
\int_{O(n)} h_{i i} f\left(h_{11}, h_{22}\right) d H \geq 0, \quad i=1,2, \tag{2.14}
\end{equation*}
$$

where f is given by (2.1).
Proof. Using the notation of the proof of Lemma 2.1 we have

$$
\begin{align*}
& \int_{O(n)} h_{11} f\left(h_{11}, h_{22}\right) d H=E g_{1}(\tilde{\theta}) \\
& =\int_{S}\left(\prod_{k=1}^{n-1} \sin \theta_{k k}\right) \tanh \left(a_{1} \prod_{k=1}^{n-1} \sin \theta_{k k}\right) q(\tilde{\theta}) d \tilde{\theta} \tag{2.15}
\end{align*}
$$

where $S=[0, \pi / 2]^{2 n-3}$; see (2.7), (2.8) and (2.12). The expression on the right-hand side of (2.15) is clearly non-negative (and strictly positive if $a_{1}>0$). The proof for h_{22} is completely similar.

3 Total positivity and monotonicity

Theorem 3.1 Let $L=\operatorname{diag}\left(\ell_{1}, \ell_{2}\right)$ and $\Lambda=\operatorname{diag}(\lambda, \lambda)$, where $\ell_{i} \geq 0, i=1,2$, and $\lambda>0$. Then the hypergeometric function ${ }_{0} F_{1}\left(\frac{1}{2} n ; \frac{1}{4} \Lambda, L\right)$ is $T P_{2}$ in $\left(\ell_{1}, \ell_{2}\right)$ and in $\left(\ell_{j}, \lambda\right), j=1,2$, for each $n \geq 2$.

Proof. We use the following integral representation

$$
\begin{equation*}
{ }_{0} F_{1}\left(\frac{1}{2} n ; \frac{1}{4} \Lambda, L\right)=\int_{O(2)} \int_{O(n)} \exp \left\{\operatorname{tr} D_{\lambda}^{\prime} H_{1} D_{\ell} H_{2}^{\prime}\right\} d H_{1} d H_{2} \tag{3.1}
\end{equation*}
$$

where $H_{1} \in O(2), H_{2} \in O(n)$ and $d H_{1}$ and $d H_{2}$ denote Haar measure on $O(2)$ and $O(n)$, respectively; D_{ℓ} is a $2 \times n$ matrix defined by $\left(D_{\ell}\right)_{i j}=\ell_{i}^{1 / 2} \delta_{i j}$ and D_{λ} is a $2 \times n$ matrix defined by $\left(D_{\lambda}\right)_{i j}=\lambda_{i}^{1 / 2} \delta_{i j}$ where $\delta_{i j}$ is Kronecker's delta (see e.g. James (1961)). When $\Lambda=\operatorname{diag}(\lambda, \lambda)$ we obtain the following integral representation

$$
\begin{equation*}
{ }_{0} F_{1}\left(\frac{1}{2} n ; \frac{1}{4} \Lambda, L\right)=\int_{O(n)} \exp \left\{\lambda^{1 / 2} \sum_{j=1}^{2} \ell_{j}^{1 / 2} h_{j j}\right\} d H \tag{3.2}
\end{equation*}
$$

since in this case

$$
\begin{align*}
& \int_{O(n)} \exp \left\{\operatorname{tr} D_{\lambda}^{\prime} H_{1} D_{\ell} H_{2}^{\prime}\right\} d H_{2} \\
& =\int_{O(n)} \exp \left\{\lambda^{1 / 2} \sum_{i=1}^{n} \sum_{j=1}^{2} h_{i j}^{(1)} h_{i j}^{(2)} \ell_{j}^{1 / 2}\right\} d H_{2} \tag{3.3}\\
& =\int_{O(n)} \exp \left\{\lambda^{1 / 2} \sum_{j=1}^{2} \ell_{j}^{1 / 2} h_{j j}\right\} d H
\end{align*}
$$

where $H_{1}=\left(h_{i j}^{(1)}\right)$ and $H_{2}=\left(h_{i j}^{(2)}\right)$. The last equality in (3.3) holds, since

$$
\begin{equation*}
\sum_{i=1}^{2} \sum_{j=1}^{2} h_{i j}^{(1)} h_{i j}^{(2)} \ell_{j}^{1 / 2}=\operatorname{tr}\left\{\bar{H}_{1} A(L) H_{2}^{\prime}\right\}, \tag{3.4}
\end{equation*}
$$

where $A(L)$ is the $n \times n$ matrix defined by

$$
A(L)_{i i}=\ell_{i}^{1 / 2}, i=1,2,
$$

and $A(L)_{i j}=0$ for other values of (i, j), and where \bar{H}_{1} is the $n \times n$ orthogonal matrix defined by

$$
\left(\bar{H}_{1}\right)_{i j}=h_{i j}^{(1)}, 1 \leq i, j \leq 2,\left(H_{1}\right)_{i i}=1, i>2 .
$$

Here we use that the function

$$
\Psi: A \mapsto \int_{O(n)} \exp \{\operatorname{tr} A H\} d H, A \text { an } n \times n \text { matrix, }
$$

is invariant under transformations $A \mapsto H_{1} A, H_{1} \in O(n)$.
Let $F={ }_{0} F_{1}\left(\frac{1}{2} n ; \frac{1}{4} \Lambda, L\right)$. Then

$$
\begin{align*}
& \frac{\partial^{2}}{\partial \ell_{1} \partial \ell_{2}} \log F \\
& =\frac{1}{4} \lambda\left(\ell_{1} \ell_{2}\right)^{-\frac{1}{2}} \int_{O(n)} h_{11} h_{22} \exp \left\{\lambda^{\frac{1}{2}} \sum_{j=1}^{2} \ell_{j}^{1 / 2} h_{j j}\right\} d H / F \tag{3.5}\\
& -\frac{1}{2} \lambda\left(\ell_{1} \ell_{2}\right)^{-\frac{1}{2}}\left[\int_{O(n)} h_{11} \exp \left\{\lambda^{1 / 2} \sum_{j=1}^{2} \ell_{j}^{1 / 2} h_{j j}\right\} d H / F\right] \\
& \cdot\left[\int_{O(n)} h_{22} \exp \left\{\lambda^{1 / 2} \sum_{j=1}^{2} \ell_{j}^{1 / 2} h_{j j}\right\} d H / F\right]
\end{align*}
$$

and

$$
\begin{align*}
& \frac{\partial^{2}}{\partial \lambda \partial \ell_{i}} \log F \\
& =\frac{1}{4}\left(\lambda \ell_{i}\right)^{-\frac{1}{2}} \int_{O(n)} h_{i i} \exp \left\{\lambda^{\frac{1}{2}} \sum_{j=1}^{2} \ell_{j}^{\frac{1}{2}} h_{j j}\right\} d H / F \\
& +\frac{1}{4} \ell_{i}^{-\frac{1}{2}} \int_{O(n)} h_{i i} \sum_{j=1}^{2} \ell_{j}^{\frac{1}{2}} h_{j j} \exp \left\{\lambda^{\frac{1}{2}} \sum_{j=1}^{2} \ell_{j}^{\frac{1}{2}} h_{i j}\right\} d H / F \tag{3.6}\\
& -\frac{1}{4} \ell_{i}^{-\frac{1}{2}}\left[\int_{O(n)} \sum_{j=1}^{2} \ell_{j}^{\frac{1}{2}} h_{j j} \exp \left\{\lambda_{j}^{\frac{1}{2}} \sum_{j=1}^{2} \ell_{j}^{\frac{1}{2}} h_{j j}\right\} d H / F\right] \\
& \quad \cdot \int_{O(n)} h_{i i} \exp \left\{\lambda^{\frac{1}{2}} \sum_{j=1}^{2} \ell_{j}^{\frac{1}{2}} h_{j j}\right\} d H / F
\end{align*}
$$

By Lemmas 2.1 and 2.2 it follows that 3.5 and 3.6 are nonnegative. Hence F is pairwise $T P_{2}$ in $\left(\ell_{1}, \ell_{2}\right)$ and $\left(\ell_{j}, \lambda\right), j=1,2$.

The following corollary shows that the power function is monotone "on the diagonal".

Corollary 3.1 Let $\tilde{\ell}=\left(\ell_{1}, \ell_{2}\right)$ be distributed according to the density

$$
\begin{equation*}
\phi_{\lambda}(\tilde{\ell})=\exp (-\lambda)_{0} F_{1}\left(\frac{1}{2} n ; \frac{1}{4} \Lambda, L\right) \phi_{0}(\tilde{\ell}) \tag{3.7}
\end{equation*}
$$

where $\Lambda=\operatorname{diag}(\lambda, \lambda), L=\operatorname{diag}\left(\ell_{1}, \ell_{2}\right)$,

$$
\phi_{0}(\tilde{\ell})=\left\{\begin{array}{l}
k\left(\ell_{1}-\ell_{2}\right)\left(\ell_{1} \ell_{2}\right)^{\frac{1}{2}(n-3)} \exp \left\{-\frac{1}{2}\left(\ell_{1}+\ell_{2}\right)\right\}, \ell_{1} \geq \ell_{2} \geq 0 \tag{3.8}\\
0, \text { otherwise }
\end{array}\right.
$$

and $k>0$ is a constant such that ϕ_{0} is a probability density. Then the function

$$
\lambda \rightarrow \int_{\mathbb{R}^{2}} g(\tilde{\ell}) \phi_{\lambda}(\tilde{\ell}) d \tilde{\ell}, \lambda \geq 0
$$

is nondecreasing for each g which is nondecreasing in the components ℓ_{1} and ℓ_{2} of $\tilde{\ell}$.
Proof. Define

$$
\begin{equation*}
G\left(\lambda, \ell_{1}, \ell_{2}\right)=\exp (-\lambda){ }_{0} F_{1}\left(\frac{1}{2} n ; \lambda I, L\right) . \tag{3.9}
\end{equation*}
$$

Then $G>0$ on the rectangle \mathbb{R}_{+}^{3}. Since $\frac{\partial^{2}}{\partial \ell_{1} \partial \ell_{2}} \log G\left(\lambda, \ell_{1}, \ell_{2}\right) \geq 0$ and $\frac{\partial^{2}}{\partial \ell_{j} \partial \lambda} \log G\left(\lambda, \ell_{1}, \ell_{2}\right) \geq 0$ for each $\left(\lambda, \ell_{1}, \ell_{2}\right) \in \mathbb{R}_{+}^{3}$, it follows that G is pairwise $T P_{2}$ on \mathbb{R}_{+}^{3}. Since $G>0$ on \mathbb{R}_{+}^{3}, this implies that G satisfies the $F K G$ condition on \mathbb{R}_{+}^{3} (cf. Perlman and Olkin (1980), Remark 2.3). The result now follows from Proposition 2.6 (ii) and Remark 2.7 in Perlman and Olkin (1980).

4 A Counterexample

We show that the approach to proving monotonicity of the power function by showing that ${ }_{0} F_{1}\left(\frac{1}{2} n ; \frac{1}{4}, L\right)$ is pairwise $T P_{2}$ (which worked "on the diagonal" in Section 3), fails in general. Take $n=2, \Lambda=\operatorname{diag}(\lambda, 0), \lambda>0, L=\left(\ell_{1}, \ell_{2}\right), \ell_{i} \geq 0, i=1,2$. Then by the same line of argument as used in Lemma 2.1 we have

$$
\begin{aligned}
& \frac{\partial^{2}}{\partial \ell_{1} \partial \ell_{2}} F_{1}\left(\frac{1}{2} n ; \frac{1}{4}, L\right)=\frac{\partial^{2}}{\partial \ell_{1} \ell_{2}} \int_{O(2)} \int_{O(2)} \exp \left\{\operatorname{tr}^{\frac{1}{2}} H_{1} L^{\frac{1}{2}} H_{2}^{\prime}\right\} d H_{1} d H_{2} \\
& =\frac{1}{4} \lambda\left(\ell_{1} \ell_{2}\right)^{-\frac{1}{2}} \int_{O(2)} \int_{O(2)} h_{11}^{(1)} h_{11}^{(2)} h_{12}^{(1)} h_{12}^{(2)} \exp \left\{\lambda^{\frac{1}{2}} \sum_{j=1}^{2} h_{1 j}^{(1)} h_{1 j}^{(2)} \ell_{j}^{\frac{1}{2}}\right\} d H_{1} d H_{2} \\
& =\frac{1}{\pi^{2}} \lambda\left(\ell_{1} \ell_{2}\right)^{-\frac{1}{2}} \int_{0}^{\pi / 2} d \theta_{1} \int_{0}^{\pi / 2} \cos \theta_{1} \cos \theta_{2} \sin \theta_{1} \sin \theta_{2} \\
& \quad \cdot \sinh \left(\lambda^{\frac{1}{2}} \ell_{1}^{\frac{1}{2}} \cos \theta_{1} \cos \theta_{2}\right) \sinh \left(\lambda^{\frac{1}{2}} \ell_{2}^{\frac{1}{2}} \sin \theta_{1} \sin \theta_{2}\right) d \theta_{2}
\end{aligned}
$$

where $H_{1}=\left(h_{i j}^{(1)}\right)$ and $H_{2}=\left(h_{i j}^{(2)}\right)$. Define the density q on $[0, \pi / 2]^{2}$ by

$$
\begin{equation*}
q\left(\theta_{1}, \theta_{2}\right)=k \cdot \cosh \left(\lambda^{\frac{1}{2}} \ell_{1}^{\frac{1}{2}} \cos \theta_{1} \cos \theta_{2}\right) \cosh \left(\lambda^{\frac{1}{2}} \ell_{2}^{\frac{1}{2}} \sin \theta_{1} \sin \theta_{1}\right) \tag{4.1}
\end{equation*}
$$

where $k>0$ is chosen such that q is a probability and define

$$
\begin{gather*}
g_{1}\left(\theta_{1}, \theta_{2}\right)=-\cos \theta_{1} \cos \theta_{2} \tanh \left(\lambda^{\frac{1}{2}} \ell_{1}^{\frac{1}{2}} \cos \theta_{1} \cos \theta_{2}\right) \\
g_{2}\left(\theta_{1}, \theta_{2}\right)=\sin \theta_{1} \sin \theta_{2} \tanh \left(\lambda^{\frac{1}{2}} \ell_{2}^{\frac{1}{2}} \sin \theta_{1} \sin \theta_{2}\right) \tag{4.2}
\end{gather*}
$$

The density q clearly satisfies the $F K G$ condition on S and hence, since g_{1} and g_{2} are both increasing in θ_{1} and θ_{2} on S, we have by the $F K G$ inequality

$$
\begin{equation*}
E g_{1}\left(\theta_{1}, \theta_{2}\right) g_{2}\left(\theta_{1}, \theta_{2}\right) \geq E g_{1}\left(\theta_{1}, \theta_{2}\right) E g_{2}\left(\theta_{1}, \theta_{2}\right) \tag{4.3}
\end{equation*}
$$

where the expectation is taken with respect to the density q on S. Moreover, the inequality in 4.3 is strict (cf. Perlman and Olkin (1980), Proposition 2.4 (ii)). Let $F={ }_{0} F_{1}(1, \Lambda, L)$. Then

$$
\begin{align*}
& \frac{\partial^{2}}{\partial \ell_{1} \partial_{\ell_{2}}} \log F=\left(\frac{\partial^{2}}{\partial \ell_{1} \partial \ell_{2}} F\right) / F-\frac{\partial F}{\partial \ell_{1}} \frac{\partial F}{\partial \ell_{2}} / F^{2} \\
& =\frac{1}{4} \lambda\left(\ell_{1} \ell_{2}\right)^{-\frac{1}{2}}\left(-E g_{1} g_{2}+E g_{1} E g_{2}\right)<0 \tag{4.4}
\end{align*}
$$

implying that F is not $T P_{2}$ in the pair $\left(\ell_{1}, \ell_{2}\right)$.
However, it is shown by a completely different method in Perlman and Olkin (1980) that any test of the type described in Section 1 has a power function which is increasing in λ, if $\Lambda=\operatorname{diag}(\lambda, 0)$.

Acknowledgement. We have benefited from helpful remarks by Tom Koornwinder on an earlier draft of this manuscript. We also want to thank Michael Keane and Michael Perlman who encouraged us to publish this manuscript that was originally written in 1983 , while the first author was visiting MSRI in Berkeley.

5 References

1. Fortuin, C.M., J. Ginibre, \& P.W. Kasteleyn, (1971), Correlation inequalities on some partially ordered sets. Commun.Math.Phys. 22, 89-103.
2. James, A.T. (1955), A generating function for averages over the orthogonal group. Proc.Roy.Soc. London Ser. A 229, 367-375.
3. James, A.T. (1961), The distribution of noncentral means with known covariance, Ann. Math. Statist. 32, 874-882.
4. Kelly, D.G. \& S. Sherman, (1968), General Griffiths inequalities on correlations in Ising ferromagnets. J. Mathematical Phys. 9, 466-484.
5. Kemperman, J.H.B. (1977), On the FKG inequality for measures on a partially ordered space. Indag. Math 39, 313-331.
6. Perlman, M.D. \& I.Olkin (1980), Unbiasedness of invariant tests for MANOVA and other multivariate problems. Ann. Statst. 8, 1326-1341.
7. Vilenkin, N.J. (1968), Special functions and the theory of group representations, Translations of Mathematical Monographs, 22, American Math. Soc., Providence, Rhode Island, U.S.A.
