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We consider the problem of estimating a probability density function
based on data that are corrupted by noise from a uniform distribution.
The (nonparametric) maximum likelihood estimator for the corres-
ponding distribution function is well defined. For the density function
this is not the case. We study two nonparametric estimators for this
density. The first is a type of kernel density estimate based on the
empirical distribution function of the observable data. The second is a
kernel density estimate based on the MLE of the distribution function
of the unobservable (uncorrupted) data.
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1 Introduction

Missing and incomplete data problems have been an important field of research in
mathematical statistics during the past decades. In particular, a lot of theory has

been developed for the analysis of right-censored data and martingale methods have
been very successful here. Other forms of censoring have also been studied, like
interval censored data. In the latter situation the data are ‘‘very incomplete’’ in the

sense that one can never observe the variable of interest directly, but one only has
information about a region or interval to which the variable of interest belongs.

In contrast with the situation for right-censored data, martingales have not been
very useful for developing theory for interval censored data and one is forced to

develop theory from scratch. For example, the familiar
ffiffiffi

n
p

-convergence, still valid in
the situation of right-censored data, generally does not hold any more and pointwise

asymptotic normality of the maximum likelihood estimator of the unknown
distribution function will generally not hold either.
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These two facts: rates of convergence slower than
ffiffiffi

n
p

and non-normal limit

distributions for maximum likelihood estimators are characteristic for many
incomplete data problems. These problems belong to the category of inverse

statistical problems (see, e.g., GROENEBOOM, 1996), and are subject to ‘‘heavy loss of
information’’. A convenient way of describing the situation is by introducing a
hidden space, containing the information one would like to observe, an observation

space, containing the observations one can actually observe, and a mapping from
observation space to hidden space. We use this set-up in the sequel, in the

development of asymptotic distribution theory.
We focus on one particular problem of this type: deconvolution, which poses

problems of the same nature as interval censored data. In fact, in Section 3 we give
an example of a situation where the two models give the same type of maximum

likelihood estimator, with the same convergence rate and the same (non-normal)
limit distribution.

In the deconvolution model one also never can observe the variable of interest

directly, but one only has access to the sumof the variable of interest and some ‘‘noise’’
added to it. We specialize further to ‘‘uniform noise’’. In fact, the present investigation

has been inspired by work on ‘‘deblurring of pictures’’ by ROY CHOUDHURY (1998),
where methods for recovering pictures, blurred by Poisson noise are studied. Further

work on the latter problem is reported in O’SULLIVAN and ROY CHOUDHURY (2001).
Another motivation for the present study has been to provide an alternative for

‘‘using EM with early stopping’’, which at present enjoys much popularity in certain
circles. The trouble with the latter procedure is that it is very hard to determine what

one actually gets if one does EM with early stopping. One gets results that will be
dependent on the distribution, used as a starting point for the algorithm, and this
prevents the development of distribution theory.

We show that if one wants to estimate a density in deconvolution problems, one
can compute the MLE of the distribution function (without any early stopping!) and

use a convolution of a kernel with this MLE to estimate the density. In ROY

CHOUDHURY (1998) the latter procedure is discussed as a method for estimating the

deblurred picture, where the picture plays the role of a density. Section 5 is based on
the last part of a special topics course, given by the first author in the spring of 1998

at the University of Washington, Seattle, USA. Parts of this course are also included
as an appendix in ROY CHOUDHURY (1998).

The type of deconvolution we study has also been called ‘‘boxcar deconvolution’’,

and recent work on this model (not taking the maximum likelihood approach) can be
found in JOHNSTONE and RAIMONDO (2002) and HALL et al. (2001).

2 Uniform deconvolution

Consider independent and identically distributed random variables Z1, Z2,… with
density
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gðzÞ ¼ gF ðzÞ ¼
Z

R

kðz$ xÞdF ðxÞ

where k is a known probability density on R and F is an arbitrary distribution
function. Estimating F based on a sample from gF is a statistical inverse problem in

the sense that the sampling distribution is the image of the distribution of interest
under a known transformation K. Estimating F can in that sense be interpreted
as first to estimate g and then to apply ‘‘some inverse’’ of K to obtain an estimate for

F. This inverse problem, however, can also be viewed as an incomplete data problem.
The complete observations consist of independent pairs (Xi,Yi) where Xi % F and

Yi % k are independent. If the complete data were observable, the distribution
function F could be adequately estimated by the empirical distribution function of

the Xi’s (or better if more information on F is available). However, part of the data is
missing. We do not observe the pairs (Xi,Yi) but only observe the random variables

Zi ¼ Xi + Yi. The question then is: how can we estimate F and quantities related to
F based on the sample of Z’s?

In this paper we will not consider the deconvolution problem in great generality.
We focus on one specific convolution kernel: the uniform density on [0,1). In that
case, we have

gðzÞ ¼ gF ðzÞ ¼
Z

kðz$ xÞdF ðxÞ ¼
Z

ðz$1; z&
dF ðxÞ ¼ F ðzÞ $ F ðz$ 1Þ; z 2 R:

ð1Þ

Note that, formally, the distribution function F can be recovered from the density g by

F ðzÞ ¼
X

1

i¼0

gðz$ iÞ: ð2Þ

Moreover, we assume F0(0) ¼ 0 throughout.
In the deblurring application considered in ROY CHOUDHURY (1998), it is

necessary to estimate the probability density f0 of X based on data from the
convolution of f0 with a uniform density on (0, b) for general (known) b > 0.

Although restricting the convolution kernel to the standard uniform density is quite
a loss with regard to the general deconvolution problem where k is a general density,

the results of this paper are also valid for the nonstandard uniform deconvolution,
i.e., where b > 0 arbitrary (but known). The procedure then is first to transform the

data by division through b and use the techniques for the standard uniform
deconvolution model of this paper to obtain an estimate of the rescaled density f0.
This estimate can then again be rescaled to get a density estimate for f0. We will not

restate our results for these more general b since they are obvious.
Of course, in order for (2) to be valid, g should belong to the image of the set of

distribution functions under the convolution operator. This range is a strict subset of
the class of all probability densities. In fact, this is one of the characteristic features

of inverse problems. The nonparametric model on the hidden space (here the
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product measures that can be constructed from an arbitrary distribution function

and the uniform density) transforms under the mapping from the hidden to the
observation space to a specific model on the observation space. This model is smaller

than the usual nonparametric model that is commonly considered in the observation
space. The example below, which will be used in the sequel to illustrate the various
estimators, stresses the fact that applying (2) to densities outside the range of the

convolution operator, gives functions F that are not distribution functions.

Example 1. Consider the exponential model for F. This means that we assume F to
belong to the class

F ¼ fFh : h > 0g with FhðxÞ ¼ 1$ e$hx

for x > 0. Then the sampling densities belong to the parametric model

G ¼ fgh : h > 0g with ghðzÞ ¼
1$ ehz for z 2 ð0; 1Þ
ðeh $ 1Þe$hz for zP1.

"

ð3Þ

This is not one of the ‘‘usual parametric families’’ on (0, 1). It is important to note
that any family F of distribution functions on R results in a family of densities on R

using (1).

Now suppose we take the class of exponential densities as model in the
observation space, so gh(z) ¼ he$hz in (3). Then we get as associated model in the

hidden space

FhðxÞ ¼ he$hx 1þ eh þ e2h þ . . .þ ebxch
# $

:

It is clear that Fh(0) ¼ h (which is not necessarily in (0,1)) and that Fh is initially
decreasing. This shows that the class of exponential densities is outside the range of

the set of distribution functions under the uniform convolution mapping.

In Section 3 we discuss the nonparametric maximum likelihood estimator F̂F of the

distribution function F and address computational issues associated with that
estimator. Section 4 is devoted to a kernel estimator which is based on (2). The

sampling density is estimated using a kernel estimator and this estimate is plugged
into (2). This estimator has the disadvantage that it is not a probability density

function due to the fact that the usual kernel density estimates are not contained in
the class of densities of the form (1). However, its asymptotic behavior can be

derived using the classical central limit theorem for triangular arrays. In Section 5 we
introduce a natural kernel density estimator that is based on F̂F and study its

asymptotic behavior.

3 Nonparametric maximum likelihood estimator F̂F

In this section we consider the nonparametric maximum likelihood approach to
estimating the distribution function F in the uniform deconvolution model. Given
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data z1 < z2 < ( ( ( < zn, the loglikelihood function on the class of distribution

functions is given by

lðF Þ ¼ 1

n

X

n

i¼1

log gF ðziÞ ¼
1

n

X

n

i¼1

logðF ðziÞ $ F ðzi $ 1ÞÞ:

This estimator was studied in GROENEBOOM and WELLNER (1992). Note that
l(F) 6 0 for all F, so that the loglikelihood function is bounded above. Note also that

l depends on F only via its values at the observed points zi and the points zi $ 1. This
means that when maximizing l, attention may be restricted to discrete distribution

functions having their mass concentrated at the points zi and zi $ 1. However, any
maximizer of l will assign mass zero to these latter points. The loglikelihood is

increased by shifting such masses to the first zj bigger than zi $ 1. Finally, note that l
can be viewed as a strictly concave function on the set of all these discrete distribution

functions. All this gives that we can uniquely define the MLE F̂F as the discrete
distribution function having its mass concentrated on the observed zi’s that max-

imizes l.
Another well-known feature in this setting is that if the support of the distribution

with distribution function F is contained in (0,1), the MLE can be computed using

the fact that the loglikelihood has a structure equivalent to the loglikelihood for
current status data. If the support of F is bigger, this correspondence does not exist

anymore and the estimator is to be computed using iterative optimization
techniques. Figure 1 shows the maximum likelihood estimator of the mixing

distribution F and the corresponding density g based on a sample of size n ¼ 500.
The true F (mean one exponential) and g are also included in the picture.
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Fig. 1. Top: ML estimate of the distribution function F based on a sample of size n ¼ 500 with the true
(exponential) distribution. Bottom: the corresponding estimate for the sampling density g with
the true density.
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To obtain Figure 1, we used a Newton algorithm to compute F̂F, where the basic

quadratic maximizations are performed using the support reduction algorithm. This
algorithm is introduced inGROENEBOOM, JONGBLOED andWELLNER (2002), where it is

also used to compute themaximum likelihood estimator of the distribution function in
the Gaussian deconvolution model. It is an algorithm that belongs to the vertex
direction family of algorithms and is closely related to the algorithmproposed in SIMAR

(1976).

4 Inverse kernel density estimation

There are various methods that come to mind if one wants to estimate f based

on a sample from g. For example, the convolution structure of (1) suggests the
use of the Fourier transform to get an estimate of f. However, this approach is
not attractive since the characteristic function of the uniform distribution has

zeroes.
In this section we study an estimator that is suggested by (2): an inverse density

estimator. Indeed, assuming that F has a density, we get that

f ðzÞ ¼
X

1

i¼0

g0ðz$ iÞ;

so that a usual density estimate of g can be used to estimate f. In this section we study
an inverse kernel density estimator for f. This estimator is based on a conventional

kernel estimate of g,

gn;hðzÞ ¼
Z

R

Khðz$ xÞdGnðxÞ ¼
1

h

Z

R

K
z$ x
h

# $

dGnðxÞ:

Here h > 0 is the bandwidth of the density estimate and K is the kernel. Based on
this estimate, we define

~ff n;hðzÞ ¼
X

1

i¼0

g0n;hðz$ iÞ ¼ 1

h2
X

1

i¼0

Z

R

K 0 z$ x$ i
h

% &

dGnðxÞ

¼
X

1

i¼0

Z

R

K 0
hðz$ x$ iÞdGnðxÞ: ð4Þ

For this estimator we have the following theorem.

Theorem 1. LetKbe a compactly supported twice continuously differentiable kernel and

let the distribution function F0 be continuously differentiable at the point t 2 (0, M).
Define the estimator ~ff n;hðtÞ of the derivative f0 of F0 at t by (4) for t 2 (0, M). Then:

(i) As n fi 1, h fl 0, and nh fi 1,

fnh3g1=2 ~ff n;hðtÞ $
X

1

i¼0

Z

K 0
hðt $ x$ iÞdG0ðxÞ

( )

$!D Nð0; r2Þ; ð5Þ
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where

r2 ¼ F0ðtÞ
Z

K 0ðuÞ2du: ð6Þ

(ii) Suppose that f0 is twice differentiable at t. Then, for h fl 0,

h$2
X

1

i¼0

Z

K 0
hðt $ z$ iÞg0ðzÞdz$ f0ðtÞ

 !

! 1

2
f 00
0 ðtÞ

Z

u2KðuÞdu ¼: b: ð7Þ

(iii) If hn % cÆn
$1/7, for some c > 0, as n fi 1,

n2=7 ~ff n;hðtÞ $ f0ðtÞ
' (

$!D Nðbc2; c$3r2Þ; n ! 1; ð8Þ

where r2 is as in (6), and b as in (7).

Proof. For (i) write

fnh3g1=2 ~ff n;hðtÞ $
X

1

i¼0

Z

K 0
hðt $ z$ iÞdG0ðzÞ

( )

¼
X

n

k¼1

nnk

with

nnk ¼ ðh3=nÞ1=2
X

1

i¼0

K 0
hðt $ Zk $ iÞ $

Z

K 0
hðt $ z$ iÞdG0ðzÞ

% &

:

Note that the infinite sum is in fact a finite sum due to the fact that F0(0) ¼ 0. By the
central limit theorem for triangular arrays (theorem 7.2 in BILLINGSLEY, 1968), we
have that

s$1
n

X

n

k¼1

nnk $!
D

Nð0; 1Þ;

where

s2n ¼
X

n

k¼1

varnnk ¼ nEn2n1 ¼ h3var
X

1

i¼0

K 0
hðt $ Z1 $ iÞ

 !

¼ h3
Z 1

z¼0

X

1

i¼0

K 0
hðt $ z$ iÞ

 !2

g0ðzÞdz$ h3
Z 1

z¼0

X

1

i¼0

K 0
hðt $ z$ iÞg0ðzÞdz

 !2

¼ I1;n $ I22;n:

BecauseK has compact support, for h sufficiently small, the first term can be written as

I1;n ¼ h3
X

1

i¼0

Z 1

z¼0
K 0
hðt $ z$ iÞ2g0ðzÞdz ¼

X

1

i¼0

Z

K 0ðuÞ2g0ðt $ i$ huÞdu

¼
Z

K 0ðuÞ2F0ðt $ huÞdu ! F0ðtÞ
Z

K 0ðuÞ2du; for h # 0;
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by dominated convergence. For the second term we have that

I2;n ¼ h3=2
X

1

i¼0

Z 1

z¼0
K 0
hðt $ z$ iÞg0ðzÞdz

¼ h3=2
X

1

i¼0

Z

h$2K 0 t $ z$ i
h

% &

g0ðzÞdz ¼
ffiffiffi

h
p Z

K 0ðuÞf0ðt $ huÞdu;

which is of smaller order than the first term. Hence, s2n ! F0ðtÞ
R

K 0ðuÞ2du, yielding
(i). Finally, note that

P ðjnnkj > !snÞ )
varðnnkÞ
!2s2n

¼ 1

!2n
and n2nk )

c
nh

for a c > 0. Hence,

n
s2n
En2nk1½jnnk j>!sn& O

n
s2n

( c
nh

( 1

!2n
¼ c

!2s2n
( 1
nh

! 0

as nh fi 1.

For (ii), note that

X

1

i¼0

Z

K 0
hðt $ z$ iÞg0ðzÞdz ¼ h$2

X

1

i¼0

Z

K 0 t $ z$ i
h

% &

g0ðzÞdz

¼ h$1
X

1

i¼0

Z

K 0ðuÞg0ðt $ i$ huÞdu ¼ h$1

Z

K 0ðuÞF0ðt $ huÞdu

¼ h$1

Z

K 0ðuÞðF0ðtÞ $ huf0ðtÞ þ
1

2
h2u2f 0

0ðtÞ $
1

6
h3u3f 00

0 ðt $ hfuÞdu

! 0þ f0ðtÞ þ 0þ 1

2
h2f 00

0 ðtÞ
Z

u2KðuÞdu:

Here we use that K is a smooth probability density with zero mean and partial
integration.

Now, for (iii) note that

n2=7ð ~ff n;hðtÞ $ f0ðtÞÞ ¼ c$3=2ðnh3Þ1=2 ~ff n;hðtÞ $
X

1

i¼0

Z

K 0
hðt $ z$ iÞg0ðzÞdz

 !

þ n2=7
X

1

i¼0

Z

K 0
hðt $ z$ iÞg0ðzÞdz$ f0ðtÞ

 !

$!D Nðbc2; c$3r2Þ;

as n fi 1 by (i) and (ii). h

Corollary 1. To estimate f(t) with kernel estimator (4), the asymptotic MSE optimal

bandwidth is given by
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h ¼ hn ¼ copt ( n$1=7 with copt ¼
3r2

4b2

% &1=7

;

with r2 and b as in (6) and (7).

For the biweight kernel KðuÞ ¼ 15
16 ð1$ u2Þ21½$1;1&ðuÞ this gives

r2¼15

7
F ðt0Þand b¼

1

14
f 00ðt0Þ)copt¼

2835F ðt0Þ
64f 00ðt0Þ2

 !1=7

+1:72
F ðt0Þ
f 00ðt0Þ2

 !1=7

:

Proof. For copt we minimize the sum of the squared bias and the variance given in
theorem 4 (iii) as a function of c. h

Figure 2 shows ~ffn;h based on the same data set as Figure 1. The choice of K is the
biweight kernel and bandwidth h ¼ 0.88 (asymptotically MSE optimal for t0 ¼ 1).

Note that the optimal bandwidth in our simulation example (exponential F0 and
n ¼ 500) depends on t0 via t0 ´ 0.71(e2t0 $ et0)1/7. This is an increasing function,
explaining to some extent that the density estimate in Figure 2 seems oversmoothed

near zero and undersmoothed in the right tail. Of course, in practical situations one
could first estimate F0 and f000 using a pilot bandwidth and then compute a density

estimate with varying bandwidth based on this pilot estimate. Also, one could apply
boundary kernels to get rid of the obvious boundary problems of the estimates at

zero. Boundary kernels in the spirit of Wand and Jones (1995) have a discontinuity
at zero. In the current context this would be a problem since we need the density

estimate to be differentiable. Although the estimate of Figure 2 could be improved
near the boundary, we will not pursue this here.
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Fig. 2. The inverse kernel estimate ~ffn;h based on a sample of size 500, using the biweight kernel
bandwidth h ¼ 0.88.
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5 Density estimation based on F̂F

We want to study the asymptotic behavior of the estimator

f̂f n;hðtÞ ¼
Z

Khðt $ yÞdF̂F nðyÞ

of the derivative f0(t) at t of the distribution function F0 of the distribution we want
to estimate, where F̂F n is the MLE of this distribution function F0 as defined in
Section 3. Figure 3 shows this estimate based on the same data as Figures 1 and 2.

The estimate f̂f n;h has the same undesirable behavior near zero as ~ffn;h. In this case it is
straightforward to implement boundary kernels in the spirit of Section 2.11 in WAND

and JONES (1995). The resulting estimate (which coincides with f̂f n;h on [h, 1)) is
shown in Figure 4.

We impose the following condition on F0:

(F) The distribution corresponding to the distribution function F0 has support

[0, M], and has a continuous derivative f0 which satisfies

inf
u2ð0;MÞ

f0ðuÞ > 0:

Note that condition (F) implies that for any d 2 (0, M^1):

inf
x2½d;M$d&

fF0ðxÞ $ F0ðx$ 1Þg ^ fF0ðxþ 1Þ $ F0ðxÞg > 0: ð9Þ

For the kernel function we assume

(K) Kh(u) ¼ h$1K(u/h), where K is a fixed non-negative twice differentiable kernel
with support [$1, 1], and bounded second derivative, that integrates to 1 on

[$1, 1] and is symmetric around zero.

For our pictures we used the biweight kernel, as defined in Corollary 1. This kernel

satisfies (K). We show below that under these conditions the following result holds:
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Fig. 3. The density estimate f̂f n;h based on a sample of size 500, using the biweight kernel and h ¼ 0.88.
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Theorem 2. Let K satisfy condition (K) and let the distribution function F0 satisfy

condition (F). Let t be a fixed point in the open interval (0, M), such that t 6, 0 (mod 1)
and M$t 6, 0 (mod 1), and let the estimator f̂f n;hðtÞ of the derivative f0 of F0 at t be

defined by

f̂f n;hðtÞ ¼
Z

Khðt $ xÞdF̂F nðxÞ;

for t 2 (0, M). Moreover, let m be the largest integer < M + 1. Then:

(i) As n fi 1, h fl 0, and nh3 fi 1,

fnh3g1=2 f̂f n;hðtÞ $
Z

Khðt $ xÞdF0ðxÞ
" )

$!D Nð0; r2Þ; ð10Þ

where

r2 ¼ lim
h#0

h3
Z

h2h;t;F0dG0 > 0; ð11Þ

for a function hh,t,F0
, defined by

hh;t;F0ðxþkÞ¼

Pm
i¼0 1$F0ðxþ iÞf gK 0

hðt$ðxþ iÞÞ; if x2 ½0;1&; k¼0;

$
P

k$1

i¼0
K 0
hðt$ðxþ iÞÞþhh;t;F0ðxÞ; if x2 ½0;1&; k¼1;...;m:

8

<

:

ð12Þ

(ii) Suppose that f0 is twice differentiable at t. Then, for h fl 0,

h$2

Z

Khðt $ xÞdF0ðxÞ $ f0ðtÞ
% &

! 1

2
f 00
0 ðtÞ

Z

u2KðuÞdu ¼: b: ð13Þ

(iii) If hn % cÆn
$1/7, for some c > 0, as n fi 1,
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Fig. 4. The smoothed MLE density estimate based on the sample of size 500 using boundary kernels.
Again, h ¼ 0.88 and the kernel used is the biweight.
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n2=7 f̂f n;hðtÞ $ f0ðtÞ
n o

$!D Nðbc2; c$3r2Þ; n ! 1; ð14Þ

where r2 is as in (11), and b as in (13).

Remark. The statements of Theorem 2 resemble those of Theorem 1. The
asymptotic bias is exactly the same for both estimators.

The definition (12) of hh,t,F0
in part (i) is based on a definition given in Example

11.2.3e on p. 230 of VAN DE GEER (2000). IfM 6 1, it can be seen that this is given by

hh;t;F0ðxÞ ¼ ð1$ F0ðxÞÞK 0
hðt $ xÞ $ F0ðx$ 1ÞK 0

hðt $ xþ 1Þ

if (t $ h, t + h)- (0, M). This means that r2 reduces to:

r2 ¼ F0ðtÞf1$ F0ðtÞg
Z

K 0ðuÞ2du: ð15Þ

In this case the asymptotic variances for the two estimators depend on the kernel K
in the same way, but the dependence on F0 shows that f̂f n;h is more efficient than ~ff n;h:

F0ðtÞf1$ F0ðtÞg < F0ðtÞ; t 2 ð0;MÞ;

under condition (F) at the beginning of this section.

Apart from the pointwise asymptotic properties of f̂fn;h, which we think are overall
better than those of ~ffn;h, another reason to prefer f̂fn;h is that f̂fn;h is a genuine

probability density function. In contrast to ~ffn;h, it only takes nonnegative values.
The assumption that t 6, 0 (mod 1) and M$t 6, 0 (mod 1) is somewhat unpleasant

and probably not needed, but we saw no way to avoid this in the present proof.

The proof of Theorem 2 is much more involved than that of Theorem 1 and will be

given below in a sequence of steps. The ‘‘hidden probability space’’ contains random
variables (X,Y), where X has distribution function F0, Y has a Uniform(0,1)-

distribution, and X and Y are independent and the mapping, relating the random
variables in the hidden space to the random variables in the observation space, is:

T ðx; yÞ ¼ xþ y; x 2 ½0;M &; y 2 ½0; 1&:

We will need some facts about score operators for this particular model, given in,
e.g., GROENEBOOM and WELLNER (1992), Chapter 1. Let L2(F0) denote the space of

square integrable functions w.r.t. the measure dF0, that is: the space of Borel
measurable functions h : R fi R such that

Z

h2dF0 < 1:

Moreover, the space L02ðF0Þ is the subset of functions h 2 L2(F0), satisfying
Z

hdF0 ¼ 0:

The score operator LF0
, mapping scores a 2 L0

2ðF0Þ to scores !aa in the observation

space, only involving a Hellinger differentiable path (Fs)s 2 [0,d), tending to F0, is
given by the conditional expectation
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LF0ðaÞ½ &ðzÞ ¼ EF0 aðX Þ
*

*

*T ðX ; Y Þ ¼ z
n o

:

Its adjoint on the space of scores contained in L02ðG0Þ, where G0 is defined by the

convolution density gF0
, is given by the conditional expectation

L.ð!aaÞ½ &ðxÞ ¼ EF0 !aaðZÞ
*

*

*X ¼ x
n o

¼
Z xþ1

x
!aaðzÞdz:

Note that the adjoint operator L* does not involve the distribution function F0, in
contrast with the score operator LF0

itself (of which it is the adjoint).

The guiding principle in finding the asymptotic distribution of f̂fn;hðtÞ is to try to
find a solution hh,t,F to the equation

L.hh;t;F ¼ Khðt $ (Þ $
Z

Khðt $ xÞdF ðxÞ;

where hh,t,F is a score in L02ðGF Þ, belonging to the (closure of the) range of LF, and GF

denotes the distribution with density

gF ðzÞ ¼ F ðzÞ $ F ðz$ 1Þ:

The next step is then to prove that

Z

Khðt $ xÞdðF̂F n $ F0ÞðxÞ %
Z

hh;t;F0ðzÞdðGn $ G0ÞðzÞ; ð16Þ

in the sense that the right-hand side of (16) represents the left-hand side up to terms
that are of lower order, as n fi 1, and h ¼ hn fl 0 (at a certain rate that will be

specified below). By the central limit theorem, the right-hand side of (16), divided by

rh;t ¼
"
Z

hh;t;F0ðzÞ
2dG0ðzÞ

)1=2

is asymptotically standard normal (again under some conditions on the rate at which
h tends to zero as a function of n).

Note that, since the convolution kernel is the Uniform(0,1) density, we have:

LF ðaÞ½ &ðzÞ ¼
Z z

z$1
aðxÞdF ðxÞ=fF ðzÞ $ F ðz$ 1Þg:

Defining

hðzÞ ¼
Z z

z$1
aðxÞdF ðxÞ=fF ðzÞ $ F ðz$ 1Þg; z 2 R; ð17Þ

where the ratio is defined to be zero if the denominator is zero, we have to solve the

equation
Z xþ1

x
hðzÞdz ¼ Khðt $ xÞ $

Z

Khðt $ yÞdF ðyÞ;
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for x in the interior of the support of F, where h will in fact depend on t, h and F.

Differentiation w.r.t. x yields the equation

hðxþ 1Þ $ hðxÞ ¼ $K 0
hðt $ xÞ; ð18Þ

if h is continuous at the points x and x + 1.

Let the function / be defined by

/ðxÞ ¼
R x
0 aðuÞdF ðuÞ; if x / 0;
0; otherwise.

"

ð19Þ

Then, by (18), / should satisfy

/ðxþ 1Þ $ /ðxÞ
F ðxþ 1Þ $ F ðxÞ

$ /ðxÞ $ /ðx$ 1Þ
F ðxÞ $ F ðx$ 1Þ

¼ $K 0
hðt $ xÞ; ð20Þ

if x and x + 1 are points of continuity of h. Conversely, if / satisfies (20), then h
satisfies (18).

The following lemma is one of the stepping stones in achieving our goal (compare

with Lemma 3.3 in GROENEBOOM, 1996).

Lemma 1. Let the kernel K satisfy condition (K) above. Furthermore, let t 2 (0,M)

and h 2 (0,1/2) satisfy (t $ h,t + h)- (0,M), and let K 0
hðt $ xÞ ¼ d

duKhðuÞ
*

*

*

u¼ t$ x
,

where Kh(u) ¼ h$1K(u/h). Then we have:

(i) Suppose that the distribution function F on [0,1) satisfies F(M + 1) ¼ 1 and
(9) for a d 2 ð0; 12 ðM ^ 1ÞÞ (not necessarily for all d 2 (0,M^1)). Then the

equation

fF ðxþ 1Þ $ F ðx$ 1ÞgwðxÞ $ fF ðxþ 2Þ $ F ðxþ 1Þgwðxþ 1Þ
$ fF ðx$ 1Þ $ F ðx$ 2Þgwðx$ 1Þ
¼ K 0

hðt $ xÞ; x 2 R; ð21Þ

under the side condition w(x) ¼ 0, x j2[0,M + 1], has a bounded solution wh,t,F.

(ii) Let F be as in condition (i), and let the distribution function F0 satisfy condition

(F) above. Moreover, let wt,h,F be defined as in (i), and let hh,t,F be defined by

hh;t;F ðxÞ ¼ fF ðxþ 1Þ $ F ðxÞgwðxÞ $ fF ðx$ 1Þ $ F ðx$ 2Þgwðx$ 1Þ; x 2 R:

ð22Þ
Then

Z

hh;t;F ðxÞgF ðxÞdx ¼ 0; ð23Þ

and
Z

Khðt $ yÞdðF $ F0ÞðyÞ ¼ $
Z

hh;t;F ðzÞdG0ðzÞ:

Uniform deconvolution 149

! VVS, 2003



Remark. The function /h,t,F, defined by

/h;t;F ðxÞ ¼ fF ðxÞ $ F ðx$ 1ÞgfF ðxþ 1Þ $ F ðxÞgwh;t;F ðxÞ; x 2 R; ð24Þ

satisfies (20), if the denominators in (20) are strictly positive. The introduction of the
function wh,t,F(x) is needed to cover the situation that the denominators are zero. If

condition (F) is satisfied (as is true for the distribution function F0), the introduction
of the function wh,t,F0

is not necessary in the definition of hh,t,F0
. We will however use

the function wh,t,F in the case that F equals the MLE F̂F n. In particular we will need

the fact that /h;t;F̂F ðxÞ contains the factors F̂F nðxÞ $ F̂F nðx $ 1Þ and F̂F nðx þ 1Þ$ F̂F nðxÞ,
as is clear from its representation (24) in terms of wh;t;F̂F ðxÞ.

Proof of Lemma 1. Fix x 2 [0,1) and let m be the largest integer such that
x + m £ M + 1 and F(x + m $ 1) < 1. We define, for j ¼ 0,…,m,

aðxþ jÞ ¼ F ðxþ jÞ $ F ðxþ j$ 1Þ: ð25Þ

Moreover, we define for j ¼ 0,…,m,

bðxþ jÞ ¼ F ðxþ jþ 1Þ $ F ðxþ j$ 1Þ; ð26Þ

and

lðxþ jÞ ¼ K 0
hðt $ x$ jÞ: ð27Þ

Note that b(x+j) > 0, for all j, 0 £ j £ m, again by the positivity condition on the
differences F(x) $ F(x $ 1) on [d, M $ d].

We now get the matrix equation

AðxÞwðxÞ ¼ lðxÞ;

where A(x) is the tridiagonal matrix

AðxÞ¼

bðxÞ $aðxþ2Þ 0 0 ((( 0 0
$aðxÞ bðxþ1Þ $aðxþ3Þ 0 ... 0 0
0 $aðxþ1Þ bðxþ2Þ $aðxþ4Þ ... 0 0

..

. . .
. . .

. . .
.

... ..
. ..

.

0 0 0 0 ... $aðxþm$1Þ bðxþmÞ

0

B

B

B

B

B

@

1

C

C

C

C

C

A

;

wðxÞ ¼
wðxÞ
..
.

wðxþ mÞ

0

B

@

1

C

A
and lðxÞ ¼

lðxÞ
..
.

lðxþ mÞ

0

B

@

1

C

A
:

As is well-known, this system of equations can be solved in the following way. Let
uj, j ¼ 0, …, m, be recursively defined in the following way:

b0 ¼ bðxÞ; u0 ¼ lðxÞ=b0; ð28Þ

and
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bj ¼ bðxþ jÞ $ aðxþ j$ 1Þaðxþ jþ 1Þ=bj$1;

uj ¼ lðxþ jÞ $ aðxþ j$ 1Þuj$1

' (

=bj; ð29Þ

for j ¼ 1, …, m. Then the solution of the system can be found by the following back-

substitution:

wðxþ mÞ ¼ um; ð30Þ

wðxþ jÞ ¼wðxþ jþ 1Þ$ aðxþ jþ 2Þwðxþ jþ 1Þ
bj

; j¼m$ 1; . . . ;0: ð31Þ

We have, if m > 1,

b1¼F ðxþ2Þ$F ðxÞ$fF ðxþ2Þ$F ðxþ1ÞgfF ðxÞ$F ðx$1Þg=fF ðxþ1Þ
$F ðx$1Þg>F ðxþ2Þ$F ðxÞ$fF ðxþ2Þ$F ðxþ1Þg¼F ðxþ1Þ$F ðxÞ>0

since 0 6 {F(x) $ F(x $ 1)}/{F(x+1) $ F(x $ 1)} < 1 and F(x + 2) $ F(x) >

F(x + 1) $ F(x). Continuing in this way, we find inductively, that

bj > 0; 0 O j < m:

Moreover, by the positivity condition on the differences F(x) $ F(x $ 1) on

[d, M+1$d], the coefficients bj are bounded away from zero, for any choice of
x 2 [0,1) and 0 £ j < m. The solution w is therefore bounded. The function /,
defined by

/ðxÞ ¼ fF ðxÞ $ F ðx$ 1ÞgfF ðxþ 1Þ $ F ðxÞgwðxÞ

is therefore also bounded.

We now have, by (22),

hh;t;F ðxþ 1Þ $ hh;t;F ðxÞ ¼ $K 0
hðt $ xÞ; x 2 ½0;M þ 1&:

Furthermore, denoting wh,t,F by w for convenience of notation, we get
Z

hh;t;F ðzÞgF ðzÞdz

¼
Z

wðzÞfF ðzþ 1Þ $ F ðzÞgfF ðzÞ $ F ðz$ 1Þgdz

$
Z

wðz$ 1ÞfF ðz$ 1Þ $ F ðz$ 2ÞgfF ðzÞ $ F ðz$ 1Þgdz

¼
Z

wðzÞfF ðzþ 1Þ $ F ðzÞgfF ðzÞ $ F ðz$ 1Þgdz

$
Z

wðzÞfF ðzÞ $ F ðz$ 1ÞgfF ðzþ 1Þ $ F ðzÞgdz

¼ 0:

Hence
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Z

hh;t;F ðzÞdG0ðzÞ ¼
Z

hh;t;F ðzÞg0ðzÞdz ¼
Z

hh;t;F ðzÞ g0ðzÞ $ gF ðzÞf gdz

¼
Z

hh;t;F ðzÞ F0ðzÞ $ F0ðz$ 1Þ $ ðF ðzÞ $ F ðz$ 1ÞÞf gdz

¼ $
Z

hh;t;F ðzþ 1Þ $ hh;t;F ðzÞ
' (

F0ðzÞ $ F ðzÞf gdz

¼
Z

K 0
hðt $ zÞ F0ðzÞ $ F ðzÞf gdz ¼

Z

Khðt $ zÞd F0 $ Fð ÞðzÞ:

(

Since F0 satisfies condition (F), and since (24), with F ¼ F0, implies that /h,t,F0
is

bounded and zero outside (0,M), we have that /h,t,F0
is absolutely continuous w.r.t.

F0 on the interval (0,M). So we can define ah,t,F0
as the Radon–Nikodym derivative of

the function /h,t,F0
w.r.t. F0 on (0,M). The condition on the density f0 also ensures

that this Radon–Nikodym derivative is almost surely bounded on (0,M) and hence
ah,t,F0

2 L2(F0), where we use (23) of part (ii) of Lemma 1.

Note that it was shown in the proof of Lemma 5 that, under the conditions of this
lemma, we have the following relation

Z

hh;t;F̂F n
dG0 ¼

Z

hh;t;F̂FnðzÞ F0ðzÞ $ F0ðz$ 1Þ $ fF̂F nðzÞ $ F̂F nðz$ 1Þg
' (

dz: ð32Þ

In the proof of Theorem 2 we also need the following lemma.

Lemma 2. Let condition (F) be satisfied. Then we have for each deterministic sequence

of points (tn), converging to a fixed point t 2 (0,M), and for each c > 0:

sup
u2½$c;c&

*

*F̂F nðtn þ n$1=3uÞ $ F0ðtnÞ
*

* ¼ Opðn$1=3Þ: ð33Þ

The proof of Lemma 2 proceeds along similar lines as the proof of Lemma 4.6 on

p. 155 of GROENEBOOM (1996). It is omitted here for reasons of space. It shows that
the MLE has so-called ‘‘cube root n’’ convergence, a property it shares with the
MLE in the case of interval censoring.

Proof of Theorem 2. By the consistency of F̂F n, we may assume that condition

(9) is satisfied for a d 2 ð0; 12 ðM ^ 1ÞÞ, and n sufficiently large, and therefore that
the equation (21) has a solution wh;t;F̂F n

for F̂F n ¼ F . Hence we can define /h;t;F̂F n
by

(24).
Let s0 ¼ 0, sm + 1 ¼ M + 1 and s1 < ( ( ( < sm be the points of jump of F̂Fn, and

let Ji denote the interval [si,si + 1), for 0 6 i < m. The interval Jm will denote the
closed interval [sm,sm + 1]. Let the function nh,t,F be defined by

nh;t;F ðxÞ ¼
/h;t;F ðxÞ

F ðxÞf1$F ðxÞg ; if 0 < F ðxÞ < 1;

0; otherwise.

(
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Definition (24) implies that the function nh,t,F is bounded if F satisfies the conditions

of Lemma 1.
We define a piecewise constant version of nh,t,F0

, constant on the intervals Ji, by

!nnh;t;F̂F n
ðxÞ ¼

nh;t;F0ðsiÞ; if x 2 Ji; and F0ðxÞ > F̂F nðsiÞ for all x 2 Ji;
nh;t;F0ðsiþ1$Þ; if x 2 Ji; and F0ðxÞ < F̂F nðsiÞ for all x 2 Ji;
nh;t;F0ðuÞ; if x 2 Ji; and F0ðuÞ ¼ F̂FnðuÞ for a point u 2 Ji;

8

<

:

for x 2 Ji. We note that a construction of this type was introduced under III on
p. 213 of GESKUS and GROENEBOOM (1997). We here use the version in Lemma 11.10

of VAN DE GEER (2000), where instead of a piecewise constant version of nh;t;F̂F n
a

piecewise constant version of nh,t,F0
is used.

We next define the piecewise constant function !//h;t;F̂Fn
by

!//h;t;F̂F n
¼ F̂F nðxÞ 1$ F̂FnðxÞ

' (

!nnh;t;F̂F n
ðxÞ; x 2 R;

and the piecewise constant function !hhh;t;F̂F n
by

!hhh;t;F̂F n
ðxÞ ¼

!//h;t;F̂Fn ðxÞ$
!//h;t;F̂F n ðx$1Þ

F̂F nðxÞ$F̂Fnðx$1Þ ; if F̂F nðxÞ > F̂F nðx$ 1Þ,
0; otherwise.

(

Note that Lemma 2 and the assumption t 6, 0 (mod 1) and t 6,M (mod 1), we may
assume that F̂F nðxÞ $ F̂F nðx $ 1Þ stays away from zero for all large n, if !//h;t;F̂FnðxÞ 6¼ 0

and/or !//h;t;F̂F n
ðx $ 1Þ 6¼ 0, implying that the function !hhh;t;F̂F n

is bounded.
We have:

Z

!hhh;t;F̂F n
$ hh;t;F̂Fn

n o

dG0

¼
Z

!hhh;t;F̂FnðzÞ $ hh;t;F̂F n
ðzÞ

n o

F0ðzÞ $ F0ðz$ 1Þ $ fF̂FnðzÞ $ F̂F nðz$ 1Þg
' (

dz: ð34Þ

This follows in the same way as (32).
We now show that this implies:

Z

hh;t;F̂F n
dG0 ¼

Z

!hhh;t;F̂F n
dG0 þ op n$2=3h$2

# $

: ð35Þ

Lemma 11.10 in VAN DE GEER (2000) implies that there exists a constant c > 0 such
that

!nnh;t;F̂F n
ðxÞ $ nh;t;F0ðxÞ

*

*

*

*

*

*O ch$3 F̂F nðxÞ $ F0ðxÞ
*

*

*

*; for all x 2 R;

where the factor h$3 arises from the second derivative of Kh, which appears in
dnh,t,F0

/dF0, using the notation in (11.61) of Lemma 11.10 in VAN DE GEER (2000).

The function hh,t,F0
is defined in terms of the function /h,t,F0

, with support consisting
of intervals [t $ h + k, t + h + k] which, by the assumption t 6, 0 (mod 1) and

M$t 6, 0 (mod 1), are strictly contained in the open interval (0, M), if h is sufficiently
small.
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Lemma 2 then implies that the closest point of jump of F̂Fn to the left or right of

these intervals (finite in number) have a distance Op(n
$1/3) to the endpoints of these

intervals. This means, by the condition nh3 fi 1 that

!nnh;t;F̂F n
ðxÞ $ nh;t;F0ðxÞ

*

*

*

*

*

*Och$3 F̂F nðxÞ $ F0ðxÞ
*

*

*

*;

for x in a finite number of intervals of order h, shrinking to points t + k, for integers
k such that t ¼ k 2 (0,M), and that

!nnh;t;F̂F n
ðxÞ $ nh;t;F0ðxÞ ¼ 0

outside these intervals. But this, in turn, implies by (34), the Cauchy–Schwarz
inequality and the fact that we may assume that the differences F̂F nðxÞ $ F̂F nðx0 1Þ
and F0(x) $ F0(x±1) stay bounded away from zero on these intervals:

Z

!hhh;t;F̂F n
ðxÞ $ hh;t;F0ðxÞ

n o

dG0ðxÞ ¼ Op h$3dh;nðF̂Fn; F0Þ
+ ,

¼ Op h$2n$2=3
# $

;

ð36Þ

where dh;nðF̂F n; F0Þ2 is defined as

dh;nðF̂F n; F0Þ2 ¼
X

j2Z

Z ðtþ2hþjÞ^M

ðt$2hþjÞ_0
F̂FnðxÞ $ F0ðxÞ
' (2

dx ¼ Op hn$2=3
# $

:

Note that the infinite sum is in fact a sum with a (uniformly) bounded number of
non-zero terms. The property

X

j2Z

Z ðtþ2hþjÞ^M

ðt$2hþjÞ_0
F̂F nðxÞ $ F0ðxÞ
' (2

dx ¼ Op hn$2=3
# $

follows from the fact that, by the assumption t 6, 0ðmod 1) and M $ t 6, 0ðmod 1),

the intervals [(t $ 2h + j) " 0, (t + 2h + j) ^ M] are strictly contained in (0, M)
and the fact that the processes

x 7! F̂F nðxÞ $ F0ðxÞ;2 ½ðt $ 2hþ jÞ _ 0; ðt þ 2hþ jÞ ^M &;

have a completely similar probabilistic behavior, together with the property

kF̂F n $ F0k22 ¼ Op n$2=3
# $

:

On the other hand, by the structure of the solutions wh;t;F̂F n
and wh,t,F0

, there also
exists a constant c2 > 0 such that

wh;t;F̂F n
ðxÞ $ wh;t;F0ðxÞ

*

*

*

*

*

*Oc2h$2
X

k2Z
F̂F nðxþ kÞ $ F0ðxþ kÞ
*

*

*

*;

for x belonging to an interval (t + k $ h, t + k + h)- (0,M + 1) and that

wh;t;F̂F n
ðxÞ $ wh;t;F0ðxÞ ¼ 0

outside these intervals. Note that for x 2 (t + k$h, t + k + h)- (M,M + 1), we
have: wh,t,F0

(x) ¼ 0 and
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/h;t;F̂F n
ðxÞ

F̂F nðxÞ $ F̂Fnðx$ 1Þ

*

*

*

*

*

*

*

*

¼ F̂F nðxþ 1Þ $ F̂FnðxÞ
' (

wh;t;F̂F n
ðxÞ

*

*

*

*

*

*

1$ F̂FnðxÞ
' (

wh;t;F̂F n
ðxÞ

*

*

*

*

*

* ¼ F0ðxÞ $ F̂FnðxÞ
' (

wh;t;F̂F n
ðxÞ

*

*

*

*

*

*O ch$2 F0ðxÞ $ F̂F nðxÞ
*

*

*

*;

for a constant c > 0, and that we get in a similar way:

/h;t;F̂F n
ðxÞ

F̂F nðxþ 1Þ $ F̂FnðxÞ

*

*

*

*

*

*

*

*

O ch$2 F0ðxÞ $ F̂F nðxÞ
*

*

*

*;

for a constant c > 0, if x 2 (M,M+1).

Hence, again by (34) and the Cauchy–Schwarz inequality
Z

hh;t;F̂F n
ðxÞ$hh;t;F0ðxÞ

n o

dG0ðxÞ¼Op h$2kF̂Fn$F0k22
# $

¼Op h$2n$2=3
# $

: ð37Þ

Relation (35) now follows from (36) and (37).

We then apply, using the score equations for F̂Fn, implying
R !hhh;t;F̂Fn

dGn ¼ 0,
Z

!hhh;t;F̂F n
dG0 ¼

Z

!hhh;t;F̂F n
dðG0 $GnÞ;

and
Z

!hhh;t;F̂F n
$ hh;t;F0

n o

dðG0 $GnÞ ¼ Op h$2n$2=3
# $

;

where the latter result again follows from an L2-entropy argument. This shows, since

nh3 fi 1,
Z

Khðt $ xÞd F̂F n $ F0
+ ,

ðxÞ ¼
Z

hh;t;F0d Gn $ G0ð Þ þ op n$1=2h$3=2
# $

;

and yields part (i) of Theorem 2.

Part (ii) of Theorem 2 now follows from
Z

Khðt $ xÞdF0ðxÞ $ f0ðtÞ ¼
Z

KðuÞ f0ðt þ huÞ $ f0ðtÞf gdu

% 1

2
h2f 00

0 ðtÞ
Z

u2KðuÞdu as h # 0;

where we use that the kernel K integrates to 1 and is symmetric around zero.
Combining (i) and (ii) using that hn % cÆn

$1/7, we get (iii). This finishes the proof of

Theorem 2. h

6 Concluding remarks

In the preceding sections we discussed two types of nonparametric estimators for the
density f of the distribution function F in a situation where we only have indirect

information about F via a sample of random variables, generated by the density
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gF ðzÞ ¼
Z

R

kðz$ xÞdF ðxÞ;

where k is a uniform density. This estimation problem has been called ‘‘boxcar
deconvolution’’.

The first estimator we discussed was the rather straightforward inverse density
estimator, suggested by (2). The second estimator of f was based on the maximum
likelihood estimator (MLE) F̂Fn of F, and had the representation

f̂f nðxÞ ¼
Z

Khðx$ yÞdF̂F nðyÞ; ð38Þ

where Kh is a kernel smoother with bandwidth h.

It was shown that (under some conditions) both estimators of the density f
converge pointwise at rate n$2/7 in the interior of the support, and also that they

converge (after standardization) to a normal limit distribution. Moreover, it was
shown that the bias functions have a similar behavior, but that the asymptotic
variances are different. It is indicated that the estimator based on the MLE has the

smaller asymptotic variance, although this is generally not so easy to verify because
of the implicit nature of the asymptotic variance of the estimator, based on the MLE.

The estimator (38), based on the MLE F̂Fn of F, has the advantage of being a genuine
density estimator, whereas the inverse density estimator can in principle also take

negative values, a property it shares with estimators, based on Fourier inversion
methods.

The proof of the asymptotic normality of estimator (38) is based on so-called
smooth functional theory and shows that this theory can also be applied locally, on
shrinking neighborhoods of a fixed point.

It may be of interest to note that the MLE F̂Fn itself has convergence rate n
$1/3 and

that n1=3fF̂FnðtÞ $ FðtÞg has a non-normal limit distribution for points t in the

interior of the support of f. So F̂Fn has a limit behavior that falls under the heading
‘‘non-standard asymptotics’’, whereas the convolution with the kernel Kh in (38)

produces an estimator which exhibits ‘‘standard asymptotic behavior’’, in the sense
of convergence to a normal distribution.

References

Billingsley, P. (1968), Convergence of probability measures, Wiley, New York.
Geskus, R. B. and P. Groeneboom (1997), Asymptotically optimal estimation of smooth
functionals for interval censoring, part 2, Statistica Neerlandica 51, 201–219.

Groeneboom, P. (1996), Lectures on inverse problems, in: P. Bernard (ed.), Lectures on
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