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Abstract

We study the 2-dimensional process of integrated Brownian motion and Brownian motion, where

integrated Brownian motion is conditioned to be positive. The transition density of this process is

derived from the asymptotic behavior of hitting times of the unconditioned process. Explicit expres-

sions for the transition density in terms of confluent hypergeometric functions are derived and it is

shown how our results on the hitting time distributions imply previous results of Isozaki-Watanabe

and Goldman. The conditioned process is characterized by a system of stochastic differential equa-

tions (SDE’s) for which we prove an existence and unicity result. Some sample path properties are

derived from the SDE’s and it is shown that t 7→ t9/10 is a “critical curve” for the conditioned process

in the sense that the expected time that the integral part of the conditioned process spends below

any curve t 7→ tα, is finite for α < 9/10 and infinite for α ≥ 9/10.
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1. Introduction Let (U, V ) be the 2-dimensional process of integrated Brownian motion (IBM) and

Brownian motion (BM), where U represents IBM and V represents BM. This process is often called the

Kolmogorov diffusion since its study was apparently initiated by [7].

It is well-known (and easily verified by computing expectations and covariances of the Gaussian process

involved) that the transition density of (U, V ) is given by

pt(x, y;u, v) =
√

3
πt2

exp
{
−6(u− x− ty)2

t3
+

6(v − y)(u− x− ty)
t2

− 2(v − y)2

t

}
,

see [12]. Another way of writing this transition density (that often is useful) is:

pt(x, y;u, v) =
√

3
πt2

exp
{
−6(u− x)2

t3
+

6(u− x)(v + y)
t2

− 2(v2 + vy + y2)
t

}
.

We want to characterize the process (U, V ), where U is conditioned to be positive and where (U, V ) =

(0, 0) at time zero (U has slope zero at time zero). This process arises naturally in several contexts. Our

motivation for studying this process originated in a study of the limiting behavior of the nonparametric

maximum likelihood estimator of a convex density and nonparametric estimators of convex regression

functions, see, e.g., [6] and [11]. Another motivation can be found in the work of [16] on the convex hull of

integrated Brownian motion with a parabolic drift. In both cases, one encounters excursions of integrated

Brownian motion above certain curves at which the integrated Brownian motion touches at the endpoints

of the excursion. Using the Cameron-Martin formula, these excursions can be described by excursions of

integrated Brownian motion above a line. These excursions, in turn, can be related to integrated Brownian

motion, conditioned to be positive, in a way that is somewhat analogous to the relation between Bessel(3)

bridges and the Bessel(3) process for ordinary 1-dimensional Brownian motion.

We determine the structure of this process in sections 2 and 4. It is shown that the transition density

of the process (U, V ), where U is conditioned to be positive, is of the form

h(x, y)−1p̄t(x, y;u, v)h(u, v), x > 0, y ∈ IR,

where p̄t is the transition density of the process (U, V ), killed when U hits zero, and where h(x, y) is
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proportional to

lim
t→∞

t1/4P(x,y){τ0 > t}, (1.1)

denoting by τ0 the first time that U hits zero.

This motivates the study of the asymptotic behavior of P(x,y){τ0 > t}, as t→∞. This has been studied

by [4], but we give a simple direct approach to this problem in section 2, avoiding the use of Laplace

transforms, Tauberian theorems and separation of cases. Our approach leads to an integral representation

of h, valid for all values of the arguments. In fact, we obtain the asymptotic behavior of the density

P(x,y)

{
τ0 ∈ dt, V (τ0)/

√
t ∈ −dz

} /
(dt dz), (1.2)

as t→∞, showing that this joint density asymptotically behaves as the product of the density of τ0 and

the density of V (τ0)/
√
t on (−∞, 0), as t→∞. Moreover, we show that the function (1.1) has an explicit

representation in terms of confluent hypergeometric functions, see part (iii) of Theorem 2.1 and part (ii)

of Lemma 2.1.

We also study the behavior of the density

P(x,y) {τ0 ∈ dt, V (τ0) ∈ −dz}
/

(dt dz), (1.3)

if t is fixed and z ↓ 0, showing that this density is of order z3/2, as z ↓ 0, see part (ii) of Theorem

2.1. This result provides us with the transition density of an “excursion” of the process (U, V ), where

(U(0), V (0)) = (U(1), V (1)) = (0, 0) and U(t) > 0, t ∈ (0, 1) (see (2.26)).

In section 3 we discuss how our results on the asymptotic behavior of (1.2) can be specialized to

yield previous results of [2] and [4]. The latter comparison reveals at the same time a curious relation

between the hypergeometric function 2F1 and gamma functions that was unknown to us and seems to be

non-standard. This comparison also reveals that Goldman’s result seems to be off by a factor 6.

Using the results of section 2, we determine the marginal density of the conditioned process in section

4. Next we show in section 5 that the conditioned process can be characterized by a system of stochastic

differential equations (SDE’s), and derive from the structure of these equations that U will not hit zero
4



after time zero and will drift off to∞, as t→∞. The SDE’s, together with the analytic properties of the

function h, yield a very simple tool for proving these facts.

Finally we deduce in section 6 from Theorem 4.1 in section 4 another sample path property of the

process Ũ , where we denote the conditioned proces by (Ũ , Ṽ ). This is the property that the curve t 7→ t9/10

is a “critical curve” for the process Ũ in the sense that the expected amount of time the process Ũ spends

below any curve t 7→ tα, is finite for α < 9/10 and is infinite for α ≥ 9/10.

2. The asymptotic behavior of P(x,y){τ0 > t} for large t. By [8], Théorème 1, page 388, we have,

for x, z > 0,

P(x,y)

{
τ0 ∈ dt, V (τ0)/

√
t ∈ −dz

} /
(dt dz)

= z
√
t

{
pt(x, y; 0,−z

√
t)−

∫ t

s=0

∫ ∞
w=0

pt−s(x, y; 0, w)P(0,−z
√
t)

{
τ+
0 ∈ ds, V (τ+

0 ) ∈ dw
}}√

t

= tz

{
qt(x, y; 0,−z

√
t)−

∫ t

s=0

∫ ∞
w=0

qt−s(x, y; 0, w)P(0,−z
√
t)

{
τ+
0 ∈ ds, V (τ+

0 ) ∈ dw
}}

, (2.1)

where τ+
0 denotes the first time U passes zero after time zero and

qt(x, y;u, v) = pt(x, y;u, v)− pt(x, y;u,−v). (2.2)

The function qt was already an important tool in [2] (who called it p∗). In [12] the joint density of τ+
0

and V (τ+
0 ) under P(0,−z) is derived: for z > 0

P(0,−z)
{
τ+
0 ∈ ds, V (τ+

0 ) ∈ dw
}

=
3w

π
√

2πs2
exp

{
−2
s

(z2 − zw + w2)
}∫ 4zw/s

0

ξ−1/2 exp{−3
2
ξ} dξ dw ds (2.3)

It will be shown that the dominating asymptotic behavior, as t→∞, but also if z ↓ 0 and t is fixed, is

coming from the double integral on the right-hand side of (2.1). We first state a preliminary result, giving

the integral representation of the crucial function h and also its relation to a function of one argument g

that can be expressed in terms of standard confluent hypergeometric functions.
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Lemma 2.1. Let the functions g : IR→ (0,∞) and h : (0,∞)× IR→ IR be defined by

h(x, y) =
∫ ∞
s=0

∫ ∞
w=0

w3/2qs(x, y; 0,−w) ds dw

=
2
√

3
π

∫ ∞
s=0

∫ ∞
w=0

w3/2 exp{−6x2s3 − 6xys2 − 2(y2 + w2)s} sinh(6xws2 + 2yws)ds dw (2.4)

and

g(y) =
∫ ∞
s=0

∫ ∞
w=0

w3/2qs(1, y; 0,−w) ds dw = h(1, y) , (2.5)

and write Dx,y for the differential operator

D(x,y) = y
∂

∂x
+

1
2
∂2

∂y2
. (2.6)

Note:

h(x, y) = x1/6g
(
yx−1/3

)
. (2.7)

Then:

(i) The function h is harmonic for Dx,y in the sense that Dx,yh(x, y) = 0, and the function g is analytic

on IR and satisfies the second order differential equation

g′′(y) =
2
3
y2g′(y)− 1

3
yg(y), y ∈ IR. (2.8)

(ii) The function g has the representation

g(y) =
(

2
9

)1/6

y U

(
1
6
,

4
3
,

2
9
y3

)
, y > 0, (2.9)

g(y) = −
(

2
9

)1/6
y

6
V

(
1
6
,

4
3
,

2
9
y3

)
, y < 0, (2.10)

g(0) = lim
y→0

g(y) =
(

2
9

)−1/6

Γ(
1
3

)/Γ(
1
6

) . (2.11)

where U and V are the confluent hypergeometric functions, as defined on p. 256 of [13].
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Proof.

Ad (i). The infinitesimal generator of the process (U, V ) is given by the partial differential operator D(x,y),

defined by (2.6), and therefore, as noted in, e.g., [10], p. 1302, the transition density pt(x, y;u, v) of the

process (U, V ) satisfies the (backward) Kolmogorov equation

D(x,y)pt(x, y;u, v) =
∂

∂t
pt(x, y;u, v), (2.12)

implying that also

D(x,y)qt(x, y;u, v) =
∂

∂t
qt(x, y;u, v). (2.13)

Hence we get, if x > 0,

D(x,y)h(x, y) =
∫ ∞
w=0

w3/2

∫ ∞
s=0

∂

∂s
qs(x, y; 0,−w) ds dw

=
∫ ∞
w=0

w3/2 lim
s→∞

qs(x, y; 0,−w) dw −
∫ ∞
w=0

w3/2 lim
s↓0

qs(x, y; 0,−w) dw

= 0.

This implies, by (2.7),

∂2

∂y2
h(x, y) = x−1/2g′′(yx−1/3) = −2y

∂

∂x
h(x, y) =

2
3
y2x−7/6g′(yx−1/3)− 1

3
yx−5/6g(yx−1/3). (2.14)

Evaluating this for x = 1, we get (2.8). The analyticity of the function g (on IR) follows from (2.5)

together with the integral representation (2.4) of h.

Ad (ii). Let M be the (standardized) confluent hypergeometric function (a version of the so-called

“Kummer function”), defined by (9.04) on p. 255 of [13]. A straightforward computation, using the fact

that M and U satisfy the confluent hypergeometric equation (see, e.g. [13], p. 254), shows that any

solution of the differential equation (2.8) is of the form

y

{
A ·M

(
1
6
,

4
3
,

2
9
y3

)
+B · U

(
1
6
,

4
3
,

2
9
y3

)}
, (2.15)

for constants A and B. We are going to specify this function to our function g (i.e., determine the constants

A and B) at +∞, since determining A and B at a finite point (like 0) seems much harder in this case!
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In fact, by determining the behavior at ∞ we will find a relation between special (hypergeometric)

functions at zero, allowing us to compare the results in [2] with those in [4] (showing that there is in fact

a discrepancy, see the end of section 3).

Denoting 2
9y

3 by z, we have, by (10.07), [13], p. 257,

M
(

1
6
,

4
3
,

2
9
y3

)
∼ ezz−7/6/Γ(1/6), y →∞, (2.16)

and, by (10.01), [13], p. 256,

U

(
1
6
,

4
3
,

2
9
y3

)
∼ z−1/6, y →∞. (2.17)

On the other hand, using the change of variables s→ ys/3 and w → wy, we have

g(y) = h(1, y) =
2
√

3
π

∫ ∞
s=0

∫ ∞
w=0

w3/2 exp
{
−6s3 − 6ys2 − 2y2s− 2w2s

}
· sinh

(
6ws2 + 2yws

)
ds dw

=
2

π
√

3
y7/2

∫ ∞
s=0

∫ ∞
w=0

w3/2 exp
{
−2

9
y3s(s2 + 3s+ 3 + 3w2)

}
· sinh

(
2
3
y3ws(s+ 1)

)
ds dw

∼ 2y7/2

π
√

3

∫ ∞
s=0

∫ ∞
w=0

w3/2 exp
{
−2

3
y3s(1 + w2)

}
sinh

(
2
3
y3sw

)
ds dw,

as y →∞. But the last displayed expression equals

√
3y

2π

∫ ∞
0

w3/2

{
1

1− w + w2
− 1

1 + w + w2

}
dw

=
√

3y
π

∫ ∞
0

w5/2

1 + w2 + w4
dw =

√
y.

Because of (2.16) and (2.17) it now follows that, in the representation (2.15) of g on (0,∞), the coefficient

A has to be zero, and hence that

g(y) =
(

2
9

)1/6

y U

(
1
6
,

4
3
,

2
9
y3

)
,

for y ∈ (0,∞). On the other hand, we have (using 13.5.8, p. 508 of [1]),

lim
y↓0

y U

(
1
6
,

4
3
,

2
9
y3

)
=
(

2
9

)−1/3 Γ(1/3)
Γ(1/6)

.
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The obvious candidate for the analytic continuation at zero is provided by the confluent hypergeometric

function V , defined by

V (a, c, z) = ezU(c− a, c,−z), (2.18)

since V also satisfies the confluent hypergeometric equation and has the desired vanishing behavior at

∞. In fact, it is immediate from 13.5.8, p. 508, [1], that

Γ(
1
6

) lim
y↓0

y U

(
1
6
,

4
3
,

2
9
y3

)
= Γ(

7
6

) lim
y↓0

(−y)V
(

1
6
,

4
3
,

2
9
y3

)
,

and using the integral representations of U ands V it is easily verified that equality also holds at the level

of the derivative. Hence we have a complete representation of the function g in terms of the confluent

hypergeometric functions U and V .

2

With this preliminary result in hand, we are prepared for the following theorem:

Theorem 2.1. Let τ0 be the first time that U hits zero, if the process (U, V ) starts at (x, y) at time

zero, where x > 0. Then:

(i) As t→∞ we have, for any z > 0:

P(x,y)

{
τ0 ∈ dt, V (τ0)/

√
t ∈ −dz

} /
(dt dz) ∼ 3 · 23/2

π3/2

z3/2 exp
{
−2z2

}
t5/4

h(x, y) . (2.19)

(ii) As z ↓ 0 through strictly positive values of z we have, for any t > 0:

P(x,y) {τ0 ∈ dt, V (τ0) ∈ −dz}
/

(dt dz)

∼ 4
√

3z3/2

√
2π

∫ t

s=0

∫ ∞
w=0

w3/2s−1/2ps(0, w; 0, 0)qt−s(x, y; 0,−w) ds dw. (2.20)

(iii)

P(x,y){τ0 > t} ∼ 3 Γ(1/4)
23/4π3/2

· h(x, y)
t1/4

, as t→∞. (2.21)
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Proof.

Ad (i) and (ii). The elementary but somewhat technical proofs of these properties are given in Appendix

1.

Ad (iii). Integrating w.r.t. dz in (2.19), we get

P(x,y){τ0 ∈ dt}
/
dt ∼ 3 Γ(1/4)

23/4π3/2

h(x, y)
4t5/4

. (2.22)

¿From this we get (2.21) by integrating w.r.t. t. Note that the positivity of P(x,y){τ0 > t} for all x > 0

and y ∈ IR implies:

g(y) > 0, for all y ∈ IR. (2.23)

2

We introduce the following notation for the result in part (ii) of Theorem 2.1. Let h̄ be defined by

h̄(t, x, y) =
4
√

3√
2π

∫ t

s=0

∫ ∞
w=0

w3/2s−1/2ps(0, w; 0, 0)qt−s(x, y; 0,−w) ds dw. (2.24)

Since qt−s(x, y;u, v) satisfies the backward Kolmogorov equation for the process (U, V ), for all x > 0, and

lims↓0 qs(x, y; 0, w) = 0, if x > 0, it follows that the function

t 7→ h̄(1− t, x, y), t ∈ [0, 1),

is “space-time harmonic” on [0, 1) in the sense that(
∂

∂t
+D(x,y)

)
h̄(1− t, x, y) = 0,

where D(x,y) is defined by (2.6). Since h̄(1− t, x, y) has the interpretation

lim
z↓0

z−3/2P(t,x,y) {τ0 ∈ du, V (τ0) ∈ −dz}
/

(dudz)
∣∣∣
u=1

, (2.25)

where P(t,x,y) {τ0 ∈ du, V (τ0) ∈ −dz} denotes the probability that τ0 ∈ du and V (τ0) ∈ −dz, if the value

of the process is (x, y) at time t, the transition density of the “bridge” of (U, V ) on [0, 1], starting at

(0, 0), where U is conditioned to be positive and where (U(1), V (1)) = (0, 0), is given by

h̄(1− s, x, y)−1p̄t−s(x, y;u, v)h̄(1− t, u, v), (2.26)
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if 0 < s < t < 1. Here p̄ is the transition density of the process (U, V ), killed when U hits zero, and can

be written for x, u > 0 as

p̄t(x, y;u, v) = pt(x, y;u, v)−
∫ t

s=0

∫ ∞
w=0

pt−s(0,−w;u, v)P(x,y){τ0 ∈ ds, V (τ0) ∈ −dw} ,

see [9] relation (3), p. 1054. In particular, since pt(x, y;u, v) = pt(u,−v;x,−y) and p̄(x, y;u, v) =

p̄t(u,−v;x,−y) (see [9], relation (4), p. 1054), letting u ↓ 0, we get for x, z > 0:

p̄(x, y; 0,−z) = p̄(0, z;x,−y)

= pt(x, y; 0,−z)−
∫ t

s=0

∫ ∞
w=0

pt−s(x, y; 0, w)P(0,z){τ0 ∈ ds, V (τ0) ∈ −dw}

= z−1P(x,y){τ0 ∈ ds, V (τ0) ∈ −dz}/dtdz . (2.27)

The final step follows from (2.1). Now (2.26) can be checked as follows. Due to the Markov property, the

transition density of the bridge equals

P
{

(U(t), V (t)) ∈ du dv
∣∣ (U(s), V (s)) = (x, y), (U(1), V (1)) = (0, 0), τ0 > 0

}
/dudv

= p̄t(x, y;u, v) lim
z↓0

p̄1−t(u, v; 0, z)
p̄1−s(x, y; 0, z)

= p̄t(x, y;u, v) lim
z↓0

P(t,u,v){τ0 ∈ dw, V (τ0) ∈ −dz}
P(s,x,y){τ0 ∈ dw, V (τ0) ∈ −dz}

∣∣∣
w=1

which proves (2.26) according to (2.25).

Similarly, by (i) of Lemma 2.1, the function h defined by (2.4) is harmonic for the differential operator

D(x,y). Since h(x, y) is proportional to

lim
t→∞

t1/4P(x,y){τ0 > t},

this function gives the transition density of the process (U, V ), where U is conditioned to be positive:

h(x, y)−1p̄t−s(x, y;u, v)h(u, v),

for x, u > 0. This process is characterized by a system of stochastic differential equations in section 5,

where it will be shown that U (as first component of the conditioned process) will drift off to∞ and will

never hit zero after time zero.
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3. The results of Isozaki-Watanabe and Goldman Set

f(r, a, A) ≡ P(0,0)(U(t) < r + at for all 0 ≤ t ≤ A)

and

g(r, a, σ) ≡ P(0,0)(U(t) < r + at+ σt2 for all 0 ≤ t ≤ ∞) .

Sinai [16] showed that

f(r, a, A) ³ A−1/4 as A→∞

and

g(r, a, σ) ³ σ1/2 as σ → 0

where f ³ g means that f/g lies between two positive and finite constants. Isozaki and Watanabe [4]

sharpen these results to

f(r, a, A) ∼ C(r, a)A−1/4 as A→∞ (3.1)

and to

g(r, a, σ) ∼ D(r, a)σ1/2 as σ → 0 (3.2)

where they give explicit formulas for C(r, a) and D(r, a). They do this by deriving an asymptotic expres-

sion for 1 − E(x,y) exp(−aσ2τ0 − bσV (τ0)) for all a ≥ 0, b ≥ 0, and (x, y) ∈ IR2 with x ≤ 0. The result

(3.1) where r > 0 and a ∈ IR is directly related to (2.21). Indeed, due to the symmetry of Brownian

motion started at 0, it is easily seen that

f(r, a, A) = P(r,a){τ0 > A} .

Thus, (1.5) of [4] says that, changing to notation to agree with (2.21),

P(x,y)(τ0 > t) ∼ t−1/4 1
Γ(3/4)

3
√

2√
π2
√

2Γ(1/6)
x1/6ψ(yx−1/3)

12



where the function ψ is defined by

ψ(y) =


∫∞

0
v−5/6(y3 + 9

2v)1/6 exp(−v) dv , y > 0

e2y3/9
∫∞

0

(
9
2v
)1/6 (v + 2

9 |y|3)−5/6 exp(−v) dv , y ≤ 0
.

It is possible to express ψ in terms of the hypergeometric functions U and V (see e.g. [1], (13.2.5), page

505, and (2.18) in section 2):

ψ(y) =


Γ( 1

6 )
(

2
9

)1/6
y U( 1

6 ,
4
3 ,

2
9y

3) , y > 0

−Γ( 7
6 )
(

2
9

)1/6
y V ( 1

6 ,
4
3 ,

2
9y

3) , y ≤ 0
.

Hence this corresponds to the results found in section 2.

Before specializing our results to that in Goldman [2], we note that there is a factor 1/6 missing in his

Proposition 2. Following the indicated steps between Goldman’s (3.1) and (3.2), it becomes clear that

the factor 3 in front of (3.2) should not be there: it disappears when the substitution t − s → w−1/3 is

performed. Moreover, reducing the series of multiple integrals just before Proposition 2 to the expression

involving the hypergeometric function 2F1, a factor 1/2 is lost. Therefore, using our notation, Goldman’s

Proposition 2 should actually read:

P(x,0)(τ0 ∈ dt)/dt ∼
x1/6

t5/4
3 · 61/12

8π2

Γ( 5
4 )Γ( 7

4 )Γ( 5
12 )

Γ( 3
2 ) 2F1(5/12, 7/4; 3/2; 3/4)

=
x1/6

t5/4
325/12Γ( 5

12 )
265/12π

√
π

2F1(5/12, 7/4; 3/2; 3/4)

for x > 0 as t→∞. Substituting y = 0 in (2.22) and using (2.11), our corresponding result reads,

P(x,0)(τ0 ∈ dt)/dt ∼
x1/6

t5/4
34/3Γ( 5

4 )Γ( 1
3 )

211/12Γ( 1
6 )π
√
π
.

Equality of these two asymptotic expressions leads to the following result which we were unable to locate

in the literature on special functions:

2F1(
5
12
,

7
4

;
3
2

;
3
4

) =
Γ( 5

4 )Γ( 1
3 )29/2

Γ( 1
6 )Γ( 5

12 )33/4
.

Numerical verification shows that both sides are equal to 2.0353....

13



We finally show how the quantity

2F1(5/12, 7/4; 3/2, 3/4)

of Goldman’s Proposition 2 emerges from our integral representation in (2.19), since this might not be

immediately obvious. This follows by writing the integral as a power series, using the power series for the

sinh-function: ∫
IR2

+

w3/2 exp
{
−6x2s3 − 2sw2

}
sinh

(
6xws2

)
dw ds

=
∞∑
n=0

(6x)2n+1

(2n+ 1)!

∫ ∞
w=0

w2n+5/2e−2w2
dw

∫ ∞
s=0

s3n+1/4e−6x2s3 ds

=
x1/6
√
π

65/12 · 211/4

∞∑
n=0

Γ(n+ 7/4)Γ(n+ 5/12)
Γ(n+ 3/2)n!

(3/4)n

=
x1/6
√
π

65/12 · 211/4

Γ(5/12)Γ(7/4)
Γ(3/2) 2F1(5/12, 7/4; 3/2, 3/4).

4. The marginal distribution of the conditioned process In section 2 we analyzed the behavior

of P(x,y){τ0 > t} and P(x,y)

{
τ0 ∈ dt, V (τ0)/

√
t ∈ −dz

}
for large t when x > 0. Now we extend those results

to x = 0 and obtain the marginal density of the process (Ũ , Ṽ ) started from (0, 0); recall that (Ũ , Ṽ ) is

the process (U, V ) conditioned on U(t) ≥ 0 for all t ≥ 0. Our main result in this section is:

Theorem 4.1. The marginal density of (Ũ , Ṽ ) started at (0, 0) is given by

ft(u, v) = P(0,0)(Ũ(t) ∈ du, Ṽ (t) ∈ dv)/dudv = 229/4u1/6g(vu−1/3)h̄(t, u,−v), (4.1)

where g is defined in Lemma 2.1 and h̄ in (2.24).

Remark. Writing u = ūt3/2 and v = v̄t1/2, and using the change of variables s → st and w → wt1/2 in

the definition of h̄, we get

229/4t−2ū1/6g(v̄ū−1/3)h̄(1, ū,−v̄) (4.2)

showing that the joint density of (Ũ(t)t−3/2, Ṽ (t)t−1/2) does not depend on t which also follows from

consideration of Brownian scaling.

14



Proof.

First note that

ft(u, v) = lim
z↓0

ft,z(u, v) = lim
z↓0

lim
s→∞

p̄t(0, z;u, v)P(u,v) {τ0 > s− t}
P(0,z)

{
τ+
0 > s

} . (4.3)

Here ft,z is the density (at time t) of the process (U, V ) started at (0, z), where U is conditioned to be

positive on (0,∞). By Theorem 2.1, part (iii), it follows that

lim
s→∞

s1/4P(u,v){τ0 > s− t} =
12Γ( 5

4 )u1/6g(vu−1/3)
23/4π

√
π

.

Moreover, using (2.3), we get for all z > 0,

lim
s→∞

s1/4P(0,z)

{
τ+
0 > s

}
=

3Γ( 5
4 )

π3/2211/2

√
z

Therefore,

ft,z(u, v) = 229/4u1/6g(vu−1/3)z−1/2p̄t(0, z;u, v) (4.4)

and we get, using Theorem 2.2 part (ii),

lim
z↓0

p̄t(0, z;u, v)
z1/2

= lim
z↓0

P(u,−v) {τ0 ∈ dt, V (τ0) ∈ −dz} /(dt dz)
z3/2

= h̄(t, u,−v) (4.5)

where h̄ is as defined in (2.24). Combining (4.3), (4.4) and (4.5), we get the expression given in (4.1).

2

5. Stochastic differential equations and sample path properties We now study the system of

SDE’s:

dU(t) = V (t) dt, dV (t) = c(U(t), V (t)) dt+ dW (t), (5.1)

where the function c is defined by

c(x, y) = h(x, y)−1 ∂

∂y
h(x, y), x > 0, y ∈ IR, (5.2)

and h is defined by (2.4). Several difficulties arise in analyzing this system:

15



(i) The system clearly does not define a 2-dimensional diffusion, since the matrix of second derivatives

of the differential operator is singular.

(ii) The function (x, y) 7→ c(x, y) is not uniformly Lipschitz, nor is this function bounded.

(iii) The growth of the function (x, y) 7→ c(x, y) is faster than linear, as y → −∞.

Note that, for all x > 0, the function y 7→ h(x, y), y ∈ IR, is one-to-one, since

∂

∂y
h(x, y) > 0, y ∈ IR, x > 0, . (5.3)

Also note that the function (x, y)→ c(x, y) is positive since h(x, y) and (∂/∂y)h(x, y) are both positive

for all x > 0, y ∈ IR as is easily seen from (2.23), (2.9), and (2.10), using the explicit representation of g

in terms of the confluent hypergeometric functions. We also have

lim
x↓0

h(x, y) = 0 for all y < 0 and lim
x↓0,y↑0

h(x, y) = 0. (5.4)

Since U(t) can only hit zero for values V (t) ≤ 0, we can define h(U(t), V (t)) = 0, if U(t) = 0.

In spite of the difficulties, mentioned above, we have the following existence and unicity result for the

system (5.1), showing that the system actually characterizes our conditioned process.

Theorem 5.1. The system of SDE’s (5.1) has a unique strong solution (Ũ , Ṽ ), for any starting point

(Ũ(0), Ṽ (0)) = (x, y), with x > 0. Furthermore, let the function h be defined by (2.4), and suppose that

the process (Ũ , Ṽ ) solves (5.1) for a starting value (x, y), at time zero, with x > 0. Then:

(i) The transition density p̃t of the process (Ũ , Ṽ ) is given by

p̃t(x, y;u, v) = h(x, y)−1p̄t(x, y;u, v)h(u, v), (5.5)

i.e., (Ũ , Ṽ ) is distributed as the process (U, V ), for U away from zero.

(ii) The process

t 7→ 1/h
(
Ũ(t), Ṽ (t)

)
, t ≥ 0,

is a local martingale w.r.t. the natural filtration, induced by (Ũ , Ṽ ).
16



(iii) With probability one, Ũ never hits 0:

P(x,y)

{
Ũ(t) > 0, for all t > 0

}
= 1.

(iv) The process Ũ is transient; i.e.

P(x,y)

{
lim
t→∞

Ũ(t) =∞
}

= 1 .

Proof.

We prove the existence of a unique strong solution to (5.1) by a localization argument. Let, for N > 0,

the function cN be defined by

cN (x, y) = c(x ∨ 1/N, y ∨ (−N)),

Then cN is globally Lipschitz. Hence it follows from Theorem 3.1, p. 164, Chapter IV, [3] that the system

dU(t) = V (t) dt, dV (t) = cN (U(t), V (t)) dt+ dW (t)

has a unique strong solution (UN , VN ) for each N > 0. Moreover, (UN , VN ) is a solution of the original

system up to time TN = inf{t > 0 : UN (t) < 1/N or VN (t) < −N}. Pasting these solutions yields a

solution (Ũ , Ṽ ) to the system (5.1) up to time T = supN TN . Below we show that T =∞.

Ito’s formula shows that the process t 7→ 1/h(Ũ(t), Ṽ (t)) is a nonnegative local martingale and hence a

supermartingale. Hence t 7→ 1/h(Ũ(t), Ṽ (t)) satisfies Doob’s supermartingale theorem, see [15], Theorem

49.1 and Corollary 49.2, p. 147. By the “Fatou lemma”, 14.3, [14], p. 22, we then get that

lim
t→T

1/h(Ũ(t), Ṽ (t)) (5.6)

exists almost surely and is finite, for any starting point (x, y) ∈ (0,∞) × IR of the process (Ũ , Ṽ ). By

(5.4) this implies that Ũ does not hit zero up to (and including) time T .

Since, by the second equation of the system (5.1), any solution (Ũ , Ṽ ) of the system (5.1) has to satisfy

Ṽ (t) ≥ W (t), for all t ≥ 0 for which the solution is defined, we cannot have Ṽ (t) = −∞ (“explosion to

−∞”) at a finite time t. Also, by (5.6), Ũ cannot hit zero (see above). So the only way in which explosion
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could occur is when Ṽ (t) = ∞ at a finite time t. But this possibility is actually excluded by the the

growth condition on the function (x, y) 7→ c(x, y), as y → ∞, using that mint∈[0,M ] Ũ(t) > 0 for each

time interval [0,M ]. Thus T = ∞, implying that we have a unique strong solution to the system (5.1).

We now also have proved (ii) and (iv).

Now note that the infinitesimal generator of the process (Ũ(t), Ṽ (t)) is given for any test function ϕ

by

D̄(x,y)ϕ(x, y) = h(x, y)−1D(x,y)[h(x, y)ϕ(x, y)] .

This corresponds to the transition density (5.5). Since 1/h is harmonic for D̄(x,y) we now have (i). In fact,

(ii) follows from the harmonicity of 1/h for for D̄(x,y), as was seen above by applying Ito’s formula.

Part (iii) would follow from

lim
t→∞

E
{

1/h(Ũ(t), Ṽ (t))
}

= 0. (5.7)

and the fact that 1/h(Ũ(t), Ṽ (t)) has, almost surely, a finite limit, as t → ∞, since almost sure conver-

gence to a finite limit implies convergence in probability to the same limit and since (5.7) implies that

1/h(Ũ(t), Ṽ (t)) converges to zero in probability. But by formula (5.5) for the transition density of the

process (Ũ , Ṽ ), it follows that

E(x,y)1/h(Ũ(t), Ṽ (t)) = h(x, y)−1

∫ ∞
u=0

∫ ∞
v=−∞

p̄t(x, y;u, v) dudv

= h(x, y)−1P(x,y) {τ0 > t} → 0, as t→∞,

for any starting point (x, y) such that x > 0. So we get

lim
t→∞

E
{

1/h(Ũ(t), Ṽ (t))
}

= 0 , (5.8)

and hence

lim
t→∞

1/h(Ũ(t), Ṽ (t)) = 0, (5.9)
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with probability one. Now (5.9) implies:

lim
t→∞

h(Ũ(t), Ṽ (t)) =∞ (5.10)

with probability one. If Ṽ (t) tends to ∞, then also Ũ(t) tends to ∞, since Ũ is the integral of Ṽ . On

the other hand, if Ṽ (t) does not tend to ∞, (5.10) can only happen if Ũ(t) tends to ∞, using (5.3)

(the monotonicity of h in the second argument). So we obtain in all cases that Ũ(t) tends to ∞ with

probability one.

2

6. A critical curve Our investigation was originally motivated by the question whether the expected

amount of time that the process Ũ (i.e., integrated Brownian motion, conditioned to be positive) spends

below any line of positive slope is finite. The following result answers this question negatively.

Theorem 6.1. Suppose that k > 0 and 0 < α < 3/2 and let the constant c′ > 0 be given by

c′ =
9 · 235/4

5π
√
π

∫ ∞
v=−∞

g(v)g(−v) dv. (6.1)

Then

P(0,0)(Ũ(t) < ktα) ∼ c′k5/3t5α/3−5/2 as t→∞ . (6.2)

Hence, if Tα denotes the amount of time Ũ(t) spends below the curve u(t) = ktα,

E(0,0)Tα


<∞ if α < 9/10

=∞ if α ≥ 9/10.
(6.3)

Proof.

Let α ∈ (0, 3/2). Using (4.1), (4.2), and (2.24), and denoting the constant 229/4 by c, we get for any k > 0

P{Ũ(t) < ktα} = c

∫ ktα−3/2

u=0

∫ ∞
v=−∞

u1/6g
(
vu−1/3

)
h̄(1, u,−v) dv du

=
4c
√

3√
2π

∫ ktα−3/2

u=0

∫ ∞
v=−∞

∫ 1

s=0

∫ ∞
w=0

u1/6w3/2g
(
vu−1/3

)
(1− s)−1/2

p1−s(0, w; 0, 0)qs(u,−v; 0,−w) ds dw dv du.
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By the change of variables v → vu1/3, s→ su2/3 and w → wu1/3 we get

P{Ũ(t) < ktα}

=
4c
√

3√
2π

∫ ktα−3/2

u=0

∫ ∞
v=−∞

∫ u−2/3

s=0

∫ ∞
w=0

u2/3w3/2g(v)(1− su2/3)−1/2

·p1−su2/3(0, wu1/3; 0, 0)qs(1,−v; 0,−w) ds dw dv du

∼ 4c
√

3√
2π
·
√

3
π

∫ ktα−3/2

u=0

∫ ∞
v=−∞

∫ ∞
s=0

∫ ∞
w=0

u2/3w3/2g(v) qs(1,−v; 0,−w) ds dw dv du

=
36c

5π
√

2π
k5/3t(α−3/2)(5/3)

∫ ∞
v=−∞

g(v)
∫ ∞
s=0

∫ ∞
w=0

w3/2 qs(1,−v; 0,−w) ds dw dv, (6.4)

as t→∞, yielding (6.2).

The amount of time Tα that Ũ spends below u(t) = ktα can be written as Tα =
∫∞

0
1{Ũ(t)<ktα}dt. It

now follows that the expected amount of time spent below the curve y = ktα is

E(0,0)Tα =
∫ ∞

0

P(0,0)(Ũ(t) < ktα)dt .

By (6.2) this is finite when (5/3)α − 5/2 < −1, and infinite when (5/3)α − 5/2 ≥ −1. Hence we get the

conclusion that the expected amount of time spent below the curve y = ktα is finite when α < 9/10, and

infinite when α ≥ 9/10.

2

7. Appendix 1 Proof of Theorem 2.1, part (i)

For the first term of (2.1) we get, if z > 0,

tzqt(x, y; 0,−z
√
t) =

2z
√

3
πt

exp
{
−6x2

t3
− 6xy

t2
− 2y2

t
− 2z2

}
sinh

(
6xz
t3/2

+
2yz
t1/2

)
∼ 2z2e−2z2√

3
πt3/2

(
6x
t

+ 2y
)
, t→∞.

For the second term we get

−tz
∫ t

s=0

∫ ∞
w=0

qt−s(x, y; 0, w)P(0,z
√
t) {τ0 ∈ ds, V (τ0) ∈ dw}

=
6zt
√

3
π2
√

2π

∫ t

s=0

∫ ∞
w=0

ws−2(t− s)−2 exp
{
− 6x2

(t− s)3
− 6xy

(t− s)2
− 2(y2 + w2)

t− s

}
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· sinh
(

6xw
(t− s)2

+
2yw
t− s

)
exp

{
−2(z2t− zw

√
t+ w2)

s

}
·
∫ 4zw

√
t/s

0

ξ−1/2 exp
{
−3

2
ξ

}
dξ ds dw. (7.1)

By the change of variables w → w
√
t and s→ st we get

6z
√

3
tπ2
√

2π

∫ 1

s=0

∫ ∞
w=0

ws−2(1− s)−2

· exp
{
− 6x2

t3(1− s)3
− 6xy
t2(1− s)2

− 2y2

t(1− s) −
2w2

1− s

}
· sinh

(
6xw

(1− s)2t3/2
+

2yw
(1− s)t1/2

)
exp

{
−2(z2 − zw + w2)

s

}
·
∫ 4zw/s

0

ξ−1/2 exp
{
−3

2
ξ

}
dξ ds dw.

As will become clear in the sequel, the dominating behavior of this multiple integral, as t → ∞, will

come from a region of integration for s in a neighborhood of 1. We therefore first consider the region of

integration s ∈ [1/2, 1]. We define:

ψ(u) =
∫ u

0

ξ−1/2 exp
{
−3

2
ξ

}
dξ, (7.2)

Using the change of variables s→ 1− 1/(st) and w → w/
√
t, and using the notation (7.2), we can write

the integral over this region as

6z
√

3
tπ2
√

2π

∫ ∞
s=2/t

∫ ∞
w=0

w(1− 1/(st))−2

· exp
{
−6x2s3 − 6xys2 − 2y2s− 2w2s

}
sinh

(
6xws2 + 2yws

)
·ψ
(

4zwt−1/2/(1− 1/(st))
)

exp

{
−

2
(
z2 − zwt−1/2 + w2t−1

)
1− 1/(st)

}
ds dw

∼ 24z3/2e−2z2√
3

t5/4π2
√

2π

∫ ∞
s=0

∫ ∞
w=0

w3/2 exp
{
−6x2s3 − 6xys2 − 2y2s− 2w2s

}
· sinh

(
6xws2 + 2yws

)
ds dw, t→∞. (7.3)

The asymptotic equivalence of the last step can be proved in the following way. Restricting the region of

integration for s to [ε,∞) for a fixed ε > 0, we get, using Lebesgue’s dominated convergence theorem,

6z
√

3
tπ2
√

2π

∫ ∞
s=ε

∫ ∞
w=0

w(1− 1/(st))−2
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· exp
{
−6x2s3 − 6xys2 − 2y2s− 2w2s

}
sinh

(
6xws2 + 2yws

)
·ψ
(

4zwt−1/2/(1− 1/(st))
)

exp

{
−

2
(
z2 − zwt−1/2 + w2t−1

)
1− 1/(st)

}
ds dw

∼ 24
√

3
t5/4π2

√
2π

∫ ∞
s=ε

∫ ∞
w=0

(zw)3/2 exp
{
−6x2s3 − 6xys2 − 2y2s− 2w2s

}
· sinh

(
6xws2 + 2yws

)
exp

{
−2z2

}
ds dw, t→∞.

For the region s ∈ [2/t, ε] we get

6z
√

3
tπ2
√

2π

∫ ε

s=2/t

∫ ∞
w=0

w(1− 1/(st))−2

· exp
{
−6x2s3 − 6xys2 − 2y2s− 2w2s

} ∣∣sinh
(
6xws2 + 2yws

)∣∣
·ψ
(

4zwt−1/2/(1− 1/(st))
)

exp

{
−

2
(
z2 − zwt−1/2 + w2t−1

)
1− 1/(st)

}
ds dw

≤ 24z3/2e−2z2√
3

t5/4π2
√

2π

∫ ε

s=0

∫ ∞
w=0

w3/2 exp
{
−6x2s3 − 6xys2 − 2y2s− 2w2s

}
·
∣∣sinh

(
6xws2 + 2yws

)∣∣ ds dw
≤ 24z3/2e−z

2√
3

t5/4π2
√

2π

∫ ε

s=0

∫ ∞
w=0

w3/2 exp
{
−6x2s3 − 6xys2 − 2y2s− 2w2s

}
·ws |6xs+ 2y| cosh

(
6xws2 + 2yws

)
ds dw

due to the inequality

| sinh(u)| ≤ |u| cosh(u) . (7.4)

Now note that, by the change of variables w → ws−1/2 the last displayed integral is less than∫ ε

s=0

∫ ∞
w=0

w5/2s−3/4 exp
{
−6x2s3 − 6xys2 − 2y2s− 2w2

}
· |6xs+ 2y| cosh

(
6xws3/2 + 2yws1/2

)
ds dw

= O(ε), ε ↓ 0.

This proves (7.3).

We next consider the region of integration s ∈ [0, 1/2]. The corresponding integral can be written by
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making the change of variables w → w
√
s and next s→ z2/s, as

6z
√

3
tπ2
√

2π

∫ ∞
s=2z2

∫ ∞
w=0

ws−1(1− z2/s)−2

· exp
{
− 6x2

t3(1− z2/s)3
− 6xy
t2(1− z2/s)2

− 2y2

t(1− z2/s)
− 2w2

1− z2/s

}
· sinh

(
6xw

(1− z2/s)2t3/2
+

2yw
(1− z2/s)t1/2

)
exp

{
−2(s− ws1/2 + w2)

}
·
∫ 4w

√
s

0

ξ−1/2 exp
{
−3

2
ξ

}
dξ ds dw.

Using the inequalities (7.4) and

s−1

∫ 4w
√
s

0

ξ−1/2 exp
{
−3

2
ξ

}
dξ ≤ 4s−3/4w1/2, (7.5)

it is easily seen that this term is O
(
t−3/2

)
, as t→∞.

Concluding, we get, as t→∞,

P(u,v)

{
τ0 ∈ dt, V (τ0)/

√
t ∈ −dz

} /
(dt dz)

∼
24z3/2 exp

{
−2z2

}√
3

t5/4π2
√

2π

∫ ∞
s=0

∫ ∞
w=0

w3/2 exp
{
−6x2s3 − 6xys2 − 2y2s− 2w2s

}
· sinh

(
6xws2 + 2yws

)
ds dw

(7.6)

which yields the result (2.19).
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Proof of Theorem 2.1, part (ii)

The proof of this property proceeds along similar lines. For the first term of (2.1) we get

zqt(x, y; 0,−z) =
2z
√

3
πt2

exp
{
−6x2

t3
− 6xy

t2
− 2y2

t
− 2z2

t

}
sinh

(
6xz
t2

+
2yz
t

)
∼ 2z2

√
3

πt3

(
6x
t

+ 2y
)

exp
{
−6x2

t3
− 6xy

t2
− 2y2

t

}
= O(z2), z ↓ 0.

For the second term we get

−z
∫ t

s=0

∫ ∞
w=0

qt−s(x, y; 0, w)P(0,−z)
{
τ+
0 ∈ ds, V (τ+

0 ) ∈ dw
}

=
6z
√

3
π2
√

2π

∫ t

s=0

∫ ∞
w=0

ws−2(t− s)−2 exp
{
− 6x2

(t− s)3
− 6xy

(t− s)2
− 2(y2 + w2)

t− s

}
· sinh

(
6xw

(t− s)2
+

2yw
t− s

)
exp

{
−2(z2 − zw + w2)

s

}
·
∫ 4zw/s

0

ξ−1/2 exp
{
−3

2
ξ

}
dξ ds dw. (7.7)

We first consider the region of integration s ∈ [ε, t], for ε ∈ (0, t). Using Lebesgue’s dominated convergence

theorem we get that this integral is asymptotically equivalent to

24z3/2
√

3
π2
√

2π

∫ t

s=ε

∫ ∞
w=0

w3/2s−5/2(t− s)−2

· exp
{
− 6x2

(t− s)3
− 6xy

(t− s)2
− 2y2

t− s −
2w2

t− s

}
· sinh

(
6xw

(t− s)2
+

2yw
t− s

)
exp

{
−2w2

s

}
ds dw,

as z ↓ 0. We next consider the region of integration s ∈ [0, ε]. The corresponding integral can be written,

by making the change of variables w → w
√
s and next s→ z2/s, as

6z
√

3
π2
√

2π

∫ ∞
s=z2/ε

∫ ∞
w=0

ws−1(t− z2/s)−2

· exp
{
− 6x2

(t− z2/s)3
− 6xy

(t− z2/s)2
− 2y2

t− z2/s
− 2w2z2/s

t− z2/s

}
· sinh

(
6xwz/

√
s

(t− z2/s)2
+

2ywz/
√
s

t− z2/s

)
exp

{
−2(s− ws1/2 + w2)

}
·
∫ 4w

√
s

0

ξ−1/2 exp
{
−3

2
ξ

}
dξ ds dw.
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Again using the inequalities (7.4) and (7.5) it is easily seen that this term is O
(
ε1/4z3/2

)
. Since ε > 0 can

be chosen arbitrarily small, we get the result.

2
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