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1 Introduction

Estimation of functions restricted by monotonicity or other inequality constraints has received much
attention. Estimation of monotone regression and density functions goes back to work by Brunk

(1958), Van Eeden (1956), Van Eeden (1957), and Grenander (1956). Asymptotic distribution
theory for monotone regression estimators was established by Brunk (1970), and for monotone
density estimators by Prakasa Rao (1969). The asymptotic theory for monotone regression
function estimators was re-examined by Wright (1981), and the asymptotic theory for monotone
density estimators was re-examined by Groeneboom (1985). The “universal component” of the
limit distribution in these problems is the distribution of the location of the maximum of two-sided
Brownian motion minus a parabola. Groeneboom (1988) examined this distribution and other
aspects of the limit Gaussian problem with canonical monotone function f0(t) = 2t in great detail.
Groeneboom (1985) provided an algorithm for computing this distribution, and this algorithm has
recently been implemented by Groeneboom and Wellner (2000). See Barlow, Bartholomew,

Bremner and Brunk (1972) and Robertson, Wright and Dykstra (1988) for a summary of the
earlier parts of this work.

In the case of estimation of a concave regression function, Hildreth (1954) first proposed
least squares estimators, and these were proved to be consistent by Hanson and Pledger (1976).
Mammen (1991) established rates of convergence for a least squares convex or concave regression
function estimator and the slope thereof at a fixed point x0. In the case of estimating a convex
density function the first work seems to be that of Anevski (1994), who was motivated by some
problems involving the migration of birds discussed by Hampel (1987) and Lavee, Safrie and

Meilijson (1991). Jongbloed (1995) established lower bounds for minimax rates of convergence,
and established rates of convergence for a “sieved maximum likelihood estimator”.

Until now, the limiting distributions of these convex function estimators at a fixed point x0

have not been available. We establish these limiting distributions in Section 5 of this paper. In
Sections 2-4 we lay the groundwork for these limit distributions by introducing the estimators to be
studied, giving careful characterizations thereof, and proving the needed consistency and rates of
convergence, or giving references to the earlier literature when consistency or rates of convergence
have already been established. Our proofs of the limit distributions in Section 5 here rely strongly
on the characterization of the solution of a corresponding continuous Gaussian problem for the
canonical convex function f0(t) = 12t2 given in Groeneboom, Jongbloed and Wellner (2001a).
This solution is given by a (random) piecewise cubic function H which lies above Y , two-sided
integrated Brownian motion plus the drift function t4 (note that 12t2 is the second derivative of
t4), with the property that H ′′ is piecewise linear and convex. Thus we call H an invelope of
the process Y . The key universal component of the limiting distribution of a convex function
estimator and its derivative is given by the joint distribution of (H ′′(0),H ′′′(0)). Although no
analytic expressions are currently available for this joint distribution, it is in principle possible to
get Monte-Carlo evidence for it, using the characterization as an invelope of integrated Brownian
motion.

One previous attempt at finding these limiting distributions is due to Wang (1994), who
examined the convex regression function problem studied by Mammen (1991). See Groeneboom,
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Jongbloed and Wellner (2001a) for a discussion of some of the difficulties in Wang’s arguments.
Here is an outline of this paper: Section 2 gives definitions and characterizations of the

estimators to be considered. Consistency of each of the estimators is proved in Section 3, and
rates of convergence of the estimators are established in Section 4. Section 5, based on parts of
Chapter 6 of Jongbloed (1995), gives a brief discussion of local asymptotic minimax lower bounds
for estimation of a convex density function and its derivative at a fixed point x0. Finally, Section 6
contains our results concerning the asymptotic distributions of the estimators at a fixed point x0.
This section relies strongly on Groeneboom, Jongbloed and Wellner (2001a).

Because of the length of the current manuscript we will examine computational methods and
issues in Groeneboom, Jongbloed and Wellner (2001b). For computational methods for the
canonical limit Gaussian problem, see Section 3 of Groeneboom, Jongbloed and Wellner (2001a).
For some work on computation of the estimators studied here, see Mammen (1991), Jongbloed

(1998), and Meyer (1997).

2 Estimators of a convex density or regression function

In this section we will study two different estimators of a convex density function f0, a least
squares estimator and the nonparametric maximum likelihood estimator (MLE), and the least
squares estimator of a convex regression function r0. We begin with the least squares estimator for
a convex and decreasing density. First, in Lemma 2.1, existence and uniqueness of the least squares
estimator f̃ will be established. Moreover, it will be shown that the estimator is piecewise linear,
having at most one change of slope between successive observations. In Lemma 2.2 necessary and
sufficient conditions will be derived for a convex decreasing density to be the least squares estimator.
These conditions can be rephrased and interpreted geometrically, saying that the second integral
of f̃ is an ‘invelope’ of the integral of the empirical distribution function based on the data. Then
we will proceed to the MLE. In Lemma 2.3, existence and uniqueness of the MLE is established.
This estimator will also turn out to be piecewise linear. In Lemma 2.4, the MLE is characterized
geometrically in terms of a certain convex envelope of the function 1

2 t
2.

It is interesting that the least squares estimator and the MLE are really different in general.
This differs from the situation for monotone densities. In the related problem of estimating a
monotone density, the least squares estimator and the MLE coincide: the least squares estimator
is identical to the MLE found by Grenander (1956).

2.1 The Least Squares estimator of a convex decreasing density

The least squares (LS) estimator f̃n of a convex decreasing density function f0 is defined as
minimizer of the criterion function

Qn(f) =
1

2

∫
f(x)2 dx−

∫
f(x) dFn(x),

over K, the class of convex and decreasing nonnegative functions on [0,∞); here Fn is the empirical
distribution function of the sample. The definition of Qn is motivated by the fact that if Fn had
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density fn with respect to Lebesgue measure, then the least squares criterion would be

1

2

∫
(f(x)− fn(x))2 dx =

1

2

∫
f(x)2dx−

∫
f(x)fn(x) dx +

∫
fn(x)2 dx

=
1

2

∫
f(x)2dx−

∫
f(x) dFn(x) +

∫
fn(x)2 dx

where the last (really undefined) term does not depend on the unknown f which we seek to minimize
the criterion with respect to. Note that C, the class of convex and decreasing density functions on
[0,∞), is the subclass of K consisting of functions with integral 1. In Corollary 2.1 we will see that
the minimizer of Qn over K belongs to this smaller set C, implying that the estimate is a genuine
convex and decreasing density.

Lemma 2.1 There exists a unique f̃n ∈ K that minimizes Qn over K. This solution is piecewise
linear, and has at most one change of slope between two successive observations X(i) and X(i+1)

and no changes of slope at observation points. The first change of slope is to the right of the first
order statistic and the last change of slope, which is also the right endpoint of the support of f̃n, is
to the right of the largest order statistic.

Proof: Existence follows from a compactness argument. We will show that there is a bounded
convex decreasing function ḡ with bounded support such that the minimization can be restricted
to the compact subset

{g ∈ K : g ≤ ḡ} (2.1)

of K.
First note that there is a c1 > 0 such that any candidate to be the minimizer of Qn should have

a left derivative at X(1) bounded above in absolute value by c1 = c1(ω). Indeed, if g is a function
in K, then

g(x) ≥ g(X(1)) + g′(X(1)−)(x−X(1)) for x ∈ [0, X(1)],

and

Qn(g) ≥ 1

2

∫ X(1)

0
g(x)2 dx− g(X(1))

≥ 1

2

∫ X(1)

0

(
g(X(1)) + g′(X(1)−)(x−X(1))

)2
dx− g(X(1))

≥ 1
2X(1)g(X(1))

2 + 1
6X

3
(1)g

′(X(1)−)2 − g(X(1))

≥ −(2X(1))
−1 + 1

6X
3
(1)g

′(X(1)−)2,

showing that Qn(g) tends to infinity as the left derivative of g at X(1) tends to minus infinity. In

the last inequality we use that u 7→ 1
2X(1)u

2 − u attains its minimum at u = 1/X(1). This same
argument can be used to show that the right derivative at X(n) of any solution candidate g is
bounded below in absolute value by some c2 = c2(ω), whenever g(X(n)) > 0.
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Additionally, it is clear that g(X(1)) is bounded by some constant c3 = c3(ω). This follows from
the fact that

Qn(g) ≥ 1
2g(X(1))

2X(1) − g(X(1)),

which tends to infinity as g(X(1)) tends to infinity.
To conclude the existence argument, observe that we may restrict attention to functions in K

that are linear on the interval [0, X(1)]. Indeed, any element g of K can be modified to a g̃ ∈ K
which is linear on [0, X(1)] as follows:

g̃(x) =

{
g(X(1)) + g′(X(1)+)(x−X(1)) for x ∈ [0, X(1)]

g(x) for x > X(1) ,

and if g 6= g̃, Qn(g) > Qn(g̃) (only first term is influenced by going from g to g̃). For the same
reason, attention can be restricted to functions that behave linearly between the point X(n) and
the point where it hits zero, by extending a function using its left derivative at the point X(n). In
fact, this argument can be adapted to show that a solution of the minimization problem has at
most 1 change of slope between successive observations. Indeed, let g be a given convex decreasing
function, and fix its values at the observation points. Then one can construct a piecewise linear
function which lies entirely below g, and has the same values at the observation points. This shows
that Qn is decreased when going from g to this piecewise linear version, since the first term of Qn

decreases and the second term stays the same.
Hence, defining the function

ḡ(x) =

{
c3 + c1(X(1) − x) for x ∈ [0, X(1)]

(c3 − c2(x−X(1))) ∨ 0 for x > X(1) ,

we see that the minimization of Qn over K may be restricted to the compact set (2.1). Uniqueness
of the solution follows from the strict convexity of Qn on K. 2

Lemma 2.2 Let Yn be defined by

Yn(x) =

∫ x

0
Fn(t) dt, x ≥ 0.

Then the piecewise linear function f̃n ∈ K minimizes Qn over K if and only if the following
conditions are satisfied for f̃n and its second integral H̃n(x) =

∫
0<t<u<x f̃n(t) dtdu:

H̃n(x)

{ ≥ Yn(x), if x ≥ 0,

= Yn(x) if f̃ ′n(x+) > f̃ ′n(x−) .
(2.2)

Proof. Let f̃n ∈ K satisfy (2.2), and note that this implies

∫

(0,∞)

{
H̃n(x)− Yn(x)

}
df̃ ′n(x) = 0. (2.3)
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Choose g ∈ K arbitrary. Then we get, using integration by parts,

Qn(g)−Qn(f̃n) ≥
∫

(0,∞)

{
H̃n(x)− Yn(x)

}
d(g′ − f̃ ′n)(x).

But using (2.3) and (2.2), we get

∫

(0,∞)

{
H̃n(x)− Yn(x)

}
d(g′ − f̃ ′n)(x) =

∫

(0,∞)

{
H̃n(x)− Yn(x)

}
dg′(x) ≥ 0.

Hence f̃n minimizes Qn over K.
Conversely, suppose that f̃n minimizes Qn(g) over K. Consider, for x > 0, the function gx ∈ K,

defined by
gx(t) = (x− t)+, t ≥ 0. (2.4)

Then we must have:

lim
ε↓0

Qn(f̃n + εgx)−Qn(f̃n)

ε
= H̃n(x)− Yn(x) ≥ 0 .

This yields the inequality part of (2.2). We must also have

lim
ε→0

Qn((1 + ε)f̃n)−Qn(f̃n)

ε
=

∫

(0,∞)

{
H̃n(x)− Yn(x)

}
df̃ ′n(x) = 0,

which is (2.3). This can, however, only hold if the equality part of (2.2) also holds. 2

Lemma 2.2 characterizes the LS estimator f̃n as the second derivative of a very special ‘invelope’
of the integrated empirical distribution function. The term ‘invelope’ is coined for this paper, in
contrast to the term “envelope” that will be encountered in the characterization of the MLE.

Figure 1 shows a picture of Yn and the “invelope” H̃n for a sample of size 20, generated by the
density

f0(x) = 3(1 − x)21[0,1](x), x ≥ 0. (2.5)

We take such a small sample, because otherwise the difference between Yn and H̃n is not visible.
The algorithm used works equally well for big sample sizes (like 5000 or 10,000). The algorithm
that was used in producing these pictures (and likewise the algorithm that produced the pictures
of the MLE in the sequel) will be discussed in Groeneboom, Jongbloed and Wellner (2001b).
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Figure 1: Solid: Yn (black), dashed: H̃n (red).

Figure 2 shows a picture of Fn and H̃ ′
n for the same sample.
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Figure 2: Solid: Fn (black), dashed: H̃ ′
n (red).

Corollary 2.1 Let H̃n satisfy condition (2.2) of Lemma 2.2 and let f̃n = H̃ ′′
n. Then:

(i) F̃n(x) = Fn(x) for each x such that f̃ ′n(x−) < f̃ ′n(x+), where F̃n(x) =
∫ x
0 f̃n(t) dt.

(ii) f̃n(X(n)) > 0, where X(n) is the largest order statistic of the sample.

(iii) f̃n ∈ C, i.e.,
∫
f̃n(x) dx = 1.
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(iv) Let 0 < t1 < . . . < tm be the points of change of slope of H̃ ′′
n and let t0 = 0. Then f̃n and H̃n

have the following “midpoint properties”:

f̃n(t̄k) = 1
2

{
f̃n(tk−1) + f̃n(tk)

}
=

Fn(tk)− Fn(tk−1)

tk − tk−1
, (2.6)

and
H̃n(t̄k) = 1

2 {Yn(tk−1) + Yn(tk)} − 1
8 {Fn(tk)− Fn(tk−1)} (tk − tk−1) , (2.7)

for k = 1, . . . ,m, where t̄k = (tk−1 + tk)/2.

Proof. For proving (i), note that at each point x such that f̃ ′n(x−) < f̃ ′n(x+) (note that such a
point cannot be an observation point by Lemma 2.1) we have by (2.2) that Yn(x) = H̃n(x). Since
H̃n ≥ Yn throughout and both Yn and H̃n are differentiable at x, we have that F̃n(x) = Fn(x).

For (ii), we will prove that the upper support point of the piecewise linear density f̃n, x(f̃n),
satisfies x(f̃n) > X(n). From Lemma 2.1 we already know that x(f̃n) 6= X(n). Now suppose that

x(f̃n) < X(n). Then for all x > X(n)

H̃ ′
n(x) = F̃n(x) = F̃n(x(f̃n))

(i)
= Fn(x(f̃n)) < 1 .

However, since Y ′
n(x) = Fn(x) = 1 for all x > X(n), inevitably the inequality part of (2.2) would be

violated eventually. Hence x(f̃n) > X(n) and (ii) follows.
For (iii), combine (i) and (ii) to get

∫
f̃n(x) dx = F̃n(x(f̃n)) = Fn(x(f̃n)) = 1.

The first part of (iv) is an easy consequence of the fact that F̃n(ti) = Fn(ti), i = 0, . . . ,m (part
(i)), combined with the property that f̃n is linear on the intervals [ti−1, ti]. Again by the fact that
f̃n is linear on [tk−1, tk], we get that H̃n is a cubic polynomial on [tk−1, tk], determined by

H̃n(tk−1) = Yn(tk−1), H̃n(tk) = Yn(tk), H̃
′
n(tk−1) = Fn(tk−1), H̃

′
n(tk) = Fn(tk),

using that H̃n is tangent to Yn at tk−1 and tk. This implies (2.7). 2

Remark: We know from Lemma 2.1 and Corollary 2.1 that for the case n = 1, the LS estimator is
a function on [0,∞) which only changes slope at the endpoint of its support. Denoting this point
by θ and the observation by X1, we see, in view of Corollary 2.1 (iii), that

f̃1(x) = fθ(x) =
2

θ2
(θ − x)+ . (2.8)

Consequently, we have that

Qn(fθ) = 1
2

∫ θ

0
f2

θ (x) dx− fθ(x1) =

{
2x1/θ

2 − 4/(3θ) if θ > X1

2/(3θ) if θ ≤ X1

and the least squares estimator corresponds to θ = 3X1. Note that this least squares estimator can
also be obtained directly via the characterization of the estimator given in Lemma 2.2.
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2.2 The Nonparametric Maximum Likelihood Estimator of a convex decreasing

density

For g ∈ C, the convex subset of K corresponding to convex and decreasing densities on [0,∞),
define ‘minus the loglikelihood function’ by

−
∫

log g(x) dFn(x) , g ∈ C

and the nonparametric maximum likelihood estimator (MLE) as minimizer of this function over C.
In order to relax the constraint

∫
g(x)dx = 1 and get a criterion function to minimize over all of

K, we define

ψn(g) = −
∫

log g(x) dFn(x) +

∫
g(x)dx , g ∈ K .

Lemma 2.3 shows that the minimizer of ψn over K is a function f̂n ∈ C, and hence f̂n is the MLE.

Lemma 2.3 The MLE f̂n exists and is unique. It is a piecewise linear function and has at most
one change of slope in each interval between successive observations. It is also the unique minimizer
of ψn over K

Proof: Fix an arbitrary g ∈ C. We show that there exists a ḡ ∈ C which is piecewise linear with
at most one change of slope between successive observations and for which ψn(ḡ) ≤ ψn(g). It is
easily seen that if we define h by requiring that h(X(i)) = g(X(i)) for all i = 1, . . . , n, h′(X(i)) =
1
2(g′(X(i)−) + g′(X(i)+)) and that h is piecewise linear with at most one change of slope between
successive observations, ḡ = h/

∫
h has ψn(ḡ) < ψn(g) whenever ḡ 6= g. Thus minimizers of ψn over

C must be of the form of ḡ.
We will show that the minimizer of ψn exists by showing that the minimization of ψn may be

restricted to a compact subset CM of C given by

CM = {g ∈ C : g(0) ≤M, g(M) = 0}

for some fixed M > 0 (depending on the data). Indeed, since g satisfies
∫
g(x)dx = 1, any element

of C which is piecewise linear with at most one change of slope between successive observations
satisfies g(0) ≤ 2/X(1). Moreover, if for some c > X(n), g(c) > 0, this automatically implies that
g(X(n)) ≤ 2/(c −X(n)), which tends to zero as c→∞. However, this again implies ψn(gc) →∞.

Now for the uniqueness. Suppose g1 and g2 are both piecewise linear with at most one change
of slope between successive observations and with ψn(g1) = ψn(g2), minimal. Then the first claim
is that g1(X(i)) = g2(X(i)) for all i = 1, . . . , n. This follows from strict concavity of u → log u
on (0,∞), implying that ψn((g1 + g2)/2) < ψn(g1) whenever inequality at some observation holds,
contradicting the fact that ψn(g1) is minimal. The second claim is that g1 and g2 have the same
endpoints of their support. This has to be the case since otherwise the function ḡ = (g1+g2)/2 would
minimize ψn, whereas it would have two changes of slope in the interval (X(n),∞), contradicting the
fact that any solution can only have one change of slope. Consequently, since g1(X(n)) = g2(X(n)),
g′1(X(n)) = g′2(X(n)) necessarily. Now observe that between X(n−1) and X(n) in principle three
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things can happen:
(i) g1 and g2 have a change of slope at a (common) point between X(n−1) and X(n).
(ii) g1 and g2 both have a change of slope between X(n−1) and X(n), but at different points.
(iii) Only one of g1 and g2 has a change of slope.
Note that (i) implies (using g1(X(n−1) = g2(X(n−1)) ), that g′1(X(n−1)) = g′2(X(n−1)). Also note
that (ii) and (iii) cannot happen. Indeed, (iii) is impossible since it contradicts the fact that
g1(X(n−1)) = g2(X(n−1)), and (ii) is impossible by the same argument used to show that g1 and
g2 have the same support. This same argument can be used recursively for the intervals between
successive observations, and uniqueness follows.

Finally, we show that f̂n actually minimizes ψn over K. To this end choose g ∈ K with∫∞
0 g(x) dx = c ∈ (0,∞) and observe that, since g/c ∈ C,

ψn(g) − ψn(f̂n) = −
∫

log

(
g(x)

c

)
dFn(x)− log c+ 1− 1 + c+

∫
log f̂(x) dFn(x)− 1

= ψn(g/c) − ψn(f̂n)− log c− 1 + c ≥ − log c− 1 + c ≥ 0

with strict inequality if g 6= f̂n. 2

Remark: From Lemma 2.3 we see that for the case n = 1, the MLE is a function on [0,∞) which
only changes slope at the endpoint of its support. Denoting this point by θ, the observation by X1,
and the resulting form of the estimator by fθ as in (2.8), it follows that

ψn(fθ) = − log fθ(X1) + 1 =

{
2 log θ − log 2 + 1− log(θ −X1) if θ > X1

∞ if θ ≤ X1
,

and the maximum likelihood estimator corresponds to θ = 2X1, which differs from the LS estimator
we encountered in the remark following Corollary 2.1 for each X1 > 0. Note that the MLE can
also be determined from the characterization that is given in Lemma 2.4 below.

Now, for a characterization of the MLE f̂n, let Gn : IR+ ×K → IR ∪ {∞} be defined by

Gn(t, f) =

∫ t

0
f(u)−1dFn(u) . (2.9)

Then define Hn : IR+ ×K → IR ∪ {∞} by

Hn(t, f) =

∫ t

0
Gn(u, f)du =

∫ t

0

t− u

f(u)
dFn(u) . (2.10)

Lemma 2.4 (i) The piecewise linear function f̂n ∈ K minimizes ψn over K if and only if

Ĥn(t) := Hn(t, f̂n)

{ ≤ 1
2 t

2, x ≥ 0

= 1
2 t

2, f̂ ′n(t−) < f̂ ′n(t+)
. (2.11)
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(ii) Let t1 < . . . < tm be the changes of slope of Ĥ ′′
n, where Ĥn is defined as defined in (i), and

let t0 = 0. Then f̂n and Ĥn have the following “midpoint properties”:

f̂n (t̄k) = 1
2

{
f̂n(tk−1) + f̂n(tk)

}
=

Fn(tk)− Fn(tk−1)

tk − tk−1
, (2.12)

Hn(t̄k) = 1
2

{∫

[tk−1,t̄k]

t̄k − x

f̂n(x)
dFn(x) +

∫

[t̄k,tk]

x− t̄k

f̂n(x)
dFn(x) + tktk−1

}
(2.13)

for k = 1, . . . ,m, where t̄k = (tk−1 + tk)/2.

Proof: First suppose that f̂n minimizes ψn over K. Then for any g ∈ K and ε > 0 we have

ψn(f̂n + εg) ≥ ψn(f̂n) ,

and hence

0 ≤ lim
ε↓0

ψn(f̂n + εg)− ψn(f̂n)

ε
= −

∫
g(x)

f̂n(x)
dFn(x) +

∫
g(x)dx . (2.14)

Taking g(x) = (t − x)+ for fixed t > 0 yields the inequality part of (i). To see the equality part
of (2.11), note that for g(x) = (t − x)+ and t belonging to the set of changes of slope of f̂ ′n, the
function f̂n + εg ∈ K for ε < 0 and |ε| sufficiently small; repeating the argument for these values of
t and ε yields the equality part of (2.11).

Now suppose that (2.11) is satisfied for f̂n. We first show that this implies (ii). Let t1 < . . . < tm
be the changes of slope Ĥ ′′

n and let t0 = 0. At the points tk the equality condition can be written
as follows: ∫ tk

0

tk − x

f̂n(x)
dFn(x) = 1

2 t
2
k, k = 1, . . . ,m.

After some algebra, it is seen that this means
∫ tk

tk−1

tk − x

f̂n(x)
dFn(x) = 1

2 (tk − tk−1)
2 , k = 1, . . . ,m, (2.15)

where t0 = 0.
But the equality conditions together with the inequality conditions in (2.11) imply that the

function Ĥn has to be tangent to the function t 7→ 1
2 t

2 at the points ti, i ≥ 1 and at t0 = 0, and
this implies that also the following equations hold (at the “derivative level”):

∫ tk

tk−1

1

f̂n(x)
dFn(x) = tk − tk−1, k = 1, . . . ,m. (2.16)

We can write

Fn(tk)− Fn(tk−1) =

∫ tk

tk−1

dFn(x) =

∫ tk

tk−1

f̂n(x)

f̂n(x)
dFn(x)

=

∫ tk

tk−1

f̂n(t̄k)

f̂n(x)
dFn(x) + f̂ ′n(t̄k)

∫ tk

tk−1

x− t̄k

f̂n(x)
dFn(x)

= f̂n(t̄k) {tk − tk−1}+ f̂ ′n(t̄k)

∫ tk

tk−1

x− t̄k

f̂n(x)
dFn(x),
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where we use (2.16) in the last step. But by (2.16) we also get

∫ tk

tk−1

tk − x

f̂n(x)
dFn(x) +

∫ tk

tk−1

x− tk−1

f̂n(x)
dFn(x) = {tk − tk−1}

∫ tk

tk−1

1

f̂n(x)
dFn(x) = {tk − tk−1}2 ,

and hence, using (2.15), it is seen that

∫ tk

tk−1

x− tk−1

f̂n(x)
dFn(x) =

∫ tk

tk−1

tk − x

f̂n(x)
dFn(x) = 1

2 {tk − tk−1}2 . (2.17)

Hence we obtain the first part of (ii), since

f̂ ′n(t̄k) =
f̂n(tk)− f̂n(tk−1)

tk − tk−1
,

using the linearity of f̂n on the interval [tk−1, tk].
To prove the second part of (ii) we first note that

∫ tk

t̄k

x− t̄k

f̂n(x)
dFn(x) =

∫ tk

0

x− t̄k

f̂n(x)
dFn(x) +

∫ t̄k

0

t̄k − x

f̂n(x)
dFn(x)

= Hn(t̄k) + 1
2 (tk − tk−1)

∫ tk

0

1

f̂n(x)
dFn(x)−

∫ tk

0

tk − x

f̂n(x)
dFn(x)

= Hn(t̄k) + 1
2 (tk − tk−1) tk − 1

2 t
2
k = Hn(t̄k)− 1

2 tktk−1. (2.18)

In a similar way, we get ∫ t̄k

tk−1

t̄k − x

f̂n(x)
dFn(x) = Hn(t̄k)− 1

2 tktk−1. (2.19)

Combining (2.18) and (2.19) we get the result.
Part (ii) immediately implies that f̂n belongs to C, since

∫ ∞

0
f̂n(x) dx =

m∑

k=1

f̂n(t̄k) (tk − tk−1) =

m∑

k=1

{Fn(tk)− Fn(tk−1)} = 1. (2.20)

To show that f̂n minimizes ψn over K, note that all g ∈ K have the following representation

g(x) =

∫ ∞

0
(t− x)+dν(t) (2.21)

for some finite positive measure ν. Then, using − log(u) ≥ 1 − u and the definition of Gn(·, f̂n ),
we have

ψn(g) − ψn(f̂n) = −
∫ ∞

0
log

(
g

f̂n

)
dFn +

∫ ∞

0
(g(x) − f̂n(x))dx

12



(2.20)

≥
∫ ∞

0

(
1− g

f̂n

)
dFn +

∫ ∞

0
g(x)dx − 1 = −

∫ ∞

0

g

f̂n

dFn +

∫ ∞

0
g(x)dx

(2.21)
= −

∫ ∞

0

∫ ∞

0
(t− x)+dν(t) dGn(x, f̂n ) +

∫ ∞

0

∫ ∞

0
(t− x)+dν(t) dx

=

∫ ∞

0

{
−
∫ ∞

0
(t− x)+dGn(x, f̂n ) +

∫ ∞

0
(t− x)+dx

}
dν(t)

=

∫ ∞

0

{
1
2 t

2 −Hn(t, f̂n )
}
dν(t) ≥ 0,

where we use the inequality condition in (2.11) in the last step. Thus f̂n minimizes ψn over K. 2

Note that the property that the MLE can have at most one change of slope between two
observations (and cannot change slope at any of the observations) that was part of the statement
of Lemma 2.3, can also be seen from the characterization given in Lemma 2.4. A piecewise linear
envelope of the function t 7→ 1

2 t
2 cannot touch this function (the location of any such touch coincides

with a change of slope of the MLE) at a point where it bends (i.e., an observation point). Moreover,
a straight line cannot touch a parabola at two distinct points.

The MLE shares the “midpoint property” with the LS estimator (but clearly for different points
tk), see Corollary 2.1, part (iv), and Lemma 2.4, part (ii). So both are a kind of “derivative” of the
empirical distribution function, just like the Grenander estimator of a decreasing density. We note
in passing that the MLE f̂n solves the following weighted least squares problem with “self-induced”
weights: minimize ψ̃n(g) over g ∈ K where

ψ̃n(g) =
1

2

∫ ∞

0

g(t)2

f̂n(t)
dt−

∫ ∞

0

g(t)

f̂n(t)
dFn(t) .

Figure 3 shows a picture of Ĥn and the function t 7→ t2/2 for the same sample of size 20, as
used for figures 1 and 2; figure 4 shows Ĥ ′

n and the identity function. Figure 5 gives a comparison
of the LS estimator and the MLE for the same sample.

13
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Figure 3: Function Ĥn of Lemma 2.4. Solid: Ĥn (red), dashed: t 7→ t2/2 (black).

0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 4: Solid: Ĥ ′
n (red), dashed: t 7→ t (black).
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Figure 5: Dotted: real density (blue), solid: MLE (black), dashed: LS estimator (red).

We chose the small sample size because otherwise the difference between H̃n and Yn (resp. Ĥn

and t2/2) is hardly visible. For the same reason we chose the “borderline” convex function that is
linear on [0, 1]. Figure 6 shows a comparison of the LS estimator and the MLE for a more “normal”
sample size 100 and the strictly convex density function

x 7→ 3(1 − x)21[0,1](x), x ≥ 0.

0 0.5 1 1.5

0

1
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3

Figure 6: Dotted: real density (blue), solid: MLE (black), dashed: LS estimator (red).
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2.3 The Least Squares estimator of a convex regression function.

Consider given the following data for n = 1, 2, . . .: {(xn,i, Yn,i) : i = 1, . . . , n}, where

Yn,i = r0(xn,i) + εn,i (2.22)

for a convex function r0 on IR. Here {εn,i : i = 1, . . . , n, n ≥ 1 is a triangular array of i.i.d. random
variables satisfying Eetε1,1 < ∞ for some t > 0, and the xn,i’s are ordered as xn,1 < xn,2 < . . . <
xn,n. Writing K for the set of all convex functions on IR, the first suggestion for a least squares
estimate of r0 is

argminr∈Kφn(r), where φn(r) =
1

2

n∑

i=1

(Yn,i − r(xn,i))
2 .

It is immediately clear, however, that this definition needs more specification. For instance, any
solution to the minimization problem can be extended quite arbitrarily (although convex) outside
the range of the xn,i’s. Also, between the xn,i’s there is some arbitrariness in the way a function can
be chosen. We therefore confine ourselves to minimizing φn over the subclass Kn of K consisting
of the functions that are linear between successive xn,i’s, as well as to the left and the right of the
range of the xn,i’s. Hence, we define

r̂n = argminr∈Kn
φn(r), where φn(r) =

1

2

n∑

i=1

(Yn,i − r(xn,i))
2 .

Note that r ∈ Kn can be parameterized naturally by (rn,1, . . . , rn,n) = (r(xn,1), . . . , r(xn,n)) ∈ K̃n ⊂
IRn where

K̃n =

{
rn ∈ IRn :

rn,i − rn,i−1

xn,i − xn,i−1
≤ rn,i+1 − rn,i

xn,i+1 − xn,i
for all i = 2 . . . , n− 1

}
.

The identification Kn = K̃n will be made throughout.
As for both density estimators, we have existence and uniqueness of this least squares estimator.

For completeness we state the lemma.

Lemma 2.5 There is a unique function r̂n ∈ Kn that minimizes φn over Kn.

Proof: Follows immediately from the strict convexity of φn : Kn → IR and the fact that φn(r) →∞
as ‖r‖2 →∞. 2

Next step is to characterize the least squares estimator.

Lemma 2.6 Define R̂n,k =
∑k

i=1 r̂n,i and Sn,k =
∑k

i=1 Yn,i. Then r̂n = argminr∈Kn
φn(r) if and

only if R̂n,n = Sn,n and

j−1∑

k=1

R̂n,k(xn,k+1 − xn,k)

{
≥∑j−1

k=1 Sn,k(xn,k+1 − xn,k) j = 2, 3, . . . , n

=
∑j−1

k=1 Sn,k(xn,k+1 − xn,k) if r̂n has a kink at xn,j or j = n .
(2.23)
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Proof: First note that the convex cone Kn is generated by the functions ±1, ±x, and (x−xn,i)+ for
1 ≤ i ≤ n− 1. Hence, by Corollary 2.1 in Groeneboom (1996), we get that r̂n = argminr∈Kn

φn(r)
if and only if

n∑

i=1

r̂n,i =

n∑

i=1

Yn,i,

n∑

i=1

xn,ir̂n,i =

n∑

i=1

xn,iYn,i

and

j−1∑

i=1

(r̂n,i − Yn,i)(xn,j − xn,i)

{
≥ 0 for all j = 2, 3, . . . , n
= 0 if r̂n has a kink at xn,j .

The first equality can be restated as R̂n,n = Sn,n. Using this, the second equality can be covered
by forcing the final inequality for j = n to be an equality. Rewriting the sum

j−1∑

i=1

r̂n,i(xn,j − xn,i) =

j−1∑

i=1

r̂n,i

j−1∑

k=i

(xn,k+1 − xn,k) =

j−1∑

k=1

R̂n,k(xn,k+1 − xn,k)

and similarly for Yn,i, the result follows. 2

3 Consistency of the estimators

In this section we will prove consistency of the estimators introduced in Section 2. A useful
inequality that holds for all convex decreasing densities f on (0,∞) is the following

f(x) ≤ 1

2x
for all x > 0 . (3.1)

To see this, fix a convex decreasing density f on (0,∞) and x0 > 0. Then there exists an α < 0
(subgradient of f at x0) such that the function lα(x) = (f(x0)+α(x−x0))1[0,x0−f(x0)/α](x) satisfies
f(x) ≥ lα(x) for all x ≥ 0. Hence

1 =

∫ ∞

0
f(x) dx ≥

∫ ∞

0
lα(x) dx =

1

2
(x0 − f(x0)/α)(f(x0)− αx0)

= x0f(x0)−
1

2
(αx2

0 + f(x0)
2/α) ≥ 2x0f(x0).

The final inequality holds for all α < 0, with equality if and only if α = −f(x0)/x0.

Theorem 3.1 (Consistency of LS density estimator)
Suppose that X1, X2, . . . are i.i.d. random variables with density f0 ∈ C. Then the least squares

estimator is uniformly consistent on closed intervals bounded away from 0: i.e., for each c > 0, we
have, with probability one,

sup
c≤x<∞

|f̃n(x)− f0(x)| → 0. (3.2)
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Proof: The proof is based on the characterization of the estimator given in Lemma 2.2. We let Tn

denote the set of locations of change of slope of H̃ ′′
n, where H̃n is defined as in Lemma 2.2.

First assume that f0(0) < ∞. Fix δ > 0, such that [0, δ] is contained in the interior of the
support of f0, and let τn,1 ∈ Tn be the last point of change of slope in (0, δ], or zero if there is no
such point. Since, with probability one,

lim inf
n→∞

X(n) > δ

and, by Lemma 2.1, the last point of change of slope is to the right of X(n), we may assume that
there exists a point of change of slope τn,2 strictly to the right of δ. Let τn,2 be the first point of
change of slope that is strictly to the right of δ. Then the sequence (f̃n(τn,1)) is uniformly bounded.
This is seen in the following way. Let τn = {τn,1 + τn,2}/2. Then τn ≥ δ/2 and hence, by (3.1),

f̃n(τn) ≤ f̃n(δ/2) ≤ 1/δ.

This implies that we have an upper bound for f̃n(τn,1) that only depends on δ. Indeed, if τn,1 > δ/2,
f̃n(τn,1) ≤ f̃n(δ/2) ≤ 1/δ by (3.1). If τn,1 ≤ δ/2, we can use linearity of f̃n on [τn,1, δ] to get

1 ≥
∫ δ

τn,1

f̃n(x) dx =
1

2
(δ − τn,1)(f̃n(δ) + f̃n(τn,1)) ≥

1

4
δf̃n(τn,1)

giving f̃n(τn,1) ≤ 4/δ. Moreover, the right derivative of f̃n has a uniform absolute upper bound at
τn,1, also only depending on δ. This can be verified analogously.

On the interval [τn,1,∞), we have:

1
2

∫

[τn,1,∞)
f̃n(x)2 dx−

∫

[τn,1,∞)
f̃n(x) dFn(x) ≤ 1

2

∫

[τn,1,∞)
f0(x)

2 dx−
∫

[τn,1,∞)
f0(x) dFn(x).

This follows from writing f 2
0 − f̃2

n = (f0− f̃n)2 +2f̃n(f0− f̃n), implying, using integration by parts,

1
2

∫

[τn,1,∞)
f0(x)

2 dx−
∫

[τn,1,∞)
f0(x) dFn(x)− 1

2

∫

[τn,1,∞)
f̃n(x)2 dx+

∫

[τn,1,∞)
f̃n(x) dFn(x)

≥
∫

[τn,1,∞)
f̃n(x)

{
f0(x)− f̃n(x)

}
dx−

∫

[τn,1,∞)

{
f0(x)− f̃n(x)

}
dFn(x)

=

∫

[τn,1,∞)

{
H̃n(x)− Yn(x)

}
d(f ′0 − f̃ ′n)(x) =

∫

[τn,1,∞)

{
H̃n(x)− Yn(x)

}
df ′0(x) ≥ 0.

This argument was used in the proof of Lemma 2.2 on the interval (0,∞).
Since τn,1 ∈ [0, δ], for each subsequence there must be a further subsequence converging to a

point τ1 ∈ [0, δ]. Using a Helly argument, there will be a further subsequence (nk) so that, for
each x ∈ (τ1,∞), f̃nk

(x) → f̃(x) = f̃(x, ω), where f̃ is a convex function on [τ1,∞), satisfying
f̃(τ1) <∞. The function f̃ satisfies:

1
2

∫

[τ1,∞)
f̃(x)2 dx−

∫

[τ1,∞)
f̃(x) dF0(x) ≤ 1

2

∫

[τ1,∞)
f0(x)

2 dx−
∫

[τ1,∞)
f0(x) dF0(x), (3.3)
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where the integrals on the right side are finite, also if τ1 = 0, since f0(0) <∞. But this implies

∫

[τ1,∞)

{
f̃(x)− f0(x)

}2
dx ≤ 0, (3.4)

and hence f̃(x) = f0(x), for x ≥ τ1. Since δ > 0 can be chosen arbitrarily small, we get that for
any c > 0, each subsequence f̃` has a subsequence that converges to f0 at each point x ≥ c. By the
monotonicity of f0, the convergence has to be uniform.

If f0 is unbounded in a neighborhood of zero, we cannot use (exactly) the same proof, since the
integrals on the right side of (3.3) could be infinite, if the limit point τ1 would be equal to zero.
But we can still follow the same idea of proving a relation of type (3.4), by proving that for any
δ > 0 there exist limit points τ1 of this type that are strictly positive. The existence of points of
this type will follow from the fact that, for each δ > 0, there exist points x ∈ (0, δ) such that in
each open neighborhood of x there exist points x1, x2 and x3, such that 0 < x1 < x2 < x3, and

f0(x3)− f0(x2)

x3 − x2
>
f0(x2)− f0(x1)

x2 − x1
. (3.5)

We shall denote these points by points of strict convexity of f0.
For suppose that x > 0 is such a point of strict convexity of f0. Then it is plausible that the

points of change of slope τn, closest to x, have to converge to x with probability one. In that case
we can let x play the role of τ1 on (3.4), and we would be through.

So, two things remain to be proved in this situation:

(i) The existence of points of strict convexity x in each interval (0, b], b > 0.

(ii) The a.s. convergence to such a point x of the closest point of change of slope τn.

ad (i): If (0, b], with b > 0, would be an interval without points of this type, we could cover (0, b] by
a collection of intervals (x− δx, x+ δx) such that f0 is linear on each interval (0∨ (x− δx), x+ δx).
But then f0 would be linear on (0, b], since each interval [a, b] ⊂ (0, b] would have a finite subcover,
and hence f0 would be linear on each such interval [a, b], contradicting f0(0) = limx↓0 f0(x) = ∞.

ad (ii): Let x > 0 be such a point of strict convexity of f0 and let τn,1 and τn,2 be the
last point of touch ≤ x between H̃n and Yn and the first point of touch > x between H̃n and Yn,
respectively. Moreover, let τn be the midpoint of the interval [τn,1, τn,2]. Since x > 0 can be chosen
arbitrarily close to zero, we may assume that f0(x) > 0. By part (iv) of Corollary 2.1 we get

f̃n(τn) = 1
2

{
f̃n(τn,1) + f̃n(τn,2)

}
=

Fn(τn,2)− Fn(τn,1)

τn,2 − τn,1
. (3.6)

Now, if τn,2 →∞, possibly along a subsequence, we would get:

1
2

{
f̃n(τn,1) + f̃n(τn,2)

}
→ 0,
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and in particular f̃n(τn,1) → 0. But this would contradict the property
∫

[τn,1,t]
(t− y)f̃n(y) dy ≥

∫

[τn,1,t]
(t− y) dFn(y), t ≥ τn,1,

for large n, since, almost surely,

lim inf
n→∞

∫

[τn,1,t]
(t− y) dFn(y) ≥

∫ t

x
(t− y)f0(y) dy > 0, for t > x.

So we may assume that the sequences (τn,1) and (τn,2) are bounded and have subsequences
converging to finite points τ1 and τ2, respectively. For convenience we denote these subsequences
again by (τn,1) and (τn,2). Suppose that

τ1 < x < τ2. (3.7)

Then, by (3.6), f̃n(τn,1) is uniformly bounded, with a uniformly bounded right derivative at τn,1,
so we can extend the function linearly on [0, τn,1] to a convex function on [0,∞) such that the
sequence thus obtained has a convergent subsequence. So (f̃n) has a subsequence, converging to a
convex decreasing function f̃ , at each point in (τ1,∞), where f̃(τ1) < ∞. Suppose τ1 = 0. Then
we need to have: ∫ t

0
(t− y)f̃(y) dy ≥

∫ t

0
(t− y)f0(y) dy, t ≥ 0,

which cannot occur since f0 is unbounded near zero and f̃(0) <∞ in this case. If τ1 > 0, we would
get

1
2

∫

[τ1,∞)
f̃(y)2 dx−

∫

[τ1,∞)
f̃(y) f0(y) dy ≤ − 1

2

∫

[τ1,∞)
f0(y)

2 dx, (3.8)

implying f̃(y) = f0(y), y ≥ τ1. This cannot occur either, since f̃ is linear on [τ1, τ2] and f0 is not
linear on that interval, because x is a point of strict convexity of f0. Since the argument can be
repeated for subsequences, we can conclude that, with probability one, the point of change of slope
τn, closest to x, has to converge to x. 2

Remark: It is well known that the Grenander estimator of a bounded decreasing density on [0,∞)
is inconsistent at zero. See e.g. Woodroofe and Sun (1993). A similar result holds for the LS
estimator of a bounded convex decreasing density. Indeed, from its characterization in Lemma 2.2
we have

H̃n(X(2)) ≥ Yn(X(2)) = (X(2) −X(1))/n.

Moreover, we have by monotonicity of f̃n that

H̃n(X(2)) =

∫ X(2)

0

∫ y

0
f̃n(x) dx dy ≤ 1

2
f̃n(0)X2

(2)

Hence,

f̃n(0) ≥
2(X(2) −X(1))

nX2
(2)
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Using the well known representation of the order statistics as transformed rescaled cumulative sums
of an exponential sample E1, . . . , En+1 (see e.g. Shorack and Wellner (1986), Proposition 8.2.1,
page 335), it follows that

lim inf
n→∞

P (f̃n(0) ≥ 2f0(0)) ≥ lim inf
n→∞

P

(
2(X(2) −X(1))

nX2
(2)

≥ 2f0(0)

)
= P

(
E2

(E1 +E2)2
≥ 1

)

= P (E1 +E2 ≤
√
E2) ≥ P (E1 ≤ 2/9)P (E2 ∈ [1/9, 1/4])) ≥ p > 0 .

Theorem 3.2 (Consistency of MLE of density) Suppose that X1, X2, . . . are i.i.d. random
variables with density f0 ∈ C. Then the MLE is uniformly consistent on closed intervals bounded
away from 0: i.e., for each c > 0, we have

sup
c≤x<∞

|f̂n(x)− f0(x)| →a.s. 0 . (3.9)

Proof: Taking g = f0 in (2.14), it follows that
∫ ∞

0

f0(x)

f̂n(x)
dFn(x) ≤ 1 . (3.10)

Now by Glivenko Cantelli we have Ω0 ≡ {ω ∈ Ω : ‖Fn(·, ω) − F0‖∞ → 0} has P (Ω0) = 1.
Now fix ω ∈ Ω0. Let {k} be an arbitrary subsequence of {n}. By (3.1), we can use Helly’s
diagonalization procedure together with the fact that a convex function is continuous to extract a
further subsequence (nk) along which f̂nk

(x) → f̂(x) for each x > 0, where f̂ is a convex decreasing
function on (0,∞). Note that f̂ may depend on ω and on the particular choices of the subsequences
{k} and {l}, and that, by Fatou’s lemma

∫ ∞

0
f̂(x)dx ≤ 1 . (3.11)

Note also that f̂l → f̂ uniformly on intervals of the form [c,∞) for c > 0. This follows from the
monotonicity of f̂l and f̂ and the continuity of f̂ .

Now define, for 0 < α < 1, ηα = F−1
0 (1 − α), and fix ε > 0 such that ε < ηε. From (3.10) it

follows that there exists a number τε > 0 such that for k sufficiently large f̂l(ηε) ≥ τε. Consequently,
there exist numbers 0 < cε < Cε <∞, such that for all k sufficiently large, cε ≤ f0(x)/f̂nk

(x) ≤ Cε

whenever x ∈ [ε, ηε]. Therefore, we have that

sup
x∈[ε,ηε]

∣∣∣∣∣
f0(x)

f̂nk
(x)

− f0(x)

f̂(x)

∣∣∣∣∣→ 0 .

This yields, for all k sufficiently large,

∫ ηε

ε

f0(x)

f̂(x)
dFnk

(x) ≤
∫ ηε

ε

(
f0(x)

f̂nk
(x)

+ ε

)
dFnk

(x) ≤ 1 + ε ,
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where we also use (3.10). However, since Fnk
→d F0 for our ω, and f0/f̂ is bounded and continuous

on [ε, ηε], we may conclude that
∫ ηε

ε

f0(x)

f̂(x)
dF0(x) ≤ 1 + ε .

Since ε > 0 was arbitrary (yet small), we can apply the monotone convergence theorem to conclude
that ∫ ∞

0

f0(x)
2

f̂(x)
dx ≤ 1 . (3.12)

On the other hand, we have for each ε < 1 and continuous subdensity f that

0 ≤
∫ 1/ε

ε

(f0(x)− f(x))2

f(x)
dx =

∫ 1/ε

ε

f0(x)
2

f(x)
dx− 2

∫ 1/ε

ε
f0(x) dx+

∫ 1/ε

ε
f(x) dx,

with equality only if f ≡ f0 on [ε, 1/ε]. Using monotone convergence, we see that for each continuous
subdensity f , ∫ ∞

0

f0(x)
2

f(x)
dx ≥ 1

with equality only if f ≡ f0. Applying this to the subdensity f̂ (see (3.11)), we get that the
inequality in (3.12) is an equality, which again implies that f̂ ≡ f0.

Therefore, we have proved that for each ω ∈ Ω0 with P (Ω0) = 1, each subsequence {f̂nk
(·;ω)}

of {f̂n(·;ω)} contains a further subsequence {f̂nk
(·;ω)} such that f̂nk

(x, ω) → f0(x) all x > 0.
Continuity of f0 and the monotonicity of f0 imply (3.9). 2

Remark: Just as the LS estimator, the MLE is inconsistent at zero. Using the characterization of
Lemma 2.4 at t = X(2), this inconsistency at zero follows analogously to that of the LS estimator.

Lemma 3.1 Suppose that f̄n is a sequence of functions in K satisfying supx≥c |f̄n(x)− f0(x)| → 0
for each c > 0. Then

−∞ < f ′0(x−) ≤ lim inf
n→∞

f̄ ′n(x−) ≤ lim sup
n→∞

f̄ ′n(x+) ≤ f ′0(x+) < 0 (3.13)

for all x > 0.

Proof: For each h > 0 (sufficiently small) the fact that f̄n ∈ K implies that

f̄n(x− h)− f̄n(x)

−h ≤ f̄ ′n(x−) ≤ f̄ ′n(x+) ≤ f̄n(x+ h)− f̄n(x)

h
.

Letting n→∞, we get

f0(x− h)− f0(x)

−h ≤ lim inf
n→∞

f̄ ′n(x−) ≤ lim sup
n→∞

f̄ ′n(x+) ≤ f0(x+ h)− f0(x)

h
.

Now, letting h ↓ 0, we obtain (3.13). 2
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Corollary 3.1 The derivatives of the MLE and LS estimator are consistent for the derivative of
f0 in the sense that (3.13) holds almost surely.

Proof: Combine Theorem 3.1 and 3.2 with Lemma 3.1. 2

Having derived strong consistency of both density estimators, and their derivatives, we now
turn to the regression problem. This problem is studied more extensively in the literature, and
consistency was proved under more general conditions in Hanson and Pledger (1976).

Theorem 3.3 (Consistency of Least Squares regression estimator) Consider model (2.22) with x i’s
contained in [0, 1]. Suppose that εn,i are independent, identically and symmetrically distributed with
finite exponential moment. Furthermore suppose that for each subinterval A of [0, 1] of positive
Lebesgue measure, lim infn→∞ n−1

∑n
i=1 1A(xn,i) > 0 almost surely. Then for each ε ∈ (0, 1/2),

sup
[ε,1−ε]

|r̂n(x)− r(x)| → 0 a.s.

and for each x ∈ (0, 1),

−∞ < r′(x−) ≤ lim inf
n→∞

r′n(x−) ≤ lim sup
n→∞

r′n(x+) ≤ r′(x+) <∞

Proof: Follows from the theorem in Section 1 of Hanson and Pledger (1976) and Lemma 3.1. 2

4 Rates of convergence

A key step in establishing the rate of convergence is to show that, for the estimators considered in
Sections 2.1 and 2.2, the distance between successive changes of slope of the estimator is of order
Op(n

−1/5). A similar result was established for the estimator considered in Section 2.3 in Mammen

(1991). The result is given in Lemma 4.2. Using Lemma 4.2, we will prove n−2/5-tightness of the
estimators in Lemma 4.4, and n−1/5- tightness of their derivatives. This will prove to be crucial in
Section 6.

As in the previous section, we denote by Tn the set of changes of slope of the estimator under
consideration.

Lemma 4.1 Let x0 be an interior point of the support of f0. Then:

(i) Let, for 0 < x ≤ y, the random function Un(x, y) be defined by

Un(x, y) =

∫

[x,y]

{
z − 1

2(x+ y)
}
d (Fn − F0) (z), y ≥ x. (4.1)

Then there exist constants δ > 0 and c0 > 0 such that, for each ε > 0 and each x satisfying
|x− x0| < δ:

|Un(x, y)| ≤ ε(y − x)4 +Op

(
n−4/5

)
, 0 ≤ y − x ≤ c0. (4.2)
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(ii) Let, for 0 < x ≤ y, and x in a neighborhood of x0, the random function Vn(x, y) be defined by

Vn(x, y) =

∫

[x,y]

z − 1
2(x+ y)

f̂n(z)
d (Fn − F0) (z), y ≥ x, (4.3)

where f̂n is the MLE. Then there exist constants δ > 0 and c0 > 0 such that, for each ε > 0
and each x satisfying |x− x0| < δ:

Vn(x, y) = ε(y − x)4 (1 + op(1)) +Op

(
n−4/5

)
, 0 ≤ y − x ≤ c0, (4.4)

Proof: ad (i). We have:

sup
y:0≤y−x≤R

|Un(x, y)| = sup
y:0≤y−x≤R

|(Pn − P )(fx,y)| ,

where
fx,y(z) = (z − x)1[x,y](z)− 1

2(y − x)1[x,y](z), y ≥ x.

But the collection of functions

Fx,R = {fx,y(z) : x ≤ y ≤ x+R}

is a VC-subgraph class of functions with envelope function

Fx,R(z) = (z − x)1[x,x+R](z) + 1
2R1[x,x+R](z),

so that

EF 2
x,R(X1) = 1

3R
3 {f0(x0) +O(1)}+ 1

4R
2{F0(x+R)− F0(x)} = 7

12R
3{f0(x0) +O(1)}. (4.5)

for x in some appropriate neighborhood [x0 − δ, x0 + δ] of x0. It now follows from Theorem 2.14.1
in Van der Vaart and Wellner (1996) that

E





(
sup

fx,y∈Fx,R

∣∣∣(Pn − P ) (fx,y)
∣∣∣
)2


 ≤ 1

n
KEF 2

x,R = O
(
n−1R3

)

for small values of R and a constant K > 0.
Hence there exists a δ > 0 such that, for ε > 0, A > 0 and jn−1/5 ≤ δ:

P
{
∃u ∈

[
(j − 1)n−1/5, jn−1/5

)
: n4/5 |Un(x, x+ u)| > A+ ε(j − 1)4

}

≤ cn8/5E
{
‖Pn − P‖F

x,jn−1/5

}2
/
{
A+ ε(j − 1)4

}2

≤ c′j3/
{
A+ ε(j − 1)4

}2
(4.6)
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for constants c, c′ > 0, independent of x ∈ [x0 − δ, x0 + δ]. The result now easily follows, see, e.g.,
Kim and Pollard (1990), page 201, for an analogous argument in the case of “cube root n” instead
of “fifth root n” asymptotics.

Part (ii) is proved in a similar way, using the fact that we can choose a neigborhood of x0 such
that, for x in this neighborhood,

f̂n(x) ≥ 1
2f0(x0) (1 + op(1)) , n→∞.

2

The proof that the distance between successive changes of slope of the LS estimator and the
MLE is of order Op(n

−1/5) will be based on the characterizations of these estimators, developed in
Section 2.

Lemma 4.2 Let x0 be a point at which f0 has a continuous and strictly positive second derivative.
Let ξn be an arbitrary sequence of numbers converging to x0 and define τ−n = max{t ∈ Tn : t ≤ ξn}
and τ+

n = min{t ∈ Tn : t > ξn} (of course Tn for the MLE and LS estimator are different). Then,

τ+
n − τ−n = Op(n

−1/5)

for both the LS estimator and MLE.

Proof: We first prove the result for the LS estimator. Let τ−n be the last point of change of slope
of H̃ ′′

n < ξn and τ+
n the first point of change of slope of H̃ ′′

n ≥ ξn. Note that, since the number of
changes of slope is bounded above by n by Lemma 2.1, we can only have strict changes of slope.
Moreover, let τn be the midpoint of the interval [τ−n , τ

+
n ]. Then, by the characterization of Lemma

2.2:
H̃n(τn) ≥ Yn(τn).

Using (2.7), this can be written:

1
2

{
Yn(τ−n ) + Yn(τ+

n )
}
− 1

8

{
Fn(τ+

n )− Fn(τ−n )
} (
τ+
n − τ−n

)
≥ Yn(τn). (4.7)

Replacing Yn and Fn by their deterministic counterparts, and expanding the integrands at τn, we
get for for large n:

∫ τ+
n

τn

{τ+
n − x}f0(x) dx +

∫ τn

τ−n

{x− τ−n }f0(x) dx − 1
4

(
τ+
n − τ−n

) ∫ τ+
n

τ−n

f0(x) dx

=

∫

[τ−n ,τn]

{
1
2

(
τ−n + τn

)
− x
}
f0(x) dx+

∫

[τn,τ+
n ]

{
x− 1

2

(
τn + τ+

n

)}
f0(x) dx

= − 1
384f

′′
0 (τn)

(
τ+
n − τ−n

)4
+ op

(
τ+
n − τ−n

)4
,

using the consistency of f̃n to ensure that τn belongs to a sufficiently small neighborhood of x0 to
allow this expansion. But, by Lemma 4.1 and the inequality (4.7), this implies:

− 1
384f

′′
0 (x0)

(
τ+
n − τ−n

)4
+Op

(
n−4/5

)
+ op

(
τ+
n − τ−n

)4 ≥ 0.
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Hence:
τ+
n − τ−n = Op

(
n−1/5

)
.

Similarly, for the MLE, let τ−n be the last point of change of slope < ξn and τ+
n the first point

of change of slope ≥ ξn. Moreover, let τn be the midpoint of the interval [τ−n , τ
+
n ]. Then, by the

characterization of Lemma 2.4:
Hn(τn) ≤ τ2

n/2.

Using (2.13), this can be written:

∫

[τ−n ,τn]

τn − x

f̂n(x)
dFn(x) +

∫

[τn,τ+
n ]

x− τn

f̂n(x)
dFn(x)− 1

4

(
τ+
n − τ−n

)2

=

∫

[τ−n ,τn]

τn − x− 1
4 (τ+

n − τ−n )

f̂n(x)
dFn(x) +

∫

[τn,τ+
n ]

x− τn − 1
4 (τ+

n − τ−n )

f̂n(x)
dFn(x)

=

∫

[τ−n ,τn]

1
2 (τ−n + τn)− x

f̂n(x)
dFn(x) +

∫

[τn,τ+
n ]

x− 1
2 (τn + τ+

n )

f̂n(x)
dFn(x)

≤ 0,

where we used (2.16) to obtain the first equality. But we have:

∫

[τ−n ,τn]

1
2 (τ−n + τn)− x

f̂n(x)
dFn(x) +

∫

[τn,τ+
n ]

x− 1
2 (τn + τ+

n )

f̂n(x)
dFn(x)

=

∫

[τ−n ,τn]

1
2 (τ−n + τn)− x

f̂n(x)
d (Fn − F0) (x) +

∫

[τn,τ+
n ]

x− 1
2 (τn + τ+

n )

f̂n(x)
d (Fn − F0) (x)

+

∫

[τ−n ,τn]

1
2 (τ−n + τn)− x

f̂n(x)
dF0(x) +

∫

[τn,τ+
n ]

x− 1
2 (τn + τ+

n )

f̂n(x)
dF0(x).

Here we use that τ+
n − τ−n = op(1), which is implied by the consistency of f̂n and the fact that

f ′′0 (x0) > 0 and f ′′0 is continuous at x0 (f̂n cannot be linear on an interval of length bounded away
from zero in a neighborhood of x0). Now note that we have:

∫

[τ−n ,τn]

1
2 (τ−n + τn)− x

f̂n(x)
dF0(x) +

∫

[τn,τ+
n ]

x− 1
2 (τn + τ+

n )

f̂n(x)
dF0(x)

=

∫

[τ−n ,τn]

{
1
2

(
τ−n + τn

)
− x
}
{

1

f̂n(x)
− 1

f0(x)

}
dF0(x)

+

∫

[τn,τ+
n ]

{
x− 1

2

(
τn + τ+

n

)}
{

1

f̂n(x)
− 1

f0(x)

}
dF0(x)

= 1
192f

′′
0 (x0)

(
τ+
n − τ−n

)4
+ op

((
τ+
n − τ−n

)4)
,
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expanding the functions f0 and f̂n at τn, and using the linearity of f̂n on [τ−n , τ
+
n ] and the consistency

of f̂n and f̂ ′n. Moreover, again using τ+
n − τ−n = op(1), we have that

inf
x∈[τ−n ,τ+

n ]
f̂n(x) > 1

2f0(x0) + op(1),

and therefore
∫

[τ−n ,τn]

1
2 (τ−n + τn)− x

f̂n(x)
d (Fn − F0) (x) +

∫

[τn,τ+
n ]

x− 1
2 (τn + τ+

n )

f̂n(x)
d (Fn − F0) (x)

= Op

(
n−4/5

)
+ op

((
τ+
n − τ−n

)4)
,

using part (ii) of Lemma 4.1. Combining these results we obtain

f ′′0 (x0)
(
τ+
n − τ−n

)4
+Op

(
n−4/5

)
+ op

((
τ+
n − τ−n

)4) ≤ 0

This again implies

τ+
n − τ−n = Op

(
n−1/5

)
.

2

Having established the order of the difference of successive points of changes of slope of H̃ ′′
n and

H ′′
n, we can turn the consistency result into a rate result saying that there will, with high probability,

be a point in an Op(n
−1/5) neighborhood of x0 where the difference between the estimator and the

estimand will be of order n−2/5. The lemma below has the exact statement.

Lemma 4.3 Suppose f ′0(x0) < 0, f ′′0 (x0) > 0, and f ′′0 is continuous in a neighbourhood of x0. Let
ξn be a sequence converging to x0. Then for any ε > 0 there exists an M > 1 and a c > 0 such
that the following holds with probability bigger than 1− ε. There are bend points τ−n < ξn < τ+

n of
f̃n with 2n−1/5 ≤ τ+

n − τ−n ≤ 2Mn−1/5 and for any of such points we have that

inf
t∈[τ−n ,τ+

n ]
|f0(t)− f̃n(t)| < cn−2/5 for all n .

The same result holds for f̂n instead of f̃n.

Proof. Fix ε > 0 and observe that Lemma 4.2 applied to the sequences ξn±n−1/5, gives that there
is an M > 0 such that with probability bigger than 1− ε, there exist jump-points τ−n and τ+

n of f̃ ′n
(or f̂ ′n) satisfying ξn −Mn−1/5 ≤ τ−n ≤ ξn − n−1/5 ≤ ξn + n−1/5 ≤ τ+

n ≤ ξn +Mn−1/5 for all n.
First consider the LS estimator f̃n. Let τ−n < τ+

n be such points of jump. Fix c > 0 and consider
the event

inf
t∈[τ−n ,τ+

n ]
|f0(t)− f̃n(t)| ≥ cn−2/5 . (4.8)

On this set we have:
∣∣∣∣∣

∫ τ+
n

τ−n

(
f0(t)− f̃n(t)

)
(τ+

n − t) dt

∣∣∣∣∣ ≥
1

2
cn−2/5(τ+

n − τ−n )2 .
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On the other hand, the equality conditions in (2.2) imply:

0 =

∫

[τ−n ,τ+
n ]

(τ+
n − t) d(F̃n − Fn)(t)

=

∫ τ+
n

τ−n

{
f̃n(t)− f0(t)

}
(τ+

n − t) dt−
∫

[τ−n ,τ+
n ]

(τ+
n − t) d(Fn − F0)(t) .

Therefore, by (4.8),
∣∣∣∣∣

∫

[τ−n ,τ+
n ]

(τ+
n − t) d(Fn − F0)(t)

∣∣∣∣∣ ≥
1

2
cn−2/5(τ+

n − τ−n )2 ≥ 2cn−4/5 . (4.9)

But the collection of functions

Fx,R = {fx,y(z) : x ≤ y ≤ x+R}

where
fx,y(z) = (y − z)1[x,y](z), y ≥ x

is a VC-subgraph class of functions with envelope function

Fx,R(z) = R1[x,x+R](z),

so that
EF 2

x,R(X1) = R2{F0(x+R)− F0(x)} = R3{f0(x0) + o(1)}. (4.10)

for x in some appropriate neighborhood [x0 − δ, x0 + δ] of x0. Therefore, just as in Lemma 4.1, we
get ∣∣∣∣∣

∫

[τ−n ,τ+
n ]

(τ+
n − t) d(Fn − F0)(t)

∣∣∣∣∣ = Op(n
−4/5) + op

(
(τ+

n − τ−n )4
)

= Op(n
−4/5).

So the probability of (4.8) can be made arbitrarily small by taking c sufficiently big. This proves
the result for f̃n.

Now consider the MLE f̂n. We get from (i) of Lemma 2.4 that

0 = Ĥn(τ+
n )− 1

2
τ+2
n − Ĥn(τ−n ) +

1

2
τ−2
n − (Ĥ ′

n(τ−n )− τ−n )(τ+
n − τ−n )

=

∫ τ+
n

t=τ−n

∫ t

u=τ−n

dFn(u)

f̂n(u)
− 1

2
(τ+

n − τ−n )2 =

=

∫ τ+
n

t=τ−n

(τ+
n − t)

f0(t)− f̂n(t)

f̂n(t)f0(t)
dFn(t)−

∫ τ+
n

t=τ−n

τ+
n − t

f0(t)
d(Fn − F0)(t) .

Under (4.8) (with f̂n instead of f̃n), the absolute value of the first term in this decomposition will
be bounded below asymptotically by 2cf0(x0)

−1n−4/5, whereas the second term is OP (n−4/5). 2

Using Lemma 4.3 monotonicity of the derivatives of the estimators and the limit density f0,
we obtain the local n−2/5-consistency of the density estimators and n−1/5-consistency of their
derivatives.
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Lemma 4.4 Suppose f ′0(x0) < 0, f ′′0 (x0) > 0, and f ′′0 is continuous in a neighborhood of x0. Then,
for f̄n = f̃n or f̂n, the following holds. For each M > 0

sup
|t|≤M

|f̄n(x0 + n−1/5t)− f0(x0)− n−1/5tf ′0(x0)| = Op(n
−2/5) (4.11)

and, interpreting f̄ ′n as left- or right derivative

sup
|t|≤M

|f̄ ′n(x0 + n−1/5t)− f ′0(x0)| = Op(n
−1/5) . (4.12)

Proof. We start proving (4.12). Fix x0, M > 0 and ε > 0. Define σn,1 to be the first point of change
of slope after x0 +Mn−1/5, σn,2 the first point of change of slope after σn,1+n−1/5 and σn,3 the first
point of change of slope after σn,2 + n−1/5. Define the points σn,i for i = −1,−2,−3 similarly, but
then argued from x0 to the left. Then, according to Lemma 4.3 there are numbers ξn,i ∈ (σn,i, σn,i+1)
(i = 1, 2) and ξn,i ∈ (σn,i−1, σn,i) (i = −1,−2) and c > 0, so that, with probability bigger than
1− ε, |f̄n(ξn,i)− f0(ξn,i)| ≤ cn−2/5. Hence, we have for each t ∈ [x0 −Mn−1/5, x0 +Mn−1/5] with
probability bigger than 1− ε that

f̄ ′n(t−) ≤ f̄ ′n(t+) ≤ f̄ ′n(ξ1) ≤
f̄n(ξ2)− f̄n(ξ1)

ξ2 − ξ1
≤ f0(ξ2)− f0(ξ1) + 2cn−2/5

ξ2 − ξ1
≤ f ′0(ξ2) + 2cn−1/5 .

In the final step we use that ξ2− ξ1 ≥ n−1/5. Similarly, we get that for each t ∈ [x0−Mn−1/5, x0 +
Mn−1/5], with probability above 1− ε that

f̄ ′n(t+) ≥ f̄ ′n(t−) ≥ f ′0(ξ−2)− 2cn−1/5.

Using that ξ±2 = x0 +OP (n−1/5) and smoothness of f ′0, we obtain (4.12).
Now consider (4.11). Fix M > 0 and ε > 0. By Lemma 4.2, we can find a K > M such that

there will be at least two points of change of slope at mutual distance at least n−1/5 in both the
intervals [x0 −Kn−1/5, x0 −Mn−1/5] and [x0 +Mn−1/5, x0 +Kn−1/5] with probability exceeding
1− ε. From Lemma 4.3 we know that then there are points ξ−1 ∈ [x0−Kn−1/5, x0 −Mn−1/5] and
ξ1 ∈ [x0 +Mn−1/5, x0 +Kn−1/5] such that |f̄n(ξn,i)− f0(ξn,i)| ≤ cn−2/5 for i = −1, 1.

From (4.12) we know that a c′ can be chosen to get the probability of

sup
t∈[x0−Kn−1/5,x0+Kn−1/5]

|f̄ ′n(t)− f ′0(x0)| ≤ c′n−1/5

bigger than 1−ε. Hence, with probability bigger than 1−3ε, we have for any t ∈ [x0−Mn−1/5, x0+
Mn−1/5] for n sufficiently large that

f̄n(t) ≥ f̄n(ξ1) + f̄ ′n(ξ1)(t− ξ1) ≥ f0(ξ1)− cn−2/5 + (f ′0(x0)− c′n−1/5)(t− ξ1)

≥ f0(x0) + (ξ1 − x0)f
′
0(x0) + f ′0(x0)(t− ξ1)− (c+ 2Kc′)n−2/5

= f0(x0) + (t− x0)f
′
0(x0)− (c+ 2Kc′)n−2/5 .
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For the reverse inequality, we use convexity again, but now “from above”. Indeed, for t ∈ [x0 −
Mn−1/5, x0 +Mn−1/5] and n sufficiently large we have that

f̄n(t) ≤ f̄n(ξ−1) +
f̄n(ξ1)− f̄n(ξ−1)

ξ1 − ξ−1
(t− ξ−1)

≤ f0(ξ−1) + cn−2/5 +
f0(ξ1)− f0(ξ−1) + 2cn−2/5

ξ1 − ξ−1
(t− ξ−1)

≤ f0(x0) + (ξ−1 − x0)f
′
0(x0) +

1

2
(ξ−1 − x0)

2f ′′0 (ν1,n)

+
t− ξ−1

ξ1 − ξ−1

(
f0(x0) + (ξ1 − x0)f

′
0(x0) +

1

2
(ξ1 − x0)

2f ′′0 (ν2,n)

−f0(x0)− (ξ−1 − x0)f
′
0(x0)−

1

2
(ξ−1 − x0)

2f ′′0 (ν3,n)

)
+ (c+ c/M)n−2/5

≤ f0(x0) + (t− x0)f
′
0(x0) + f ′′0 (x0)(K

2 +K3/M)n−2/5 + (c+ c/M)n−2/5

and the result follows. 2

In the case of convex regression, Mammen (1991) established (a result more general than) the
first part of the following lemma. As in Theorem 3.3 we will assume that all the xi’s are in [0, 1].

Assumption 4.1. The design points xi = xn,i satisfy

c

n
≤ xn,i+1 − xn,i ≤

C

n
, i = 1, . . . , n

for some constants 0 < c < C <∞.

Assumption 4.2. The εi’s are i.i.d. with E exp(tε21) <∞ for some t > 0.

Lemma 4.5 Suppose r′(x0) < 0, r′′(x0) > 0, r′′ is continuous in a neighborhood of x0, and
also assume that Assumptions 4.1 and 4.2 hold. Then the least squares estimator r̂n satisfies
the following: for each M > 0

sup
|t|≤M

|r̂n(x0 + n−1/5t)− r(x0)− n−1/5tr′(x0)| = Op(n
−2/5) (4.13)

and, interpreting r̂′n as left- or right derivative,

sup
|t|≤M

|r̂′n(x0 + n−1/5t)− r′(x0)| = Op(n
−1/5) . (4.14)

Proof. The first assertion with M = 0 follows from Theorem 4 of Mammen (1991), and in fact the
result with a supremum over |t| ≤M follows from his methods. The second assertion follows along
the lines of our proofs in the density case. 2
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5 Asymptotic lower bounds for the minimax risk

In this section we briefly describe local asymptotic minimax lower bounds for the behavior of any

estimator of a convex density function at a point x0 for which the second derivative exists and
is positive. A similar treatment is possible for the corresponding regression setting, but we will
treat only the density case here. The results of this section are from Jongbloed (1995). See also
Jongbloed (2000).

Let the class of densities C be defined by

C =

{
f : [0,∞) → [0,∞) :

∫ ∞

0
f(x) dx = 1, f is convex and decreasing

}
.

We will derive asymptotic lower bounds for the local minimax risks for estimating the convex and
decreasing density f and its derivative at a fixed point. First some definitions. The (L1−) minimax
risk for estimating a functional T of f0 based on a sample X1, X2, . . . , Xn of size n from f0 which
is known to be in a suitable subset Cn of C, is defined by

MMR1(n, T, Cn) = inf
tn

sup
f∈Cn

Ef |Tn − Tf |.

Here the infimum ranges over all possible measurable functions tn : IRn → IR, and Tn =
tn(X1, . . . , Xn). When the subclasses Cn are taken to be shrinking to one fixed f0 ∈ C, the minimax
risk is called local at f0. The shrinking classes (parametrized by τ > 0) used here are Hellinger
balls centered at f0:

Cn,τ =

{
f ∈ C : H2(f, f0) =

1

2

∫ ∞

0

(√
f(z)−

√
f0(z)

)2
dz ≤ τ/n

}
.

The behavior, for n→∞, of such a local minimax risk MMR1, will depend on n (rate of convergence
to zero) and the density f0 where the subclasses shrink towards. The following lemma will be the
key to the lower bound.

Lemma 5.1 Assume that there exists some subset {fε : ε > 0} of densities in C such that, as
ε ↓ 0,

H2(fε, f0) ≤ ε(1 + o(1)) and |Tfε − Tf0| ≥ (cε)r(1 + o(1))

for some c > 0 and r > 0. Then

sup
τ>0

lim inf
n→∞

nrMMR1(n, T, Cn,τ ) ≥
1

4

( cr
2e

)r
.

Proof. By Lemma 4.1 in Groeneboom (1996), we get that for each τ > 0,

MMR1(n, T, Cn,τ ) ≥
1

4
|Tfτ/n − Tf0|(1 −H2(fτ/n, f0))

2n ,

so that

lim inf
n→∞

nrMMR1(n, T, Cn,τ ) ≥
1

4
(cτ)re−2τ .
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Maximizing this lower bound with respect to τ > 0 gives the desired result. 2

Remark. The argument used in the proof of Lemma 5.1, bounding the minimax risk from below
by the modulus of continuity of the functional T , appeared (probably) for the first time in Donoho

and Liu (1987). We want to thank a referee for pointing this out to us.

The functionals to be considered are, for some x0 > 0,

T1f = f(x0) and T2f = f ′(x0). (5.1)

Let f ∈ C and x0 > 0 be fixed such that f0 is twice continuously differentiable at x0. Using one
family {fε : ε > 0} of densities, we will derive asymptotic lower bounds on the mimimax risks for
estimating T1 and T2 over C.

Define, for ε > 0, the functions f̃ε as follows:

f̃ε(z) =





f0(x0 − cεε) + (z − x0 + cεε)f
′
0(x0 − cεε), for z ∈ (x0 − cεε, x0 − ε)

f0(x0 + ε) + f ′0(x0 + ε)(z − x0 − ε), for z ∈ [x0 − ε, x0 + ε)
f0(z), elsewhere.

Here cε is chosen such that f̃ε is continuous at x0 − ε. The function fε is then obtained from f̃ε by
adding a linear correction term for the fact that f̃ε does not integrate to one,

fε(z) = f̃ε(z) + τε(x0 − ε− z)1[0,x0−ε](z).

Obviously, for ε ↓ 0,

|T1(fε − f0)| =
1

2
f ′′0 (x0)ε

2 + o(ε2) (5.2)

and
|T2(fε − f0)| = f ′′0 (x0)ε+ o(ε). (5.3)

Moreover, for the functions fε we have the following lemma.

Lemma 5.2 For ε ↓ 0,

H2(fε, f0) =
2f ′′0 (x0)

2

5f0(x0)
ε5 + o(ε5) ≡ ν0ε

5 + o(ε5).

For the proof of this Lemma we refer to Jongbloed (1995), sections 6.2 and 6.4, pages 110-111 and
121-122. From Lemma 5.2, (5.2) and (5.3), it follows that

∣∣∣T1f(ε/ν0)1/5 − T1f0

∣∣∣ ≥
(

5f0(x0)
√
f ′′0 (x0)ε

8
√

2

)2/5

(1 + o(1))

and ∣∣∣T2f(ε/ν0)1/5 − T2f0

∣∣∣ ≥
(

5

2
f0(x0)f

′′
0 (x0)

3ε

)1/5

(1 + o(1))

as ε ↓ 0. An application of Lemma 5.1 finishes the proof of the following theorem.
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Theorem 5.1 For the functionals T1 and T2 as defined in (5.1),

sup
τ>0

lim inf
n→∞

n2/5MMR1(n, T1, Cn,τ ) ≥
1

4

(
f0(x0)

√
f ′′0 (x0)

8e
√

2

)2/5

and

sup
τ>0

lim inf
n→∞

n1/5MMR1(n, T2, Cn,τ ) ≥
1

4

(
1

4
f0(x0)f

′′
0 (x0)

3e−1

)1/5

.

The constants appearing in these lower bounds will appear again in the asymptotic distributions
of the maximum likelihood and least squares estimators in Section 6.

6 Asymptotic distribution theory

In this section we will establish the pointwise asymptotic distribution of the estimators introduced
in Section 2. We will do this in three steps. The first is to show that for all estimators
considered, the characterizations can be localized in an appropriate sense. Some terms in this “local
characterization” can be shown to converge to a limiting process involving integrated Brownian
motion.

Using the results of Section 4, we will see that the limiting distributions can be expressed in
terms of a function related to integrated Brownian motion. This invelope function is studied in
depth in Groeneboom, Jongbloed and Wellner (2001a), from which we use the following result.

Theorem 6.1 (Theorem 2.1 and Corollary 2.1(ii) in Groeneboom, Jongbloed and Wellner

(2001a)). Let X(t) = W (t)+4t3 where W (t) is standard two-sided Brownian motion starting from
0, and let Y be the integral of X, satisfying Y (0) = 0. Thus Y (t) =

∫ t
0 W (s)ds + t4 for t ≥ 0.

Then there exists an almost surely uniquely defined random continuous function H satisfying the
following conditions:
(i) The function H is everywhere above the function Y :

H(t) ≥ Y (t), for each t ∈ IR . (6.4)

(ii) H has a convex second derivative, and, with probability one, H is three times differentiable at
t = 0.
(iii) The function H satisfies

∫

IR
{H(t)− Y (t)} dH (3)(t) = 0. (6.5)

The main results of this section are stated in Theorems 6.2 and 6.3.

Theorem 6.2 (Asymptotic distributions at a point for convex densities.) Suppose that f0 ∈ C has
f ′′0 (x0) > 0 and that f ′′0 is continuous in a neighborhood of x0. Then the nonparametric maximum
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likelihood estimator and least squares estimator studied in Section 2 are asymptotically equivalent
in the following sense: if f̄n = f̂n or f̃n, then

(
n2/5c1(f0)(f̄n(x0)− f0(x0))

n1/5c2(f0)(f̄
′
n(x0)− f ′0(x0))

)
→d

(
H ′′(0)

H(3)(0)

)

where (H ′′(0),H(3)(0)) are the second and third derivatives at 0 of the invelope H of Y as described
in Theorem 6.1 and

c1(f0) =

(
24

f2
0 (x0)f ′′0 (x0)

)1/5

, c2(f0) =

(
243

f0(x0)f ′′0 (x0)3

)1/5

. (6.6)

The derivatives f̄ ′n(x0) may be interpreted as left or right derivatives.

Remark. Note that the constants ci(f0), i = 1, 2 also arise naturally in the asymptotic minimax
lower bounds obtained by Jongbloed (1995), Theorem 6.1, page 111.

For the least squares regression estimator r̂, we need a stronger version of Assumption 4.1 as
follows: for 0 ≤ x ≤ 1, let Fn(x) = n−1

∑n
i=1 1[0,x](xn,i).

Assumption 6.1. For some δ > 0 the functions {Fn} satisfy

sup
x:|x−x0|≤δ

|Fn(x)− x| = o(n−1/5) .

Theorem 6.3 (Asymptotic distributions at a point for convex regression.) Suppose that r0 ∈ Cr

has r′′0(x0) > 0, that Assumptions 4.1, 4.2, and 6.1 hold, and that r ′′0 is continuous in a neighborhood
of x0. Then for the least squares estimator r̂n introduced in Section 2 it follows that

(
n2/5d1(r0)(r̂n(x0)− r0(x0))

n1/5d2(r0)(r̂
′
n(x0)− r′0(x0))

)
→d

(
H ′′(0)

H(3)(0)

)

where (H ′′(0),H(3)(0)) are the second and third derivatives at 0 of the invelope H of Y as described
in Theorem 6.1, and

d1(r0) =

(
24

σ4r′′0(x0)

)1/5

, d2(r0) =

(
243

σ2r′′0(x0)3

)1/5

. (6.7)

Proof of Theorem 6.2. We begin with the least squares estimator. First some notation. Define
the local Yn-process by

Ỹ loc
n (t) ≡ n4/5

∫ x0+n−1/5t

x0

{
Fn(v)− Fn(x0)−

∫ v

x0

(f0(x0) + (u− x0)f
′
0(x0)) du

}
dv

(6.8)
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and the local Hn-process by

(6.9)

H̃ loc
n (t) ≡ n4/5

∫ x0+n−1/5t

x0

∫ v

x0

{
f̃n(u)− f0(x0)− (u− x0)f

′
0(x0)

}
du dv + Ãnt+ B̃n

where
Ãn = n3/5

{
F̃n(x0)− Fn(x0)

}
and B̃n = n4/5

{
H̃n(x0)− Yn(x0)

}
.

Noting that

Ãn = n3/5
{
F̃n(x0)− F̃n(x−n )− (Fn(x0)− Fn(x−n ))

}
,

where
x−n ≡ max{t ≤ x0 : H̃n(t) = Yn(t) and H̃ ′

n(t) = Yn(t)} ,
it follows by Lemmas 4.2 and 4.4 that {Ãn} is tight. Indeed,

|Ãn| = n3/5

∣∣∣∣
∫ x0

x−n

f̃n(u)− f0(x0)− (u− x0)f
′
0(x0) du

−
∫ x0

x−n

f0(u)− f0(x0)− (u− x0)f
′
0(x0) du−

∫ x0

x−n

d(Fn − F0)(u)

∣∣∣∣

≤ n3/5(x0 − x−n ) sup
u∈[x−n ,x0]

|f̃n(u)− f0(x0)− (u− x0)f
′
0(x0)|

+ n3/5f ′′(x0)(1 + o(1))(x0 − x−n )3 + n3/5|
∫ x0

x−n

d(Fn − F0)(u)|

which is OP (1) by the lemmas mentioned. For B̃n a similar calculation works.
Now we can write

H̃ loc
n (t)− Ỹ loc

n (t) = n4/5

∫ x0+n−1/5t

x0

{
F̃n(u)− F̃n(x0)− (Fn(u)− Fn(x0))

}
du+ Ãnt+ B̃n

= n4/5

∫ x0+n−1/5t

x0

{
F̃n(u)− Fn(u)

}
du+ B̃n

= n4/5
{
H̃n(x0 + n−1/5t)− Yn(x0 + n−1/5t)

}
≥ 0

with equality if x0 + n−1/5t ∈ Tn.
Using the identity

F0(v)− F0(x0) =

∫ v

x0

f0(u)du =

∫ v

x0

{f0(x0) + f ′0(x0)(u− x0) + 1
2f

′′
0 (u∗)(u− x0)

2}du

=

∫ v

x0

{f0(x0) + f ′0(x0)(u− x0)}du+ 1
2(f ′′0 (x0) + o(1))

∫ v

x0

(u− x0)
2du
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as v → x0, and letting Un =
√
n(Gn−I) denote the empirical process of i.i.d. uniform(0, 1) random

variables with empirical distribution function Gn (as in Shorack and Wellner (1986)), we can
rewrite Ỹ loc

n as

Ỹ loc
n (t) = n4/5

∫ x0+n−1/5t

x0

{Fn(v) − Fn(x0)− (F0(v)− F0(x0))}dv

+ n4/5

∫ x0+n−1/5t

x0

1
6f

′′
0 (x0)(v − x0)

3dv + o(1)

=d n3/10

∫ x0+n−1/5t

x0

{Un(F0(v)) − Un(F0(x0))}dv + 1
24f

′′
0 (x0)t

4 + o(1)

⇒
√
f0(x0)

∫ t

0
W (s)ds+ 1

24f
′′
0 (x0)t

4

uniformly in |t| ≤ c; see Theorem 3.1.1, page 93, Shorack and Wellner (1986), together with
the representation of a Brownian bridge process U in terms of Brownian motion B as U(t) =
B(t) − tB(1). Alternatively, this follows easily from Theorem 2.11.22 or 2.11.23, Van der Vaart

and Wellner (1996), pages 220-221.
Now we will line up the argument to match with Theorem 6.1. For any k1, k2 > 0, we see that

H̃ l
n(t)− Ỹ l

n(t) := k1H̃
loc
n (k2t)− k1Ỹ

loc
n (k2t) ≥ 0 (6.10)

with equality if and only if x0 + k2n
−1/5t ∈ Tn. Using the scaling property of Brownian motion,

saying that α−1/2W (αt) is Brownian motion for all α > 0 if W is, we see that choosing

k1 = 24−3/5f0(x0)
−4/5f ′′0 (x0)

3/5 and k2 = 242/5f0(x0)
1/5f ′′0 (x0)

−2/5 (6.11)

yields that Ỹ l
n ⇒ Y as defined in Theorem 6.1. Also note, using c1 and c2 as defined in (6.6) that

(H̃ l
n)′′(0) = k1k

2
2(H̃

loc
n )′′(0) = n2/5c1(f0)(f̃n(x0)− f0(x0))

and

(H̃ l
n)′′′(0) = k1k

3
2(H̃

loc
n )′′′(0) = n1/5c2(f0)(f̃

′
n(x0)− f ′0(x0)) .

We take f̃ ′n to be the right derivative below, but this is not essential. Hence, what remains to be
shown is that along with the process Ỹ l

n, the “invelopes” H̃ l
n converge in such a way that the second

and third derivative of this invelope at zero converge in distribution to the corresponding quantities
of H in Theorem 6.1.

Define, for c > 0, the space E[−c, c] of vector-valued functions as follows:

E[−c, c] = (C[−c, c])4 × (D[−c, c])2

and endow E[−c, c] by the product topology induced by the uniform topology on the spaces C[−c, c]
and the Skorohod topology on D[−c, c]. The space E[−c, c] supports vector-valued stochastic
process

{Zn} ≡ {(H̃ l
n, (H̃

l
n)′, (H̃ l

n)′′, Ỹ l
n, (H̃

l
n)′′′, (Ỹ l

n)′)}
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Note that the subset of D[−c, c] consisting of increasing functions, absolutely bounded by M <∞
is compact in the Skorohod topology. Hence, Lemma 4.4 together with the monotonicity of (H̃ l

n)′′′,
gives that the sequence (H̃ l

n)′′′ is tight in D[−c, c] endowed with the Skorohod topology. Moreover,
since the set of continuous functions, with its values as well as its derivative absolutely bounded
by M , is compact in C[−c, c] with the uniform topology, the sequences (H̃ l

n)′′, (H̃ l
n)′ and H̃ l

n are
also tight in C[−c, c]. This follows from Lemma 4.4. Since Yn and Y ′n both converge weakly, they
are also tight in C[−c, c] and D[−c, c] with their topologies respectively. This means that for each
ε > 0 we can construct a compact product set in E[−c, c] such that the vector Zn will be contained
in that set with probability at least 1 − ε for all n. This means that the sequence Zn is tight in
E[−c, c].

Fix an arbitrary subsequence Zn′ . Then we can construct a subsequence {Zn′′} such that {Zn′′}
converges weakly to some Z0 in E[−c, c], for each c > 0. By the continuous mapping theorem, it
follows that that the limit Z0 = (H0,H

′
0,H

′′
0 , Y0,H

′′′
0 , Y

′
0) satisfies both

inf
t∈[−c,c]

(H0(t)− Y0(t)) ≥ 0, for each c > 0 (6.12)

and ∫

[−c,c]
{H0(t)− Y (t)} dH(3)

0 (t) = 0 (6.13)

almost surely. The inequality (6.12) can e.g. be seen by using convergence of expectations of the
nonpositive continuous function φ : E[−c, c] → IR defined by

φ(z1, z2, . . . , z6) = inf
t

(z1(t)− z4(t)) ∧ 0

using that φ(Zn) ≡ 0 a.s. This gives φ(Z0) = 0 a.s., and hence (6.12). Note also that H ′′
0 is convex

and decreasing. The equality (6.13) follows from considering the function

φ(z1, z2, . . . , z6) =

∫ c

−c
(z1(t)− z4(t)) dz5(t)

which is continuous on the subset of E[−c, c] consisting of functions with z5 increasing.
Now, since Z0 satisfies (6.12) for all c > 0, and Y0 = Y as defined in Theorem 6.1, we see that

condition (6.4) of Theorem 6.1 is satisfied by the first and fourth component of Z0. Moreover, also
condition (6.5) of Theorem 6.1 is satisfied by Z0.

Hence it follows that the limit Z0 is in fact equal to Z = (H,H ′,H ′′, Y,H ′′′, Y ′) involving the
unique function H described in Theorem 6.1. Since the limit is the same for any such subsequence,
it follows that the full sequence {Zn} converges weakly and has the same limit, namely Z. in
particular Zn(0) →d Z(0), and this yields the least squares part of Theorem 6.2.

Now consider the MLE. Define the local Hn-process as

Ĥ loc
n (t) ≡ n4/5f0(x0)

∫ x0+n−1/5t

x0

∫ v

x0

{
f̂n(u)− f0(x0)− (u− x0)f

′
0(x0)

f̂n(u)

}
du dv + Ânt+ B̂n
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where

Ân = − n3/5f0(x0)
{
Ĥ ′

n(x0)− x0

}
and B̂n = − n4/5f(x0)

{
Ĥn(x0)−

1

2
x2

0

}
.

Tightness of these variables can be shown similarly to that of Ãn. Define the local Yn-process as

Ŷ loc
n (t) ≡ n4/5f0(x0)

∫ x0+n−1/5t

x0

∫ v

x0

{
f0(u)− f0(x0)− (u− x0)f

′
0(x0)

f̂n(u)

}
du dv

+ n4/5f0(x0)

∫ x0+n−1/5t

x0

∫ v

x0

1

f̂n(u)
d (Fn − F0) (u) dv .

Then we have that

Ĥ loc
n (t)− Ŷ loc

n (t) = n4/5f0(x0)

∫ x0+n−1/5t

x0

∫ v

x0

{
f̂n(u)− f0(u)

f̂n(u)

}
du dv

− n4/5f0(x0)

∫ x0+n−1/5t

x0

∫ v

x0

1

f̂n(u)
d (Fn − F0) (u) dv + Ânt+ B̂n

= n4/5f0(x0)

(
1

2
n−2/5t2 −

∫ x0+n−1/5t

x0

∫ v

x0

1

f̂n(u)
dF0(u) dv

)

−n4/5f0(x0)

∫ x0+n−1/5t

x0

∫ v

x0

1

f̂n(u)
d (Fn − F0) (u) dv + Ânt+ B̂n

= n4/5f0(x0)

(
1

2
n−2/5t2 −

∫ x0+n−1/5t

x0

∫ v

x0

1

f̂n(u)
dFn(u) dv

)
+ Ânt+ B̂n

= n4/5f0(x0)

(
1

2
n−2/5t2 − Ĥn(x0 + n−1/5t) + Ĥn(x0) + n−1/5tĤ ′

n(x0)

)
+ Ânt+ B̂n

= n4/5f0(x0)

(
1

2
n−2/5t2 − Ĥn(x0 + n−1/5t) +

1

2
x2

0 + n−1/5tx0

)

= n4/5f0(x0)

(
1

2
(x0 + n−1/5t)2 − Ĥn(x0 + n−1/5t)

)
≥ 0

with equality if x0 + n−1/5t ∈ Tn.
Now rescale the processes Ŷ loc

n and Ĥ loc
n as in (6.10), with k1 and k2 as defined in (6.11) and

note that Ỹ l
n − Ŷ l

n → 0 in probability uniformly on compacta by consistency Theorem 3.2. Also
note that by the same theorem

|(Ĥ l
n)′′(0)− n2/5c1(f0)(f̂n(x0)− f0(x0))| → 0

and
|(Ĥ l

n)′′′(0)− n1/5c2(f0)(f̂
′
n(x0)− f ′0(x0))| → 0

in probability. Applying the same arguments as in case of the least squares estimator, we obtain
our result. 2

38



Proof of Theorem 6.3. First some notation. Denote by r̂n : [0, 1] → IR the piecewise linear
function through the points (xn,i, r̂n,i) such that r̂n is linear with minimal absolute slope for x ∈
[0, xn,1] ∪ [xn,n, 1]. Then define

Sn(t) =
1

n

n∑

i=1

Yn,i1[xn,i≤t] , Rn(t) =
1

n

n∑

i=1

r̂n,i1[xn,i≤t] =

∫ t

0
r̂n(s)dFn(s) , and R̃n(t) =

∫ t

0
r̂n(s)ds .

Hence,

Sn(xn,k) = n−1Sk = n−1(Yn,1 + · · ·+ Yn,k), and Rn(xn,k) = n−1R̂k = n−1(r̂n,1 + · · ·+ r̂n,k) .

Inspired by the notation in the density estimation context, we define the processes

Yn(x) =

∫ x

0
Sn(v)dv , Hn(x) =

∫ x

0
Rn(v)dv , H̃n(x) =

∫ x

0
R̃n(v)dv ,

and their ‘local counterparts’

Y loc
n (t) = n4/5

∫ x0+n−1/5t

x0

{
Sn(v)− Sn(x0)−

∫ v

x0

(r0(x0) + (u− x0)r
′
0(x0)) dFn(u)

}
dv ,

H loc
n (t) = n4/5

∫ x0+n−1/5t

x0

{
Rn(v) − Rn(x0)−

∫ v

x0

{
r0(x0) + (u− x0)r

′
0(x0)

}
dFn(u)

}
dv+ Ant+Bn

and

H̃ loc
n (t) = n4/5

∫ x0+n−1/5t

x0

{
R̃n(v)− R̃n(x0)−

∫ v

x0

{
r0(x0) + (u− x0)r

′
0(x0)

}
du

}
dv + Ant+Bn .

Here
An = n3/5 {Rn(x0)− Sn(x0)} and Bn = n4/5 {Hn(x0)− Yn(x0)} .

For H̃ loc
n we have

(H̃ loc
n )′′(t) = n2/5(r̂n(x0 + n−1/5t)− r0(x0)− r′0(x0)n

−1/5t)

and
(H̃ loc

n )′′′(t) = n1/5(r̂′n(x0 + n−1/5t)− r′0(x0)) .

Noting that
An = n3/5

{
Rn(x0)− Rn(x−n )− (Sn(x0)− Sn(x−n ))

}
,

where
x−n = max{v ≤ x0 : Hn(v) = Yn(v) and Rn(v) = Sn(v)} ,
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it follows by Lemma 8, page 757 of Mammen (1991) and Lemma 4.5 that {An} is tight. Indeed,
writing R0(t) =

∫ t
0 r0(u) du,

|An| = n3/5

∣∣∣∣Rn(x0)− Rn(x0−)−
∫ x0

x−n

r0(x0) + (u− x0)r
′
0(x0) du

−
∫ x0

x−n

r0(u)− r0(x0)− (u− x0)r
′
0(x0) du−

∫ x0

x−n

d(Sn −R0)(u)

∣∣∣∣

≤ n3/5(x0 − x−n ) sup
u∈[x−n ,x0]

|r̂n(u)− r0(x0)− (u− x0)r
′
0(x0)|+

+ n3/5r′′(x0)(x0 − x−n )3 + n3/5|
∫ x0

x−n

d(Sn −R0)(u)|

which is OP (1) by the lemmas mentioned. For Bn a similar calculation works.
Now we can write

H loc
n (t)− Y loc

n (t) = n4/5

∫ x0+n−1/5t

x0

{Rn(u)− Rn(x0)− (Sn(u)− Sn(x0))} du+Ant+Bn

= n4/5

∫ x0+n−1/5t

x0

{Rn(u)− Sn(u)} du+Bn

= n4/5
{
Hn(x0 + n−1/5t)− Yn(x0 + n−1/5t)

}
≥ 0 (6.14)

with equality if x0 + n−1/5t ∈ Tn; here Tn is the collection of xn,i’s where equality occurs in (2.23)
of Lemma 2.6.

We will show that

Y loc
n (t) ⇒ σ

∫ t

0
W (s)ds+ 1

24r
′′
0(x0)t

4 (6.15)

uniformly in |t| ≤ c. To prove (6.15) we decompose Y loc
n as follows:

Y loc
n (t) = n4/5

∫ x0+n−1/5t

x0

{
Sn(v)− Sn(x0)−

∫ v

x0

(r0(x0) + (u− x0)r
′
0(x0)) dFn(u)

}
dv

= n4/5

∫ x0+n−1/5t

x0

{Sn(v)− Sn(x0)− (R0(v)−R0(x0))} dv

+ n4/5

∫ x0+n−1/5t

x0

{
R0(v)−R0(x0)−

∫ v

x0

(r0(x0) + (u− x0)r
′
0(x0)) dFn(u)

}
dv

= n4/5

∫ x0+n−1/5t

x0

{
n−1

n∑

i=1

Yn,i1(x0,v](xn,i)−
∫ v

x0

r0(u)du

}
dv

+ n4/5

∫ x0+n−1/5t

x0

{
R0(v)−R0(x0)−

∫ v

x0

(r0(x0) + (u− x0)r
′
0(x0)) dFn(u)

}
dv

40



= n4/5

∫ x0+n−1/5t

x0

{
n−1

n∑

i=1

εn,i1(x0,v](xn,i)

}
dv

+ n4/5

∫ x0+n−1/5t

x0

{
n−1

n∑

i=1

r0(xn,i)1(x0 ,v](xn,i)−
∫ v

x0

r0(u)du

}
dv

− n4/5

∫ x0+n−1/5t

x0

{∫ v

x0

(r0(x0) + (u− x0)r
′
0(x0)) d(Fn(u)− u)

}
dv

+ n4/5

∫ x0+n−1/5t

x0

{
R0(v)−R0(x0)−

∫ v

x0

(r0(x0) + (u− x0)r
′
0(x0)) du

}
dv

= In(t) + IIn(t) + IIIn(t) ,

where IIn(t) is given by the two middle terms. Now first note that

IIIn(t) = n4/5

∫ x0+n−1/5t

x0

{
R0(v)−R0(x0)−

∫ v

x0

(r0(x0) + (u− x0)r
′
0(x0)) du

}
dv

= n4/5

∫ x0+n−1/5t

x0

1
6r
′′
0(x0)(v − x0)

3dv + o(1) = 1
24r

′′
0(x0)t

4 + o(1)

uniformly in |t| ≤ c. The term IIn(t) is o(1) uniformly in |t| ≤ c. This is seen as follows. Define
Gn by

Gn(x) = n1/5

(
1

n

n∑

i=1

1[tn,i≤x] − x0

)
= n1/5(Fn(x0 + n−1/5x)− x0) .

Under Assumption 6.1 it follows that Gn(x) → x uniformly for |x| ≤ c. By use of the changes of
variables u = x0 + n−1/5u′, v = x0 + n−1/5v′,

IIn(t) = n4/5

∫ x0+n−1/5t

x0

{∫

(x0,v]
r0(u)dFn(u)−

∫ v

x0

r0(u)du

}
dv

− n4/5

∫ x0+n−1/5t

x0

{∫ v

x0

(r0(x0) + (u− x0)r
′
0(x0)) d(Fn(u)− u)

}
dv

= n4/5

∫ x0+n−1/5t

x0

{∫

(x0,v]

(
r0(u)− r0(x0)− r′0(x0)(u− x0)

)
d(Fn(u)− u)

}
dv

= n3/5

∫ t

0

∫ v′

0

(
r0(x0 + n−1/5u′)− r0(x0)− r′0(x0)n

−1/5u′
)

d(Fn(x0 + n−1/5u′)− (x0 + n−1/5u′))dv′

= n2/5

∫ t

0

∫ v′

0

(
r0(x0 + n−1/5u′)− r0(x0)− r′0(x0)n

−1/5u′
)
d(Gn(u′)− u′)dv′

= 1
2

∫ t

0

∫ v′

0
r′′0(u∗)u′2d(Gn(u′)− u′)dv′ → 0 uniformly in |t| ≤ c , (6.16)
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and this yields the convergence in (6.16). Finally, note that

In(t) = n4/5

∫ x0+n−1/5t

x0

{
n−1

n∑

i=1

εn,i1(x0,v](xn,i)

}
dv = n−1/5

n∑

i=1

εn,i1[x0<xn,i]

∫ x0+n−1/5t

x0

1[xn,i≤v]dv

= n−1/5
n∑

i=1

εn,i1[x0<xn,i≤x0+n−1/5t](x0 + n−1/5t− xn,i) .

Thus we have, writing tn,i = n1/5(xn,i − x0),

Var(In(t)) =
σ2

n2/5

n∑

i=1

1[x0<xn,i≤x0+n−1/5t](x0 + n−1/5t− xn,i)
2

=
σ2

n4/5

n∑

i=1

1[0<tn,i≤t](t− tn,i)
2 = σ2

∫ t

0
(t− x)2dGn(x) → σ2

∫ t

0
(t− x)2dx =

σ2

3
t3 ,

the variance of σ
∫ t
0 W (s)ds. By similar calculations the hypotheses of Theorem 2.11.1 of Van der

Vaart and Wellner (1996) can easily be shown to hold, and this completes the proof of (6.15).
The next step is to show that H̃ loc

n and H loc
n are asymptotically the same and thereby show that

H̃ loc
n satisfies the characterizing conditions (asymptotically). Note that by the change of variables

u = x0 + n−1/5u′, v = x0 + n−1/5v′,

H loc
n (t)− H̃ loc

n (t) = n4/5

∫ x0+tn−1/5

x0

∫

(x0,u]

(
r̂n(u)− r0(x0)− (u− x0)r

′
0(x0)

)
d(Fn(u)− u)dv

=

∫ t

0

∫ v′

0
n2/5

(
r̂n(x0 + n−1/5u′)− r0(x0)− n−1/5u′r′0(x0)

)
d(Gn(u′)− u′)dv′

= op(1) uniformly in |t| ≤ c

since the integrand is uniformly bounded in probability by Lemma 4.5, and Gn(u) → u uniformly
in |u| ≤ c by Assumption 6.1.

Now we will line up the argument to match with Theorem 6.1. For any k1, k2 > 0, using (6.14),
we see that

H l
n(t)− Y l

n(t) := k1H̃
loc
n (k2t)− k1Y

loc
n (k2t) ≥ 0− op(1)

uniformly in |t| ≤ c with equality if and only if x0 + k2n
−1/5t ∈ Tn. Using the scaling property of

Brownian motion, saying that α−1/2W (αt) is Brownian motion for all α > 0 if W is, we see that
choosing

k1 = 24−3/5σ−8/5r′′0(x0)
3/5 and k2 = 242/5σ2/5r′′0(x0)

−2/5

yields that Y l
n ⇒ Y as defined in Theorem 6.1. Also note that

(H l
n)′′(0) = k1k

2
2(H̃

loc
n )′′(0) = n2/5d1(r0)(r̂n(x0)− r0(x0))

and

(H l
n)′′′(0) = k1k

3
2(H̃

loc
n )′′′(0) = n1/5d2(r0)(r̂

′
n(x0)− r′0(x0)),
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where d1 and d2 are as defined in (6.7). Hence, what remains to be shown is that along with the
process Y l

n, the “invelopes” H l
n converge in such a way that the second and third derivative of

this invelope at zero converge in distribution to the corresponding quantities of H in Theorem 6.1.
Defining a vector-valued process, arguing along subsequences and using Theorem 6.1, the result
follows along the same lines as the proof of Theorem 6.2. 2
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