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Abstract We consider least squares estimators of the finite regression parameter α

in the single index regression model Y = ψ(αT X) + ε, where X is a d-dimensional
random vector, E(Y |X) = ψ(αT X), and ψ is a monotone. It has been suggested to
estimate α by a profile least squares estimator, minimizing

∑n
i=1(Yi − ψ(αT X i ))

2

over monotone ψ and α on the boundary Sd−1 of the unit ball. Although this sug-
gestion has been around for a long time, it is still unknown whether the estimate
is

√
n-convergent. We show that a profile least squares estimator, using the same

pointwise least squares estimator for fixed α, but using a different global sum of
squares, is

√
n-convergent and asymptotically normal. The difference between the

corresponding loss functions is studied and also a comparison with other methods is
given.

1 Introduction

Themonotone single indexmodel tries to predict a response from the linear combina-
tion of a finite number of parameters and a function linking this linear combination to
the response via a monotone link function ψ0 which is unknown. So, more formally,
we have the model

Y = ψ0(α
T
0 X) + ε,

where Y is a one-dimensional random variable, X = (X1, . . . , Xd)
T is a

d-dimensional random vector with distribution function G, ψ0 is monotone, and
ε is a one-dimensional random variable such that E[ε|X] = 0 G almost surely. For
identifiability, the regression parameter α0 is a vector of norm ‖α0‖2 = 1, where
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‖ · ‖2 denotes the Euclidean norm inRd , so α0 ∈ Sd−1, the unit (d − 1)-dimensional
sphere.

The ordinary profile least squares estimate of α0 is an M-estimate in two senses:
for fixed α, the least squares criterion

ψ �→ n−1
n∑

i=1

{
Yi − ψ(αT X i )

}2
(1)

is minimized for all monotone functions ψ (either decreasing or increasing) which
gives an α-dependent function ψ̂n,α , and the function

α �→ n−1
n∑

i=1

{
Yi − ψ̂n,α(αT X i )

}2
(2)

is then minimized over α. This gives a profile least squares estimator α̂n of α0, which
we will call LSE in the sequel. Although this estimate of α0 has been known now
for a very long time (more than 30 years probably), it is not known whether it is√

n-convergent (under appropriate regularity conditions), let alone that we know its
asymptotic distribution. Also, simulation studies are rather inconclusive. For exam-
ple, it is conjectured in Tanaka (2008) on the basis of simulations that the rate of
convergence of α̂n is n9/20. Other simulation studies, presented in Balabdaoui et al.
(2019a), are also inconclusive. In that paper, it was also proved that an ordinary least
squares estimator (which ignores that the link function could be non-linear) is

√
n-

convergent and asymptotically normal under elliptic symmetry of the distribution
of the covariate X . Another linear least squares estimator of this type, where the
restriction on α is αT Snα = 1, Sn is the usual estimate of the covariance matrix of
the covariates, and a renormalization at the end is not needed (as it is in the just
mentioned linear least squares estimator) was studied in Balabdaoui et al. (2019b)
and was shown to have similar behavior. If this suggests that the profile LSE should
also be

√
n-consistent, the extended simulation study in Balabdaoui et al. (2019b)

shows that it is possible to find other estimates which exhibit better performance in
these circumstances.

An alternative way to estimate the regression vector is to minimize the criterion

α �→
∥
∥
∥
∥
∥

n−1
n∑

i=1

{
Yi − ψ̂n,α(αT X i )

}
X i

∥
∥
∥
∥
∥

2

(3)

over α ∈ Sd−1, where ‖ · ‖ is the Euclidean norm. Note that this is the sum of d
squares. The rational behind minimizing (3) is the fact that the true index vector, α0,
satisfies the (population) score equation

E
{
(Y − ψ0(α

T
0 X))Xθ(αT

0 X)
} = 0, (4)
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where θ is any measurable and bounded function. This clearly follows from the
iterative law of expectations and the fact thatE{Y |αT

0 X} = ψ0(α
T
0 X). If the function

θ is taken to be the constant 1, then the goal is to find the minimizer of the Euclidean
norm of the empirical counterpart of the above score equation, after replacing the
unknown link function, ψ0, by its estimator ψ̂n,α .

We prove in Sect. 3 that this minimization procedure leads to a
√

n-consistent
and asymptotically normal estimator, which is a more precise and informative result
compared to what we know now about the LSE.. Using the well-known properties
of isotonic estimators, it is easily seen that the function (3) is piecewise constant
as a function of α, with finitely many values, so the minimum exists and is equal
to the infimum over α ∈ Sd−1. Notice that this estimator does not use any tuning
parameters, just like the LSE.

In Balabdaoui et al. (2019b), a similar Simple Score Estimator (SSE) α̂n was
defined as a point α ∈ Sd−1 where all components of the function

α �→ n−1
n∑

i=1

{
Yi − ψ̂n,α(αT X i )

}
X i

cross zero. If the criterion function were continuous in α, this estimator would have
been the same as the least squares estimator, minimizing (3), with a minimum equal
to zero, but in the present case we cannot assume this because of the discontinuities
of the criterion function.

The definition of an estimator as a crossing of the d-dimensional vector 0 makes
it necessary to prove the existence of such an estimator, which we found to be a
rather non-trivial task. Defining our estimator directly as the minimizer of (3), so as
a least squares estimator, relieves us from the duty to prove its existence. Since our
estimator has the same limit distribution as the SSE, we refer to it here under the
same name.

A fundamental function in our treatment is the function ψα , defined as follows.

Definition 1 Let Sd−1 denote again the boundary of the unit ball in R
d . Then, for

each α ∈ Sd−1, the function ψα : R → R is defined as the nondecreasing function
which minimizes

ψ �→ E{Y − ψ(αT X)}2

over all nondecreasing functions ψ : R → R. The existence and uniqueness of the
function ψα follows, for example, from the results in Landers and Rogge (1981).

The function ψα coincides in a neighborhood of α0 with the ordinary conditional
expectation function ψ̃α

ψ̃α(u) = E
{
ψ0(α

T
0 X)|αT X = u

}
, u ∈ R; (5)
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see Balabdaoui et al. (2019b), Proposition 1. The general definition of ψα uses
conditioning on a σ -lattice, and ψα is also called a conditional 2-mean (see Landers
and Rogge 1981).

The importance of the function ψα arises from the fact that we can differentiate
this function w.r.t. α, in contrast with the least squares estimate ψ̂n,α , and that ψα

represents the least squares estimate of ψ0 in the underlying model for fixed α, if we
use αT x as the argument of the monotone link function.

It is also possible to introduce a tuning parameter and use an estimate of
d

du ψα(u)
∣
∣
u=αT X . This estimate is defined by

ψ̃ ′
n,h,α(u) = 1

h

∫

K

(
u − x

h

)

dψ̂n,α(x), (6)

where K is one of the usual kernels, symmetric around zero andwith support [−1, 1],
and h is a bandwidth of order n−1/7 for sample size n. For fixed α, the least squares
estimate ψ̂n,α is defined in the same way as above. Note that this estimate is rather
different from the derivative of a Nadaraya-Watson estimate which is also used in
this context and is in fact the derivative of a ratio of two kernel estimates. If we use
the Nadaraya-Watson estimate, we need in principle two tuning parameters, one for
the estimation of ψ0 and another one for the estimation of the derivative ψ ′

0.
Using the estimate (6) of the derivative, we now minimize

α �→
∥
∥
∥
∥
∥

n−1
n∑

i=1

{
Yi − ψ̂n,α(αT X i )

}
X i ψ̃ ′

n,h,α(αT X i )

∥
∥
∥
∥
∥

2

(7)

instead of (3),where ‖ · ‖ is again theEuclidean norm.Themotivation for considering
such a minimization problem is very similar to the one given above for the SSE. The
only difference now is that the current approach allows us to take the function θ to
be equal to the derivative of ψ ′

0, which is replaced in the empirical version of the
population score in (4) by its estimator ψ̃ ′

n,h,α . A variant of this estimator was defined
in Balabdaoui et al. (2019b) and called the Efficient Score Estimator (ESE) there,
since, if the conditional variance var(Y |X = x) = σ 2, where σ 2 is independent of
the covariate X (the homoscedastic model), the estimate is efficient. As in the case
of the simple score estimator (SSE), the estimate was defined as a crossing of zero
estimate in Balabdaoui et al. (2019b) and not as a minimizer of (7). But the definition
as a minimizer of (7) produces an estimator that has the same limit distribution.

The qualification “efficient” is somewhat dubious, since the estimator is no longer
efficient if we do not have homoscedasticity. We give an example of that situation
in Sect. 5, where, in fact, the SSE has a smaller asymptotic variance than the ESE.
Nevertheless, to be consistent with our treatment in Balabdaoui et al. (2019b) we
will call the estimate, α̂n , minimizing (7), again the ESE.

Dropping the monotonicity constraint, we can also use as our estimator of the link
function a cubic spline ψ̂n,α , which is defined as the function minimizing
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n∑

i=1

{
ψ(αT X i ) − Yi

}2 + μ

∫ b

a
ψ ′′(x)2 dx, (8)

over the class of functions S2[a, b] of differentiable functions ψ with an absolutely
continuous first derivative, where

a = min
i

αT X i , b = max
i

αT X i ,

seeGreen andSilverman (1994), pp. 18 and 19,whereμ > 0 is the penalty parameter.
Using these estimators of the link function, the estimate α̂n of α0 is then found in
Kuchibhotla and Patra (2020) by using a (d − 1)-dimensional parameterization β

and a transformation S : β �→ S(β) = α, where S(β) belongs to the surface of the
unit sphere in Rd , and minimizing the criterion

β �→
n∑

i=1

{Yi − ψ̂S(β),μ(S(β)T X i )}2,

over β, where ψ̂S(β),μ minimizes (8) for fixed α = S(β).
Analogous to our approach above, we can skip the reparameterization and mini-

mize instead
∥
∥
∥
∥
∥

1

n

n∑

i=1

{
ψ̂n,α,μ(αT X i ) − Yi

}
X i ψ̃ ′

n,α,μ(u)
∣
∣
u=αT X i

∥
∥
∥
∥
∥

(9)

where ψ̃n,α,μ minimizes (8) for fixed α and ψ̃ ′
n,α,μ is its derivative. We call this

estimator the spline estimator.
We finally give simulation results for these different methods in Sect. 5, where,

apart from the comparison with the spline estimator, we make a comparison with
other estimators ofα0 not using themonotonicity constraint: the EffectiveDimension
Reduction (EDR) method, proposed in Hristache et al. (2001) and implemented in
the R package edr, the (refined) Mean Average conditional Variance Estimator
(MAVE) method, discussed in Xia (2006), and implemented in the R package MAVE,
and Estimation Function Method (EFM), discussed in Cui et al. (2011).

For reasons of space, the proofs of the statements of our paper are given in Bal-
abdaoui and Groeneboom (2020).

2 General Conditions and the Functions ψ̂n,α̂ and ψα̂

We give general conditions that we assume to hold in the remainder of the paper here
and give graphical comparisons of the functions ψ̂n,α and ψα , where ψα is defined
in Definition 1.
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Fig. 1 The loss functions LLSE (red, dashed) and L̂LSE
n (solid), where n = 104 and n = 105

Example 1 As an illustrative example, we take d = 2, ψ0(x) = x3, α0 = (1/
√
2,

1/
√
2)T , Yi = ψ0(α

T
0 Xi ) + εi , where the εi are i.i.d. standard normal random vari-

ables, independent of the X i , which are i.i.d. random vectors, consisting of two
independent Uniform(0, 1) random variables. In this case, the conditional expecta-
tion function (5) is a rather complicated function of α which we shall not give here
but can be computed by a computer package such as Mathematica or Maple. The
loss functions:

LLSE : α1 �→ E{Y − ψα(αT X)}2 and L̂LSE
n : α1 �→ n−1

n∑

i=1

{
Yi − ψ̂n,α(αT X i )

}2

(10)

where the loss function L̂LSE
n is for sample sizes n = 10, 000 and n = 100, 000, and

α = (α1, α2)
T . For α1 ∈ [0, 1] and α2 equal to the positive root {1 − α2

1}1/2, we get
Fig. 1. The function LLSE has a minimum equal to 1 at α1 = 1/

√
2, and L̂LSE

n has a
minimum at a value very close to 1/

√
2 (furnishing the profile LSE α̂n), which gives

a visual evidence for consistency of the profile LSE.

In order to show the
√

n-consistency and asymptotic normality of the estimators
in the next sections, we now introduce some conditions, which correspond to those
in Balabdaoui et al. (2019b). We note that we do not need conditions on reparame-
terization.

(A1) X has a density w.r.t. Lebesguemeasure on its supportX , which is a convex set
X with a nonempty interior, and satisfies X ⊂ {x ∈ R

d : ‖x‖ ≤ R} for some
R > 0.

(A2) The function ψ0 is bounded on the set {u ∈ R : u = αT
0 x, x ∈ X }.

(A3) There exists δ > 0 such that the conditional expectation ψ̃α , defined by (5), is
nondecreasing on Iα = {u ∈ R : u = αT x, x ∈ X } and satisfies ψ̃α = ψα , so
minimizes
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∥
∥E

{
Y − ψ(αT X)

}
X

∥
∥2

,

over nondecreasing functions ψ , if ‖α − α0‖ ≤ δ.
(A4) Let a0 and b0 be the (finite) infimum and supremum of the interval {αT

0 x, x ∈
X }. Then ψ0 is continuously differentiable on (a0 − δR, a0 + δR), where R
and δ are as in Assumption A1 and A3.

(A5) The density g of X is differentiable and there exist strictly positive constants
c1 to c4 such that c1 ≤ g(x) ≤ c2 and c3 ≤ ∂

∂xi
g(x) ≤ c4 for x in the interior

of X .
(A6) There exists a c0 > 0 and M > 0 such that E{|Y |m |X = x} ≤ m!Mm−2

0 c0 for
all integers m ≥ 2 and x ∈ X almost surely w.r.t. dG.

These conditions are rather natural, and are discussed in Balabdaoui et al. (2019b).
The following lemma shows that, for the asymptotic distribution of α̂n , we can reduce
the derivation to the analysis of ψα̂n . We have the following result (Proposition 4 in
Balabdaoui et al. 2019b) on the distance between ψ̂n,α̂ and ψα̂ .

Lemma 1 Let conditions (A1)–(A6) be satisfied and let G be the distribution function
of X . Then we have, for α in a neighborhood B(α0, δ) of α0

sup
α∈B(α0,δ)

∫ {
ψ̂nα(αT x) − ψα(αT x)

}2
dG(x) = Op

(
(log n)2n−2/3

)
.

3 The Limit Theory for the SSE

In this section, we derive the limit distribution of the SSE introduced above. In our
derivation, the function ψα of Definition 1 plays a crucial role. Below, we will use
the following assumptions, additionally to (A1)–(A6).

(A7) There exists a δ > 0 such that for allα ∈ (B(α0, δ) ∩ Sd−1) \ {α0}, the random
variable

cov
(
(α0 − α)T X, ψ0(α

T
0 X)

∣
∣ αT X

)

is not equal to 0 almost surely.
(A8) The matrix

E
[
ψ ′

0(α
T
0 X) cov(X|αT

0 X)
]

has rank d − 1.

We start by comparing (3) with the function

α �→ ∥
∥E

{
Y − ψα(αT X)

}
X

∥
∥2

. (11)



10 F. Balabdaoui and P. Groeneboom

0.0 0.2 0.4 0.6 0.8 1.0

0.000

0.002

0.004

0.006

0.008

0.010

(a) n = 104

0.0 0.2 0.4 0.6 0.8 1.0

0.000

0.002

0.004

0.006

0.008

0.010

(b) n = 105

Fig. 2 The loss functions LSSE (red, dashed) and L̂SSE
n (solid), where n = 104 and n = 105

As in Sect. 1, the function ψ̂n,α is just the (isotonic) least squares estimate for fixed
α.

Example 2 (Continuation of Example 1) We consider the loss function given by

LSSE : α1 �→ ∥
∥E

{
Y − ψα(αT X)

}
X

∥
∥2

, (12)

and compare this with the loss function

L̂SSE
n : α1 �→

∥
∥
∥
∥
∥

n−1
n∑

i=1

{
Yi − ψ̂n,α(αT X i )

}
X i

∥
∥
∥
∥
∥

2

, (13)

for the same data as in Example 1 in Sect. 2. If we plot the loss functions LSSE and
L̂SSE

n for the model of Example 1, where α = (α1, α2)
T , for α1 ∈ [0, 1] and α2 the

positive root
√
1 − α2

1 , we get Fig. 2. The function LLSE has a minimum equal to 0

at α1 = 1/
√
2 while L̂SSE

n attains its minimum at a value that is very close to 1/
√
2.

In general, the curve L̂SSE
n will be smoother than the curve L̂LSE

n . The rather striking
difference in smoothness of the loss functions L̂LSE

n and L̂SSE
n can be seen in Fig. 3,

where we zoom in on the interval [0.65, 0.80] for n = 10, 000 and the examples of
Figs. 1 and 2. The question is whether this difference in smoothness explains why
the SSE is

√
n-consistent while this might not be the case for the profile LSE.

In the computation of the SSE, we have to take a starting point. For this, we use the
LSE, which is proved to be consistent in Balabdaoui et al. (2019a). The proof of the
consistency of the SSE is a variation on the proof for corresponding crossing of the
zero estimator in Balabdaoui et al. (2019b) in (D.2) of the supplementary material.
We use the following lemma, which is a corollary to Proposition 2 in the material of
Balabdaoui et al. (2019b).
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Fig. 3 The loss functions L̂LSE
n and L̂SSE

n on [0.65, 0.80], for n = 104

Lemma 2 Let φn and φ be defined by

φn(α) =
∫

x
{

y − ψ̂n,α(αT x)
}

dPn(x, y),

and

φ(α) =
∫

x
{

y − ψα(αT x)
}

d P(x, y).

Then, uniformly for α in a neighborhood B(α0, δ) ∩ Sd−1 of α0

φn(α) = φ(α) + op(1).

Remark 1 The proof in Balabdaoui et al. (2019b) used reparameterization, but this
is actually not needed in the proof.

Theorem 1 (Consistency of the SSE) Let α̂n ∈ Sd−1 be the SSE of α0 and let con-
ditions (A1)–(A8) be satisfied. Then

α̂n
p−→ α0.

Lemma 3 Let α̂n ∈ Sd−1 be a minimizer of

∥
∥
∥
∥
∥

n−1
n∑

i=1

{
Yi − ψ̂n,α(αT X i )

}
X i

∥
∥
∥
∥
∥

2

, (14)

for α ∈ Sd−1, where ‖ · ‖ denotes the Euclidean norm. Then, under conditions (A1)–
(A8) we have
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n−1
n∑

i=1

{
Yi − ψ̂n,α̂n (α̂

T
n X i )

}
X i = n−1

n∑

i=1

{
Yi − ψα̂n (α̂

T
n X i )

} {
X i − E

(
X|α̂T

n X i

)}
+ op

(
n−1/2

)
.

(15)

We now have the following limit result.

Theorem 2 (Asymptotic normality of the SSE) Let α̂n be the minimizer of

∥
∥
∥
∥
∥

n−1
n∑

i=1

{
Yi − ψ̂n,α(αT X i )

}
X i

∥
∥
∥
∥
∥

2

, (16)

for α ∈ Sd−1, where ‖ · ‖ denotes the Euclidean norm. Let the matrices A and � be
defined by

A = E

[
ψ ′

0(α
T
0 X) Cov(X|αT

0 X)
]
, (17)

and

� = E

[{
Y − ψ0(α

T
0 X)

}2 {
X − E(X|αT

0 X)
} {

X − E(X|αT
0 X)

}T
]
. (18)

Then, under conditions (A1)–(A8), we have

√
n(α̂n − α0) →d N

(
0, A−�A−)

,

where A− is the Moore-Penrose inverse of A.

Example 3 (Continuation of Example 2) We compute the asymptotic covariance
matrix for Example 2. In this case, we get for matrix A in part (ii) of Theorem 2

A = E

[
ψ ′

0(α
T
0 X)Cov(X|αT

0 X)
]

= 3

4
E

[(
X1 + X2√

2

)2 (
X − E(X|αT

0 X)
) (

X − E(X|αT
0 X)

)T

]

=
(

1/15 −1/15
−1/15 1/15

)

.

The Moore-Penrose inverse of A is given by

A− =
(

15/4 −15/4
−15/4 15/4

)

.

Furthermore, we get
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� = E

[{
Y − ψ0(α

T
0 X)

}2 {
X − E(X|αT

0 X)
} {

X − E(X|αT
0 X)

}T
]

= E
{
X − E(X|αT

0 X)
} {

X − E(X|αT
0 X)

}T

=
(

1/24 −1/24
−1/24 1/24

)

.

So the asymptotic covariance matrix is given by

A−�A− =
(

75/32 −75/32
−75/32 75/32

)

≈
(

2.34375 −2.34375
−2.34375 2.34375

)

.

Remark 2 Theorem 2 corresponds to Theorem 3 in Balabdaoui et al. (2019b), but
note that the estimator has a different definition. Reparameterization is also avoided.

4 The Limit Theory for ESE and Cubic Spline Estimator

The proofs of the consistency and asymptotic normality of the ESE and spline esti-
mator are highly similar to the proofs of these facts for the SSE in the preceding
section. The only extra ingredient is the occurrence of the estimate of the derivative
of the link function. We only discuss the asymptotic normality.

In addition to the assumptions (A1)–(A7), we now assume the following:

(A8’) ψα is twice differentiable on (inf x∈X (αT x), supx∈X (αT x)).
(A9) The matrix

E
[
ψ ′

0(α
T
0 X)2 cov(X|αT

0 X)
]

has rank d − 1.

An essential step is again to show that

∫

x
{

y − ψ̂n,α̂n (α̂
T
n x)

}
ψ̂ ′

nα̂n
(α̂

T
n x) dPn(x, y)

=
∫ {

x − E(X |α̂T
n X)

} {
y − ψ̂n,α̂n (α̂

T
n x)

}
ψ̂ ′

nα̂n
(α̂

T
n x) dPn(x, y)

+ op(n
−1/2) + op(α̂n − α0).

For the ESE, this is done by defining the piecewise constant function ρ̄n,α for u in
the interval between successive jumps τi and τi+1) of ψ̂nα by

ρ̄n,α(u) =
⎧
⎨

⎩

E[X|αT X = τi ]ψ ′
α(τi ) if ψα(u) > ψ̂nα(τi ) for all u ∈ (τi , τi+1),

E[X|αT X = s]ψ ′
α(s) if ψα(s) = ψ̂nα(s) for some s ∈ (τi , τi+1),

E[X|αT X = τi+1]ψ ′
α(τi+1) if ψα(u) < ψ̂nα(τi ) for all u ∈ (τi , τi+1);
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see Appendix E in the supplement of Balabdaoui et al. (2019b). The remaining part
of the proof runs along the same lines as the proof for the SSE. For additional details,
see Appendix E in the supplement of Balabdaoui et al. (2019b).

The corresponding step in the proof for the spline estimator is given by the fol-
lowing lemma.

Lemma 4 Let the conditions of Theorem 5 in Kuchibhotla and Patra (2020) be
satisfied. In particular, let the penalty parameter μn satisfy μn = op(n−1/2). Then
we have for all α in a neighborhood of α0 and for the corresponding natural cubic
spline ψ̂nα

∫

E(X|αT X)
{

y − ψ̂nα

(
αT x

)}
ψ̂ ′

nα

(
αT x

)
dPn(x, y) = Op(μn) = op

(
n−1/2

)
.

Remark 3 The result shows that we have as our basic equation in α

1

n

n∑

i=1

{
ψ̂nα(αT X i ) − Yi

}
ψ̂ ′

nα(αT X i )X i

= 1

n

n∑

i=1

{
ψ̂nα(αT X i ) − Yi

}
ψ̂ ′

nα(αT X i )
{
X i − E(X i |αT X i )

} + op
(
n−1/2

)

= op
(
n−1/2

)
.

The remaining part of the proof of the asymptotic normality can either run along
the same lines as the proof for the corresponding fact for the SSE, using the function
u �→ ψα(u) = E{ψ0(α

T x)|αT X = u}, or directly use the convergence of ψ̂nα̂n to
ψ0 and of ψ̂ ′

nα̂n
to ψ ′

0 (see Theorem 3 in Kuchibhotla and Patra 2020). For the SSE
and ESE, we were forced to introduce the intermediate function ψα to get to the
derivatives, because for these estimators the derivative of ψ̂nα̂n did not exist.

We get the following result.

Theorem 3 Let either α̂n be the ESE of α0 and let Assumptions (A1)–(A7) and (A8’)
and (A9) of the present section be satisfied, or let α̂n be the spline estimator of α0

and let Assumptions (A0)-(A6) and (B1)–(B3) of Kuchibhotla and Patra 2020) be
satisfied. Moreover, let the bandwidth h  n−1/7 in the estimate of the derivative of
ψα for the ESE. Define the matrices

Ã := E

[
ψ ′

0(α
T
0 X)2 Cov(X|αT

0 X)
]
, (19)

and

�̃ := E

[{
Y − ψ0(α

T
0 X)

}2
ψ ′

0(α
T
0 X)2

{
X − E(X|αT

0 X)
} {

X − E(X|αT
0 X)

}T
]
.

(20)
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Then

√
n(α̃n − α0) →d Nd

(
0, Ã

−
�̃ Ã

−)
,

where Ã
−

is the Moore-Penrose inverse of Ã.

This corresponds to Theorem 6 in Balabdaoui et al. (2019b) and Theorem 5
in Kuchibhotla and Patra (2020), but note that the formulation of Theorem 5 in
Kuchibhotla and Patra (2020) still contains the Jacobian connected with the lower
dimensional parameterization. Consequently, the ESE and the cubic spline estimator
admit the same weak limit under the conditions stated above.

5 Simulation and Comparisons with Other Estimators

In this section, we compare the LSE with the Simple Score Estimator (SSE), the
Efficient Score Estimator (ESE), the EffectiveDimensionReduction (EDR) estimate,
the spline estimate, the MAVE estimate, and the EFM estimate. We take part in
the simulation settings in Balabdaoui et al. (2019a), which means that we take the
dimension d equal to 2. Since the parameter belongs to the boundary of a circle in this
case, we only have to determine a one-dimensional parameter. Using this fact, we use
the parameterization α = (α1, α2) = (cos(β), sin(β)) and determine the angle β by
a golden section search for the SSE, ESE, and spline estimate. For EDR, we used
the R package edr; the method is discussed in Hristache et al. (2001). The spline
method is described in Kuchibhotla and Patra (2020), and there exists an R package
simest for it, but we used our own implementation. For the MAVE method, we
used the R package MAVE; for theory, see Xia (2006). For the EFM estimate (see Cui
et al. 2011), we used an R script, due to Xia Cui and kindly provided to us by her and
Rohit Patra. All runs of our simulations can be reproduced by running the R scripts
in Groeneboom 2018.

In simulation model 1, we take α0 = (1/
√
2, 1/

√
2)T and X = (X1, X2)

T , where
X1 and X2 are independent Uniform(0, 1) variables. The model is now

Y = ψ0(α
T
0 X) + ε,

where ψ0(u) = u3 and ε is a standard normal random variable, independent of X .
In simulation model 2, we also take α0 = (1/

√
2, 1/

√
2)T and X = (X1, X2)

T ,
where X1 and X2 are independent Uniform(0, 1) variables. This time, however, the
model is (Table 1)

Y = Bin
(
10, exp(αT

0 X)/
{
1 + exp(αT

0 X)
}) ;

see also Table 2 in Balabdaoui et al. (2019a). This means
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Table 1 Simulation, model 1; εi is standard normal and independent of X i , consisting of two
independent Uniform(0, 1) random variables. Themean value μ̂i =mean(α̂in), i = 1, 2 and n times
the variance-covariance σ̂i j = n·cov(α̂in, α̂ jn), i, j = 1, 2, of the Efficient Dimension Reduction
Estimate (EDR), computed by the R package edr, the Least Squares Estimate (LSE), the Simple
Score Estimate (SSE), the Efficient Score Estimate (ESE), the spline estimate, the MAVE estimate,
and the EFM estimate for different sample sizes n. The line, preceded by ∞, gives the asymptotic
values (unknown for EDR and LSE). The values are based on 1000 replications

Method n μ̂1 μ̂2 σ̂11 σ̂22 σ̂12

EDR 100 0.621877 0.361894 11.409222 36.869184 9.152389

500 0.701217 0.686094 7.334756 11.468453 –3.881349

1000 0.701669 0.702244 6.437653 8.090771 –3.552562

5000 0.706021 0.706798 7.344431 7.276717 –7.288047

∞ 0.707107 0.707107 ? ? ?

LSE 100 0.672698 0.697350 3.148912 2.975246 –2.915427

500 0.702163 0.701718 3.620960 3.665710 –3.588491

1000 0.704706 0.704320 3.665561 3.664711 –3.637541

5000 0.707262 0.705690 4.435842 4.485168 –4.453713

∞ 0.707107 0.707107 ? ? ?

SSE 100 0.673997 0.6919403 3.338637 3.362656 –3.141408

500 0.699986 0.706198 2.849647 2.807978 –2.793798

1000 0.706477 0.704191 2.501106 2.510047 –2.494237

5000 0.707090 0.706423 2.473765 2.485884 –2.477371

∞ 0.707107 0.707107 2.343750 2.343750 –2.343750

ESE 100 0.682781 0.687949 3.067802 2.991976 –2.855176

500 0.702940 0.702462 3.100843 3.116337 –3.064151

1000 0.704055 0.706387 2.676388 2.653164 –2.650667

5000 0.707130 0.706444 2.257541 2.265547 –2.259443

∞ 0.707107 0.707107 1.885522 1.885522 –1.885522

Spline 100 0.690741 0.705485 1.801235 1.762567 –1.711552

500 0.703670 0.702640 1.795384 1.778454 –1.773560

1000 0.705684 0.706007 1.786589 1.781797 –1.777691

5000 0.706404 0.707193 2.180466 2.181544 –2.179269

∞ 0.707107 0.707165 1.885522 1.885522 –1.885522

MAVE 100 0.686503 0.684887 2.423618 3.546768 –2.245708

500 0.703333 0.705537 1.897806 1.876220 –2.040677

1000 0.705840 0.705660 1.929966 1.907128 –1.911452

5000 0.707328 0.706299 2.071168 2.082169 –2.074914

∞ 0.707107 0.707107 1.885522 1.885522 –1.885522

EFM 100 0.686292 0.684274 2.802308 3.280956 –2.312445

500 0.703236 0.705133 2.082162 2.045150 –2.044960

1000 0.705629 0.705950 1.866486 1.860184 –1.856340

5000 0.707269 0.707251 1.953800 1.964081 –1.957351

∞ 0.707107 0.707107 1.885522 1.885522 –1.885522
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Table 2 Simulation, model 2; Yi ∼ Bin
(
10, exp(αT

0 X i )/
{
1 + exp(αT

0 X i )
})
, where X i consists

of two independentUniform(0, 1) randomvariables. Themean value μ̂i = mean(α̂in), i = 1, 2 and
n times the variance-covariance ncov(α̂in, α̂ jn), i, j = 1, 2, of the Efficient Dimension Reduction
Estimate (EDR), computed by the R package edr, the Least Squares Estimate (LSE), the Simple
Score Estimate (SSE), the Efficient Score Estimate (ESE), the spline estimate, the MAVE estimate,
and the EFM estimate for different sample sizes n. The line, preceded by ∞, gives the asymptotic
values (unknown for EDR and LSE). The values are based on 1000 replications

Method n μ̂1 μ̂2 σ̂11 σ̂22 σ̂12

EDR 100 0.587264 0.202005 13.33724 48.15572 11.87625

500 0.670702 0.602469 26.76111 66.92737 14.09701

1000 0.696075 0.666591 21.89080 49.31544 9.345753

5000 0.704424 0.706604 11.39598 11.11493 –11.17376

∞ 0.707107 0.707107 ? ? ?

LSE 100 0.658631 0.699725 4.069966 3.596783 –3.609490

500 0.695541 0.703007 5.650618 5.362877 –5.358190

1000 0.704497 0.701243 5.909494 6.043808 –5.911246

5000 0.704805 0.707621 6.303320 6.321866 –6.298515

∞ 0.707107 0.707107 ? ? ?

SSE 100 0.667908 0.694376 3.760921 3.420387 –3.356968

500 0.698498 0.706423 3.358458 3.182044 –3.223734

1000 0.707276 0.702390 3.179623 3.236283 –3.184724

5000 0.706162 0.707286 2.718742 2.707549 –2.709870

∞ 0.707107 0.707107 2.727482 2.727482 –2.727482

ESE 100 0.684804 0.688063 2.892165 2.874755 –2.744223

500 0.698078 0.706159 3.562625 3.457337 –3.446605

1000 0.707879 0.701445 3.420159 3.470217 –3.418606

5000 0.706321 0.707110 2.775092 2.760287 –2.764230

∞ 0.707107 0.707107 2.737200 2.737200 –2.737200

Spline 100 0.677287 0.695301 3.009781 2.779876 –2.714928

500 0.699117 0.706946 2.952928 2.784383 –2.830415

1000 0.707890 0.702001 3.027712 3.064772 –3.026082

5000 0.706200 0.707312 2.764447 2.762986 –2.760530

∞ 0.707107 0.707232 2.737200 2.737200 –2.737200

MAVE 100 0.667849 0.654361 3.891510 8.700093 –2.325804

500 0.699108 0.706377 3.155191 2.990569 –3.031249

1000 0.707520 0.702341 3.040201 3.097965 –3.049075

5000 0.707657 0.705827 2.572343 2.573418 –2.570275

∞ 0.707107 0.707107 2.737200 2.737200 –2.737200

EFM 100 0.663227 0.666070 5.681573 5.978194 –2.503058

500 0.698920 0.706295 3.279110 3.055940 –3.118757

1000 0.707878 0.706275 3.102414 3.157143 –3.108516

5000 0.706043 0.701894 2.669352 2.650343 –2.656742

∞ 0.707107 0.707107 2.737200 2.737200 –2.737200
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Y = ψ0(α
T
0 X) + ε,

where

ψ0(α
T
0 X) = 10 exp(αT

0 X)/{1 + exp(αT
0 X)}, ε = Nn − ψ0(α

T
0 X),

and

Nn = Bin

(

10,
exp(αT

0 X

1 + exp(αT
0 X)

)

.

Note that indeed E{ε|X) = 0, but that we do not have independence of ε and X , as
in the previous example.

It was noticed in Xia (2006), p. 1113, that, although it was shown in Hristache
et al. (2001) that the

√
n rate of convergence for the estimation of α0 can be achieved,

the asymptotic distribution of the method proposed in Hristache et al. (2001) was not
derived, which makes it difficult to compare the limiting efficiency of the estimation
method with other methods. In Xia (2006), the asymptotic distribution of the rMAVE
estimate is derived (see Theorem 4.2 of Xia 2006), which shows that this limit
distribution is actually the same as that of the ESE and the spline estimate. Since
Xia is one of the authors of the recent MAVE R package, we assume that the rMAVE
method has been implemented in this package, so we will identify MAVE with
rMAVE in the sequel.

The proof of the asymptotic normality result for the MAVE method uses the fact
that the iteration steps, described on p.1117 of Xia (2006), start in a neighborhood
{α : ‖α − α0‖ ≤ Cn−1/2+c0} of α0, where C > 0 and c0 < 1/20, and indeed our

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

-2

0

2

4

-1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0

-2

0

2

4

Fig. 4 TwoMAVE estimates of α0 = 2−1/2(1, 1)T for model 1 with sample size n = 1000: a from
starting the iterations at α0, b from starting the iterations at−α0; the blue solid curve is the estimate
of the link function, based on α̂n ; the blue dashed function is t �→ t3 in a and t �→ −t3 in b. Note
that in b also the sign of the first coordinates of the points (α̂

T
n X i , Yi ) in the scatterplot is reversed.

Under the restriction that the link function is nondecreasing b cannot be a solution
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Fig. 5 Boxplots of
√

n/2 ‖α̂n − α0‖2 for model 1. In b and c, the values of EDR were truncated
at 0.6 to show more clearly the differences between the other estimates

original experiments with the R package showed many outliers, probably due to
starting values not sufficiently close to α0. A further investigation revealed that there
were many solutions in the neighborhood of the points −α0. This phenomenon is
illustrated in Fig. 4, generated by our own implementation of the algorithm in Xia
(2006). The link function is constructed from the values aα̂n

j in the algorithm in Xia

(2006), p. 1117, where the ordered values of α̂
T
n X j are the first coordinates.

Because of the difficulty we just discussed, we reversed in the results of the
MAVE R package the sign of the solutions in the neighborhood of −α0. By the
parameterization with a positive first coordinate in Cui et al. (2011), situation (b) in
Fig. 4 cannot occur for the EFM algorithm. We also tried a modification of the same
type as our modification of the MAVE algorithm for the EDR algorithm, but this did
not lead to a similar improvement of the results.
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Fig. 6 Boxplots of
√

n/2 ‖α̂n − α0‖2 for model 2. In b and c, the values of EDR were truncated
at 0.6 to show more clearly the differences between the other estimates

It follows from Theorem 2 that the variance of the asymptotic normal distribution
for the SSE is equal to 2.727482 and from Theorem 3 that the variance of the
asymptotic normal distribution for the ESE and spline estimator equals 2.737200.
We already noticed in Sect. 4 that the present model is not homoscedastic. In this
case, the asymptotic covariance matrix for the SSE of Theorem 2 is in fact given by
A− = A−�A−.

It is clear that the estimate EDR is inferior to the other methods for these models;
even the LSE for which we do not know the rate of convergence has a better per-
formance, see Figs. 5 and 6. In Hristache et al. (2001), not only it is assumed that
the errors have a normal distribution, but also in model 1, where this condition is
satisfied, the behavior is clearly inferior, in particular for the lower sample sizes.
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6 Concluding Remarks

We replaced the “crossing of zero” estimators in Balabdaoui et al. (2019b) with
profile least squares estimators. The asymptotic distribution of the estimators was
determined and its behavior illustrated by a simulation study, using the same models
as in Balabdaoui et al. (2019a).

In the first model, the error is independent of the covariate and homoscedastic
and in this case, four of the estimators were efficient. In the other (binomial-logistic)
model, the errorwas dependent on the covariates andnot homoscedastic. Itwas shown
that the Simple Score Estimate (SSE) had in fact a smaller asymptotic variance in
this model than the other estimators for which the asymptotic variance is known,
although the difference is very small and does not really show up in the simulations.

There is no uniformly best estimate in our simulation, but the EDR estimate is
clearly inferior to the other estimates, including the LSE, in particular for the lower
sample sizes. On the other hand, the LSE is inferior to the other estimators except
for the EDR. All simulation results can be reproduced by running the R scripts in
Groeneboom (2018).
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