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Abstract. Denote the loss return on the equity of a financial institution as X and that of the

entire market as Y . For a given very small value of p > 0, the marginal expected shortfall (MES)

is defined as E(X |Y > QY (1−p)), where QY (1−p) is the (1−p)-th quantile of the distribution

of Y . The MES is an important factor when measuring the systemic risk of financial institutions.

For a wide nonparametric class of bivariate distributions, we construct an estimator of the MES

and establish the asymptotic normality of the estimator when p ↓ 0, as the sample size n→∞.

Since we are in particular interested in the case p = O(1/n), we use extreme value techniques

for deriving the estimator and its asymptotic behavior. The finite sample performance of the

estimator and the adequacy of the limit theorem are shown in a detailed simulation study. We

also apply our method to estimate the MES of three large U.S. investment banks.
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1 Introduction

An important factor in constructing a systemic risk measure for the financial industry is the

contribution of a financial institution to a systemic crisis measured by the Marginal Expected

Shortfall (MES). The MES of a financial institution is defined as the expected loss on its equity

return conditional on the occurrence of an extreme loss in the aggregated return of the financial

sector. Denote the loss of the equity return of a financial institution and that of the entire market

as X and Y , respectively. Then the MES is defined as E(X |Y > t), where t is a high threshold

such that p = P (Y > t) is extremely small. In other words, the MES at probability level p is

defined as

MES(p) = E(X |Y > QY (1− p)),

where QY is the quantile function of Y . Notice that in applications the probability p is at an

extremely low level that can be even lower than 1/n, where n is the sample size of historical data

that are used for estimating the MES.1

It is the goal of this paper to establish a novel estimator of MES(p) and to unravel its

asymptotic behavior. The main result establishes the asymptotic normality of our estimator for

a large class of bivariate distributions, which makes statistical inference for the MES feasible.

We also show through a simulation study that the estimator performs well and that the limit

theorem provides an adequate approximation for finite sample sizes.

The MES has been studied under the name “Conditional Tail Expectation” (CTE, or TCE)

in statistics and actuarial science. The definition of CTE in a univariate context is the same as

that of the tail value at risk. Mathematically, it is given by E(X |X > QX(1 − p)) where QX

is the quantile function of X. In case X has a continuous distribution, this is also called the

expected shortfall. Compared to the MES, it can be viewed as the special case that Y = X.

The concept of CTE has been defined more generally in a multivariate setup. It is possible to

have the conditioning event defined by another, related random variable Y exceeding its high

quantile. In that case, the CTE coincides with the MES. A few studies show how to calculate

the CTE when the joint distribution of (X,Y ) follows specific parametric models. For example,

Landsman and Valdez (2003) and Kostadinov (2006) deal with elliptical distributions with heavy-

tailed marginals. Cai and Li (2005) studies the CTE for multivariate phase-type distributions.

Vernic (2006) considers skewed-normal distributions. Compared to these studies, our approach

1In Acharya et al. (2012), the probability of such an extreme tail event is specified as “that happen

once or twice a decade (or less)”, whereas the estimation is based on daily data from one year.
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does not impose any parametric structure on (X,Y ). A comparable result in the literature

is the approach in Joe and Li (2011), where under multivariate regular variation, a formula

for calculating the CTE is provided. The multivariate regularly varying distributions form a

subclass of our model. Note that we do not make any assumption on the marginal distribution

of Y . It should be emphasized, however, that we focus on the statistical problem of estimating

the MES and studying the performance of the estimator in contrast to these papers where (only)

probabilistic properties of the MES are studied.

In Acharya et al. (2012) an estimator for the MES is provided assuming a specific linear

relationship between X and Y . The estimation procedure there can be seen as a special case

of the present one. A similar setting has been adopted in Brownlees and Engle (2012), where

a nonparametric kernel estimator of the MES is proposed. Such a kernel estimation method,

however, performs well only if the threshold for defining a systemic crisis is not too high: the

tail probability level p should be substantially larger than 1/n. Such a method cannot handle

extreme events, that is p < 1/n, which is particularly required for systemic risk measures.

The paper is organized as follows. Section 2 provides the main result: asymptotic normality

of the estimator. In Section 3, a simulation study shows the good performance of the estimator.

An application on estimating the MES for U.S. financial institutions is given in Section 4. The

proofs are deferred to Section 5.

2 Main Results

Let (X,Y ) be a random vector with a continuous distribution function F . Denote the

marginal distribution functions as F1(x) = F (x,∞) and F2(y) = F (∞, y) with corresponding

tail quantile functions given by Uj =
(

1
1−Fj

)←
, j = 1, 2, where ← denotes the left-continuous

inverse. Then the MES at a probability level p can be written as

θp := E(X |Y > U2(1/p)).

The goal is to estimate θp based on independent and identically distributed (i.i.d.) observations,

(X1, Y1), · · · , (Xn, Yn) from F , where p = p(n)→ 0 as n→∞.

We adopt the bivariate EVT framework for modeling the tail dependence structure of (X,Y ).

Suppose for all (x, y) ∈ [0,∞]2 \ {(+∞,+∞)} , the following limit exists:

lim
t→∞

tP (1− F1(X) ≤ x/t, 1− F2(Y ) ≤ y/t) =: R(x, y). (1)
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The function R completely determines the so-called stable tail dependence function l, as for all

x, y ≥ 0,

l(x, y) = x+ y −R(x, y);

see Drees and Huang (1998); Beirlant et al. (2004, Chapter 8.2).

For the marginal distributions, we assume that only X follows a distribution with a heavy

right tail: there exists γ1 > 0 such that for x > 0,

lim
t→∞

U1(tx)

U1(t)
= xγ1 . (2)

Then it follows that 1−F1 is regularly varying with index − 1
γ1

and γ1 is the extreme value index.

We first focus on X being positive, then we consider X ∈ R. Throughout, there is no

assumption, apart from continuity, on the marginal distribution of Y .

2.1 X Positive

Assume X takes values in (0,∞). The following limit result gives an approximation for θp.

Proposition 1. Suppose that (1) and (2) hold with 0 < γ1 < 1. Then,

lim
p↓0

θp
U1(1/p)

=

∫ ∞
0

R
(
x−1/γ1 , 1

)
dx.

In Joe and Li (2011, Theorem 2.4), this result is derived under the stronger assumption of

multivariate regular variation.

Next, we construct an estimator of θp based on the limit given in Proposition 1. Let k be an

intermediate sequence of integers, that is, k →∞, k/n→ 0, as n→∞. By Proposition 1 and a

strengthening of (2) (see condition (b) below), we have that as n→∞,

θp ∼
U1(1/p)

U1(n/k)
θ k

n
∼
(
k

np

)γ1

θ k
n
. (3)

For estimating θp, it thus suffices to estimate γ1 and θ k
n
.

We estimate γ1 with the Hill (1975) estimator:

γ̂1 =
1

k1

k1∑
i=1

logXn−i+1,n − logXn−k1,n, (4)

where k1 is another intermediate sequence of integers and Xi,n, i = 1, . . . , n is the i-th order

statistic of X1, . . . , Xn.
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By regarding the (n−k)-th order statistic Yn−k,n of Y1, . . . , Yn as an estimator of U2(n/k), we

construct a nonparametric estimator of θ k
n
which is the average of the selected Xi corresponding

to the highest k values of Y :

θ̂ k
n
=

1

k

n∑
i=1

XiI(Yi > Yn−k,n). (5)

Combining (3), (4) and (5), we estimate θp by

θ̂p =

(
k

np

)γ̂1

θ̂ k
n
. (6)

We prove the asymptotic normality of θ̂p under the following conditions.

(a) There exist β > γ1 and τ < 0 such that, as t→∞,

sup
0<x<∞
1/2≤y≤2

|tP (1− F1(X) < x/t, 1− F2(Y ) < y/t)−R(x, y)|
xβ ∧ 1

= O(tτ ).

(b) There exist ρ1 < 0 and an eventually positive or negative function A1 with limt→∞A1(t) =

0 such that

lim
t→∞

U1(tx)/U1(t)− xγ1
A1(t)

= xγ1
xρ1 − 1

ρ1
.

As a consequence, |A1| is regularly varying with index ρ1. Conditions (a) and (b) are natu-

ral second-order strengthenings of (1) and (2), respectively. We further require the following

conditions on the intermediate sequences k1 and k.

(c) As n→∞,
√
k1A1(n/k1)→ 0.

(d) As n→∞, k = O(nα) for some α < min
(
−2τ
−2τ+1 ,

2γ1ρ1
2γ1ρ1+ρ1−1

)
.

To characterize the limit distribution of θ̂p, we define a mean zero Gaussian process WR on

[0,∞]2\{∞,∞} with covariance structure

E(WR(x1, y1)WR(x2, y2)) = R(x1 ∧ x2, y1 ∧ y2),

i.e., WR is a Wiener process. Set

Θ = (γ1 − 1)WR(∞, 1) +
(∫ ∞

0
R(s, 1)ds−γ1

)−1 ∫ ∞
0

WR(s, 1)ds
−γ1 ,

and

Γ = γ1

(
−WR(1,∞) +

∫ 1

0
s−1WR(s,∞)ds

)
.

It will be shown (see Proposition 3 and (24)) that θ̂ k
n
and γ̂1 are asymptotically normal with Θ

and Γ as limit, respectively. The following theorem gives the asymptotic normality of θ̂p.
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Theorem 1. Suppose conditions (a)–(d) hold and γ1 ∈ (0, 1/2). Assume dn := k
np ≥ 1 and

r := limn→∞
√
k log dn√

k1
∈ [0,∞]. If limn→∞

log dn√
k1

= 0, then, as n→∞,

min

(√
k,

√
k1

log dn

)(
θ̂p
θp
− 1

)
d→

{
Θ+ rΓ, if r ≤ 1,
1
rΘ+ Γ, if r > 1,

where Var(Θ) = (γ21 − 1)− b2
∫∞
0 R(s, 1)ds−2γ1, Var(Γ) = γ21 and

Cov(Γ,Θ) = γ1(1− γ1 + b)R(1, 1)− γ1
∫ 1
0 ((1− γ1) + bs−γ1(1− γ1 − γ1 ln s))R(s, 1)s−1ds

with b =
(∫∞

0 R(s, 1)ds−γ1
)−1

.

2.2 X Real

In this section, X takes values in R, that is, we do not restrict X to be positive. Define

X+ = max(X, 0) and X− = X −X+. Besides the conditions of Theorem 1, we require two more

conditions:

(e) E |X−|1/γ1 <∞;

(f) As n→∞, k = o
(
p2τ(1−γ1)

)
.

It can be shown that condition (e), together with (a), ensure that θp ∼ E(X+ |Y > U2(1/p)), as

p ↓ 0. Therefore, we estimate θp with

θ̂p =

(
k

np

)γ̂1 1

k

n∑
i=1

XiI(Xi > 0, Yi > Yn−k,n), (7)

with γ̂1 as in Section 2.1. Observe that when X is positive, this definition coincides with that in

(6). As stated in the following theorem, the asymptotic behavior of the estimator remains the

same as that for positive X.

Theorem 2. Under the conditions of Theorem 1 and conditions (e) and (f), as n→∞,

min

(√
k,

√
k1

log dn

)(
θ̂p
θp
− 1

)
d→

{
Θ+ rΓ, if r ≤ 1;
1
rΘ+ Γ, if r > 1,

where r, Θ and Γ are defined as in Theorem 1.

3 Simulation Study

In this section, a simulation and comparison study is implemented to investigate the finite

sample performance of our estimator. We generate data from three bivariate distributions.
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• A transformed Cauchy distribution on (0,∞)2 defined as

(X,Y ) =
(
|Z1|2/5 , |Z2|

)
,

where (Z1, Z2) is a standard Cauchy distribution on R2 with density 1
2π (1 + x2 + y2)−3/2.

It follows that γ1 = 2/5 and R(x, y) = x + y −
√
x2 + y2, x, y ≥ 0. It can be shown that

this distribution satisfies conditions (a) and (b) with τ = −1, β = 2, and ρ1 = −2. We

shall refer to this distribution as “transformed Cauchy distribution (1)”.

• Student-t3 distribution on (0,∞)2 with density

f(x, y) =
2

π

(
1 +

x2 + y2

3

)−5/2
, x, y > 0.

We have γ1 = 1/3, R(x, y) = x+y− x4/3+ 1
2
x2/3y2/3+y4/3√
x2/3+y2/3

, τ = −1/3, β = 4/3 and ρ1 = −2/3.

• A transformed Cauchy distribution on the whole R2 defined as

(X,Y ) =
(
Z

2/5
1 I (Z1 ≥ 0) + Z

1/5
1 I (Z1 < 0) , Z2I (Z1 ≥ 0) + Z

1/3
2 I (Z1 < 0)

)
.

We have γ1 = 2/5, R(x, y) = x/2+ y−
√
x2/4 + y, τ = −1, β = 2, and ρ1 = −2. We shall

refer to this distribution as “transformed Cauchy distribution (2)”.

We draw 500 samples from each distribution with sample sizes n = 2,000 and n = 5,000.

Based on each sample, we estimate θp for p = 1/500, 1/5,000 or 1/10,000.

Besides the estimator given by (7), we construct two other estimators. Firstly, for np ≥ 1,

an empirical counterpart of θp, given by

θ̂emp =
1

bnpc

n∑
i=1

XiI(Yi > Yn−bnpc,n), (8)

is studied, where b·c denotes the integer part. Secondly, exploiting the relation in Proposition

1 and using the empirical estimator of R given by R̂(x, y) = 1
k

∑n
i=1 I(Xi > Xn−bkxc,n, Yi >

Yn−bkyc,n) and the Weissman (1978) estimator of U1(1/p) given by Û1(1/p) = dγ̂1n Xn−k,n, we

define an alternative EVT estimator as

θ̄p =− Û1(1/p)

∫ ∞
0

R̂(x, 1)dx−γ̂1

=dγ̂1n Xn−k,n
1

k

n∑
i=1

I(Yi > Yn−k,n)

(
n− rank(Xi) + 1

k

)−γ̂1
. (9)
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Figure 1: Boxplots on ratios of estimates and true values. Each plot is based on 500 samples with

sample size n =2,000 or 5,000 from the transformed Cauchy distributions (1), (2) or Student-t3

distribution. The estimators are θ̂p of (7), θ̄p of (9) and θ̂emp of (8); p = 1/500 (p1), 1/5,000

(p2) and 1/10,000 (p3).

The comparison of the three estimators is shown in Figure 1, where we present boxplots of

the ratios of the estimates and the true values. For all three distributions, the empirical estimator
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underestimates the MES and is consistently outperformed by the EVT estimators. Additionally,

it is not applicable for p < 1/n. The two EVT estimators, θ̄p and θ̂p, both perform well. Their

behavior is similar and remains stable when p changes from 1/500 to 1/10,000. The results

for the transformed Cauchy distribution (1) are the best among the three distributions, as the

medians of the ratios are closest to one and the variations are smallest.

Next, we investigate the normality of the estimator, θ̂p, with p = 1/n. For r <∞, the asymp-

totic normality of
θ̂p
θp

in Theorem 1 can be expressed as
√
k
(
θ̂p
θp
− 1
)

d→ Θ+ rΓ, or equivalently,

√
k log

θ̂p
θp

d→ Θ+ rΓ.

Notice that the limit distribution is a centered normal distribution. Write σ2p = 1
k Var(Θ + rΓ)

with r =

√
k log k

np√
k1

. We compare the distribution of log
θ̂p
θp
, with the limit distribution N(0, σ2p).

Table 1 reports the standardized mean of log
θ̂p
θp
, i.e., the average value divided by σp, and between

Table 1: Standardized mean and standard deviation of log θ̂p
θp

n = 2,000 n = 5,000

p = 1/2,000 p = 1/5,000

Transformed Cauchy distribution (1) 0.152 (1.027) 0.107 (1.054)

Student-t3 distribution 0.232 (0.929) 0.148 (0.964)

Transformed Cauchy distribution (2) −0.147 (1.002) −0.070 (1.002)

The numbers are the standardized mean of log
θ̂p
θp

and between brackets, the ratio of the standard

deviation and σp, based on 500 estimates with n = 2,000 or 5,000 and p = 1/n.

brackets, the ratio of the “sample” standard deviation and σp. As indicated by the numbers, the

mean and standard deviation of log
θ̂p
θp

are both close to that of the limit distribution.

After the numerical assessment on the parameters, we illustrate the normality of log
θ̂p
θp
.

Figure 2 shows the densities of the N(0, σ2p)-distribution and the histograms of log
θ̂p
θp
, based on

500 estimates. The normality of the estimates is supported by the large overlap between the

histograms and the areas under the density curves. Hence we conclude that the limit theorem

provides an adequate approximation for finite sample sizes.
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Figure 2: Histograms of log
θ̂p
θp

for p = 1/n, based on 500 samples with sample size n =2,000 or

5,000 from the transformed Cauchy distributions (1), (2) or Student-t3 distribution. The choices

of k and k1 are the same as in Figure 1. The curves are the densities of the N(0, σ2p)-distribution.

4 Application

In this section, we apply our estimation method to estimate the MES for some financial

institutions. We consider three large investment banks in the U.S., namely, Goldman Sachs (GS),
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Morgan Stanley (MS) and T. Rowe Price (TROW), all of which have a market capitalization

greater than 5 billion USD as of the end of June 2007. The dataset consists of the loss returns

(i.e., minus log returns) on their equity prices at a daily frequency from July 3, 2000 to June

30, 2010.2 Moreover, for the same time period, we extract daily loss returns of a value weighted

market index aggregating three markets: NYSE, AMES and Nasdaq. We use our method to

estimate the MES, E(X |Y > U2(1/p)), where X and Y refer to the daily loss returns of a bank

equity and the market index, respectively and p = 1/n = 1/2513, that corresponds to a once per

decade systemic event.
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k1
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Figure 3: The Hill estimates of the extreme value indices of the daily loss returns on the

three equities.

Since X may take negative values (i.e. positive returns of the equities of the banks), it is

necessary to apply the estimator for the general case as defined in (7). For that purpose, we first

verify two of the conditions required for the procedure. First of all, the assumption that γ1 < 1/2

2The choice of the banks, data frequency and time horizon follows the same setup as in Brownlees

and Engle (2012).
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is confirmed by the plot of the Hill estimates in Figure 3. Secondly, since the estimation relies

on the approximation of θp ∼ E(X+ |Y > U2(1/p)), it is important to check that high values

of Y do not coincide with negative values of X, generally. Intuitive empirical evidence for this

is presented in Figure 4. It plots the loss returns of the equity prices against the market index.

The horizontal lines indicate the 50-th largest loss of the index. As one can see, from the upper

parts of the plots, the largest 50 losses of the index are mostly associated with losses (X > 0).
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Figure 4: The points are the daily loss returns of the three equity prices and the market index.

The horizontal lines indicate the 50-th largest loss of the market index. The vertical lines, at 0,

distinguish the occurrence of losses and profits.

Hence, we can apply our method to obtain the estimates of γ1 and MES(p) = θp for the

Table 2: MES of the three investment banks

Bank γ̂1 θ̂p

Goldman Sachs (GS) 0.386 0.301

Morgan Stanley (MS) 0.473 0.593

T. Rowe Price (TROW) 0.379 0.312

Here γ̂1 is computed by taking the average of the Hill estimates for k1 ∈ [70, 90]. θ̂p is given in (7) with

n = 2513, k = 50, and p = 1/n = 1/2513.

three banks, see Table 2. It follows that in case of a once per decade market crisis, we estimate
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that on average the equity prices of Goldman Sachs and T. Rowe Price drop about 25% and

Morgan Stanley falls even about 45% on that day.

5 Proofs

Proof of Proposition 1 Recall that for a non-negative random variable Z,

E(Z) =

∫ ∞
0

P (Z > x)dx.

Hence,

θp
U1(1/p)

=

∫ ∞
0

1

p
P (X > x, Y > U2(1/p))

dx

U1(1/p)

=

∫ ∞
0

1

p
P (X > U1(1/p)x, Y > U2(1/p))dx. (10)

The limit relations (1) and (2) implies that

lim
p↓0

1

p
P (X > U1(1/p)x, Y > U2(1/p)) = R(x−1/γ1 , 1).

Hence, we only have to prove that the integral in (10) and the limit procedure p → 0 can be

interchanged. This is ensured by the dominated convergence theorem as follows. Notice that for

x ≥ 0,
1

p
P (X > U1(1/p)x, Y > U2(1/p)) ≤ min

(
1,

1

p
(1− F1(U1(1/p)x))

)
.

For 0 < ε < 1/γ1 − 1, there exists p(ε) (see Proposition B.1.9.5 in de Haan and Ferreira (2006))

such that for all p < p(ε) and x > 1,

1

p
(1− F1(U1(1/p)x)) ≤ 2x−1/γ1+ε.

Write

h(x) =

{
1, 0 ≤ x ≤ 1;

2x−1/γ1+ε, x > 1.

Then h is integrable and 1
pP (X > U1(1/p)x, Y > U2(1/p)) ≤ h(x) on [0,∞) for p < p(ε). Hence

we can apply the dominated convergence theorem to complete the proof of the proposition. �

Next, we prove Theorem 1. The general idea of the proof is described as follows. It is clear

that the asymptotic behavior of θ̂p results from that of γ̂1 and θ̂ k
n
. The asymptotic normality of

13



γ̂1 is well-known, see, e.g., de Haan and Ferreira (2006). To prove the asymptotic normality of

θ̂ k
n
, write

θ̂ k
n
=

1

k

n∑
i=1

XiI(Yi > U2(n/(ken))),

where en = n
k (1− F2(Yn−k,n))

P→ 1, as n → ∞. Hence, with denoting θ̃ ky
n

:= 1
ky

∑n
i=1XiI(Yi >

U2(n/(ky))), we first investigate the asymptotic behavior of θ̃ ky
n

for y ∈ [1/2, 2]. Then, by

applying the result for y = en and considering the asymptotic behavior of en, we obtain the

asymptotic normality of θ̂ k
n
. Lastly, together with the asymptotic normality of γ̂1, we prove that

of θ̂p.

To obtain the asymptotic behavior of θ̃ ky
n
, we introduce some new notation and auxiliary

lemmas. Write Rn(x, y) :=
n
kP (1−F1(X) < kx/n, 1−F2(Y ) < ky/n). A pseudo non-parametric

estimator of Rn is given as Tn(x, y) :=
1
k

∑n
i=1 I(1 − F1(Xi) < kx/n, 1 − F2(Yi) < ky/n).3 The

following lemma shows the asymptotic behavior of the pseudo estimator. The limit process

is characterized by the aforementioned WR process. For convenient presentation, all the limit

processes involved in the lemma are defined on the same probability space, via the Skorohod

construction. However, they are only equal in distribution to the original ones. The proof of the

lemma is analogous to that of Proposition 3.1 in Einmahl et al. (2006) and is thus omitted.

Lemma 1. Suppose (1) holds. For any η ∈ [0, 1/2) and T positive, with probability 1,

sup
x,y∈(0,T ]

∣∣∣∣∣
√
k(Tn(x, y)−Rn(x, y))−WR(x, y)

xη

∣∣∣∣∣→0,

sup
x∈(0,T ]

∣∣∣∣∣
√
k(Tn(x,∞)− x)−WR(x,∞)

xη

∣∣∣∣∣→0,

sup
y∈(0,T ]

∣∣∣∣∣
√
k(Tn(∞, y)− y)−WR(∞, y)

yη

∣∣∣∣∣→0.

The following lemma shows the boundedness of the WR process with proper weighing func-

tion. It follows from, for instance, a modification of Example 1.8 in Alexander (1986) or that of

Lemma 3.2 in Einmahl et al. (2006).

Lemma 2. For any T > 0 and η ∈ [0, 1/2), with probability 1,

sup
0<x≤T,0<y<∞

|WR(x, y)|
xη

<∞ and sup
0<x<∞,0<y<T

|WR(x, y)|
yη

<∞.

3It is called “pseudo” estimator because the marginal distribution functions are unknown.
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Next, denote sn(x) = n
k (1− F1(U1(n/k)x

−γ1)) for x > 0. From the regular variation con-

dition (2), we get that sn(x) → x as n → ∞. The following lemma shows that when handling

proper integrals, sn(x) can be substituted by x in the limit.

Lemma 3. Suppose (2) holds. Denote g as a bounded and continuous function on [0, S0)× [a, b]

with 0 < S0 ≤ ∞ and 0 ≤ a < b < ∞. Moreover, suppose there exist η1 > γ1 and m > 0 such

that

sup
0<x≤S0, a≤y≤b

|g(x, y)|
xη1

≤ m.

If S0 < +∞, we further require that 0 < S < S0. Then,

lim
n→∞

sup
a≤y≤b

∣∣∣∣∫ S

0
g(sn(x), y)− g(x, y)dx−γ1

∣∣∣∣ = 0. (11)

Furthermore, suppose |g(x1, y)− g(x2, y)| ≤ |x1 − x2| holds for all 0 ≤ x1, x2 < S0 and a ≤ y ≤ b.
Under conditions (b) and (d), we have that

lim
n→∞

sup
a≤y≤b

√
k

∣∣∣∣∫ S

0
g(sn(x), y)− g(x, y)dx−γ1

∣∣∣∣ = 0. (12)

Proof of Lemma 3 We prove (11) and (12) for S = S0 =∞. The proof for 0 < S < S0 < +∞ is

similar but simpler. For any 0 < ε < 1, denote T (ε) = ε−1/γ1 . It follows from (2) and Proposition

B.1.10 of de Haan and Ferreira (2006) that

lim
n→∞

sup
0<x≤1

sn(x)

x
γ1+η1
2η1

= 1,

and

lim
n→∞

sup
0<x≤T (ε)

|sn(x)− x| = 0.

With δ(ε) = ε1/(η1−γ1), we have that

sup
a≤y≤b

∣∣∣∣∫ ∞
0

(g(sn(x), y)− g(x, y)) dx−γ1
∣∣∣∣

≤ sup
a≤y≤b

(∣∣∣∣∫ δ

0
(g(sn(x), y)− g(x, y)) dx−γ1

∣∣∣∣+ ∣∣∣∣∫ T

δ
(g(sn(x), y)− g(x, y)) dx−γ1

∣∣∣∣
+

∣∣∣∣∫ ∞
T

(g(sn(x), y)− g(x, y)) dx−γ1
∣∣∣∣
)

≤−m
∫ δ

0

(
x

γ1+η1
2 + xη1

)
dx−γ1 + δ−γ1 sup

δ≤x≤T
a≤y≤b

|g(sn(x), y)− g(x, y)|+ 2ε sup
0≤x<∞
a≤y≤b

|g(x, y)|

15



≤c1ε1/2 + δ−γ1 sup
δ≤x≤T
a≤y≤b

|g(sn(x), y)− g(x, y)|+ 2ε sup
0≤x<∞
a≤y≤b

|g(x, y)| ,

where c1 is a finite constant. Hence, (11) follows from the uniform continuity of g on [δ, T ]× [a, b]

and the boundedness of g on [0,+∞)× [a, b].

Next we prove (12). Denote T̃n = |A1(n/k)|
1

ρ1−1 . By the Lipschitz property of g,

sup
a≤y≤b

∣∣∣∣∫ ∞
0

(g(sn(x), y)− g(x, y)) dx−γ1
∣∣∣∣

≤
∫ T̃n

0
|sn(x)− x| dx−γ1 + 2 sup

0≤x<∞
a≤y≤b

|g(x, y)| T̃−γ1n . (13)

It is thus necessary to prove that both terms in the right hand side of (13) are o(1/
√
k). For the

second term, condition (d) implies that α
2(1−α) <

γ1ρ1
ρ1−1 . Thus for any ε0 ∈

(
0, γ1ρ1

ρ1−1 −
α

2(1−α)

)
, as

n→∞, we have that

√
k
(n
k

) γ1ρ1
1−ρ1

+ε0
= O(n

γ1ρ1
1−ρ1

+ε0−α
(

γ1ρ1
1−ρ1

+ε0− 1
2

)
)→ 0,

which leads to
√
kT̃−γ1n =

√
k |A1(n/k)|

γ1
1−ρ1 → 0. (14)

For the first term, notice that for x ∈ (0, T̃n] and 0 < ε1 <
γ1

1−ρ1 , when n is large enough,

U1(n/k)x
−γ1 ≥ U1(n/k)T̃

−γ1
n = U1(n/k) |A1(n/k)|

γ1
1−ρ1 ≥

(n
k

) γ1
1−ρ1

−ε1
,

which implies that U1(n/k)x
−γ1 → +∞ as n → ∞. Hence we can apply Theorems 2.3.9 and

B.3.10 in de Haan and Ferreira (2006) to condition (b) and obtain that for sufficiently large n,∣∣∣∣sn(x)− xA1(n/k)
− xx

−ρ1 − 1

γ1ρ1

∣∣∣∣ ≤ x1−ρ1 max(xε0 , x−ε0).

Thus, we get that

√
k

∫ T̃n

0
|sn(x)− x| dx−γ1

≤
√
k |A1(n/k)|

∫ T̃n

0

(
x

∣∣∣∣x−ρ1 − 1

γ1ρ1

∣∣∣∣+ x1−ρ1 max(xε0 , x−ε0)

)
dx−γ1

≤c2
√
k |A1(n/k)| T̃ 1−ρ1−γ1+ε0

n

=c2
√
k |A1(n/k)|

γ1−ε0
1−ρ1 ≤ c3

√
k
(n
k

) ρ1γ1
1−ρ1

+ε0
, (15)
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with c2 and c3 some positive constants. Again, by condition (d), as n→∞, c3
√
k
(
n
k

) ρ1γ1
1−ρ1

+ε0 → 0.

Hence, (12) is proved by combining (13), (14) and (15). �
With those auxiliary lemmas, we obtain the asymptotic behavior of θ̃ ky

n
as follows.

Proposition 2. Suppose (1) and (2) hold with 0 < γ1 < 1/2. Then,

sup
1/2≤y≤2

∣∣∣∣∣
√
k

U1(n/k)

(
θ̃ ky

n
− θ ky

n

)
+

1

y

∫ ∞
0

WR(s, y)ds
−γ1

∣∣∣∣∣ P→ 0.

Proof of Proposition 2 Recall sn(x) =
n
k (1− F1(U1(n/k)x

−γ1)), x > 0. Similar to (10),

yθ ky
n

=

∫ ∞
0

n

k
P (X > s, Y > U2(n/(ky)))ds

=

∫ ∞
0

n

k
P (1− F1(X) < 1− F1(s), 1− F2(Y ) < ky/n)ds

=

∫ ∞
0

Rn

(n
k
(1− F1(s)), y

)
ds

=− U1(n/k)

∫ ∞
0

Rn(sn(x), y)dx
−γ1 . (16)

Similarly, yθ̃ ky
n

= −U1(n/k)
∫∞
0 Tn(sn(x), y)dx

−γ1 . For any T > 0, we have

sup
1/2≤y≤2

∣∣∣∣∣
√
k

U1(n/k)
(yθ̃ ky

n
− yθ ky

n
) +

∫ ∞
0

WR(x, y)dx
−γ1

∣∣∣∣∣
= sup

1/2≤y≤2

∣∣∣∣∫ ∞
0

WR(x, y)dx
−γ1 −

∫ ∞
0

√
k (Tn(sn(x), y)−Rn(sn(x), y)) dx

−γ1
∣∣∣∣

≤ sup
1/2≤y≤2

∣∣∣∣∫ ∞
T

WR(x, y)dx
−γ1
∣∣∣∣+ sup

1/2≤y≤2

∣∣∣∣∫ ∞
T

√
k (Tn(sn(x), y)−Rn(sn(x), y)) dx

−γ1
∣∣∣∣

+ sup
1/2≤y≤2

∣∣∣∣∫ T

0

√
k (Tn(sn(x), y)−Rn(sn(x), y))−WR(x, y)dx

−γ1
∣∣∣∣

=: I1(T ) + I2,n(T ) + I3,n(T ).

It suffices to prove that for any ε > 0, there exists T0 = T0(ε) such that

P (I1(T0) > ε) < ε, (17)

and n0 = n0(T0) such that for any n > n0,

P (I2,n(T0) > ε) < ε; (18)

P (I3,n(T0) > ε) < ε. (19)
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Firstly, for the term I1(T ), by Lemma 2 with η = 0, there exists T1 = T1(ε) such that

P

(
sup

0<x<∞,0≤y≤2
|WR(x, y)| > T γ1

1 ε

)
< ε.

Then for any T > T1,

P (I1(T ) > ε) ≤P

(
sup

x>T1,1/2≤y≤2
|WR(x, y)| > T γ1

1 ε

)
< ε.

Thus (17) holds provided that T0 > T1.

Next we deal with the term I2,n(T ). Let P̃ be the probability measure defined by (1 −
F1(X), 1−F2(Y )) and P̃n the empirical probability measure defined by (1−F1(Xi), 1−F2(Yi))1≤i≤n.

We have

P (I2,n(T ) > ε) = P

(
sup

1/2≤y≤2

∣∣∣∣∫ ∞
T

√
k (Tn(sn(x), y)−Rn(sn(x), y)) dx

−γ1
∣∣∣∣ > ε

)

≤ P

(
sup

x>T,1/2≤y≤2

∣∣∣√k (Tn(sn(x), y)−Rn(sn(x), y))
∣∣∣ > εT γ1

)

= P

(
sup

x>T,1/2≤y≤2

∣∣∣∣√n(P̃n − P̃ )
{(

0,
ksn(x)

n

)
×
(
0,
ky

n

)}∣∣∣∣ > εT γ1
√
k/n

)
=: p2.

Define Sn = {[0, 1]× (0, 2k/n)}, then P̃ (Sn) = 2k/n. Now by Inequality 2.5 in Einmahl (1987),

there exists a constant c and a function ψ with limt→0 ψ(t) = 1, such that

p2 ≤c exp

−
(
εT γ1

√
k/n

)2
4P̃ (Sn)

ψ

(
εT γ1

√
k/n

√
nP̃ (Sn)

)
=c exp

(
−ε

2T γ1

8
ψ

(
εT γ1/2

2
√
k

))
.

Choose T2(ε) such that c exp
(
− ε2T

γ1
2

16

)
≤ ε. Then, for any T > T2, c exp

(
− ε2T γ1

16

)
≤ ε. Fur-

thermore, we can choose n1 = n1(T ) such that for n > n1, ψ
(
εT γ1/2

2
√
k

)
> 1/2. Therefore, for

T > T2(ε) and n > n1(T ), we have p2 < ε, which leads to (18) provided that T0 > T2 and

n0 > n1.

Lastly, we deal with I3,n(T ). We have that

P (I3,n(T ) > ε)
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≤P

(
sup

1/2≤y≤2

∣∣∣∣∫ T

0

√
k (Tn(sn(x), y)−Rn(sn(x), y))−WR(sn(x), y)dx

−γ1
∣∣∣∣ > ε/2

)

+ P

(
sup

1/2≤y≤2

∣∣∣∣∫ T

0
WR(sn(x), y)−WR(x, y)dx

−γ1
∣∣∣∣ > ε/2

)
=: p31 + p32.

We first consider p31. Notice that for any T , there exists n2 = n2(T ) such that for all n >

n2,sn(T ) < T + 1. Hence, for n > n2 and any η0 ∈ (γ1, 1/2),

p31 ≤ P

 sup
0<s≤T+1
1/2≤y≤2

∣∣∣∣∣
√
k (Tn(s, y)−Rn(s, y))−WR(s, y)

sη0

∣∣∣∣∣
∣∣∣∣∫ T

0
(sn(x))

η0dx−γ1
∣∣∣∣ > ε/2


Notice that by (11), as n → ∞,

∣∣∣∫ T
0 (sn(x))

η0dx−γ1
∣∣∣ → γ1

η0−γ1T
η0−γ1 . Together with Lemma 1,

there exists n3(T ) > n2(T ) such that for n > n3(T ), p31 < ε/2.

Then, we consider p32. Applying Lemma 2, with the aforementioned η0 ∈ (γ1, 1/2), there

exists λ0 = λ(η0, ε) such that

P

(
sup

0<x<∞,1/2≤y≤2

|WR(x, y)|
xη0

≥ λ0

)
≤ ε/3. (20)

Moreover, WR(x, y) is continuous on (0,∞)× [1/2, 2], see Corollary 1.11 in Adler (1990). Hence

applying (20) and (11) with g = WR, S = T and S0 = T + 1, we have that there exists a n4 =

n4(T ) such that for n > n4, p32 < ε/2. Thus, (19) holds for any T0 and n0 > max(n3(T0), n4(T0)).

To summarize, choose T0 = T0(ε) > max(T1, T2), and define n0(T0) = max1≤j≤4 nj(T0). We

get that for the chosen T0 and any n > n0, the three inequalities (17)–(19) hold, which completes

the proof of the proposition. �
Next, we proceed with the second step: establishing the asymptotic normality of θ̂ k

n
.

Proposition 3. Under the condition of Theorem 1, we have

√
k

 θ̂ k
n

θ k
n

− 1

 d→ Θ.

Proof of Proposition 3 Observe that limn→∞
θ k
n

U1(n/k)
→
∫∞
0 R(s−1/γ1 , 1)ds. Therefore it is

sufficient to show that
√
k

U1(n/k)

(
θ̂ k

n
− θ k

n

)
P→ Θ

∫ ∞
0

R(s−1/γ1 , 1)ds.
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Recall en = n
k (1− F2(Yn−k,n)). Hence, with probability 1, θ̂ k

n
= enθ̃ ken

n
, we thus have that

√
k

U1(n/k)

(
enθ̃ ken

n
− θ k

n

)
−Θ

∫ ∞
0

R(s−1/γ1 , 1)ds

=

( √
k

U1(n/k)

(
enθ̃ ken

n
− enθ ken

n

)
+

∫ ∞
0

WR(s, 1)ds
−γ1

)

+

( √
k

U1(n/k)

(
enθ ken

n
− θ k

n

)
−WR(∞, 1)(γ1 − 1)

∫ ∞
0

R(s−1/γ1 , 1)ds

)
=: J1 + J2.

We prove that both J1 and J2 converge to zero in probability as n→∞.

Firstly, we deal with J1. By Lemma 1 and Tn(∞, en) = 1, we get that

√
k(en − 1)

P→ −WR(∞, 1), (21)

which implies that

lim
n→∞

P (|en − 1| > k−1/4) = 0.

Hence, with probability tending to 1,

|J1| ≤ sup
|y−1|<k−1/4

∣∣∣∣∣
√
k

U1(n/k)

(
yθ̃ ky

n
− yθ ky

n

)
+

∫ ∞
0

WR(s, y)ds
−γ1

∣∣∣∣∣
+ sup
|y−1|<k−1/4

∣∣∣∣∫ ∞
0

WR(s, y)−WR(s, 1)ds
−γ1
∣∣∣∣ .

The first part converges to zero in probability by Proposition 2. For the second part, notice that

for any ε > 0, 0 < δ < 1 and η ∈ (γ1, 1/2),

P

(
sup

|y−1|<k−1/4

∣∣∣∣∫ ∞
0

WR(s, y)−WR(s, 1)ds
−γ1
∣∣∣∣ > ε

)

≤P

(
sup

|y−1|<k−1/4

∣∣∣∣∫ δ

0
WR(s, y)−WR(s, 1)ds

−γ1
∣∣∣∣ > ε/2

)

+ P

(
sup

|y−1|<k−1/4

∣∣∣∣∫ ∞
δ

WR(s, y)−WR(s, 1)ds
−γ1
∣∣∣∣ > ε/2

)

≤P

(
sup

0<s≤1,1/2≤y≤2

|WR(s, y)|
sη

>
ε(η − γ1)

4γ1
δγ1−η

)

+ P

(
sup

s>0,|y−1|<k−1/4

|WR(s, y)−WR(s, 1)| δ−γ1 > ε/2

)
.
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=: p11 + p12.

For any fixed ε, Lemma 2 ensures that there exists a positive δ(ε) such that for all δ < δ(ε), we

have that p11 < ε. Then, for any fixed δ, there must exists an positive integer n(δ) such that for

n > n(δ) we can achieve that p12 < ε, because we have that as n→∞,

sup
s>0,|y−1|<k−1/4

|WR(s, y)−WR(s, 1)|
a.s→ 0,

see Corollary 1.11 in Adler (1990). Hence we proved that J1
P→ 0 as n→∞.

Next we deal with J2. We first prove a non-stochastic limit relation: as n→∞,

sup
1/2≤y≤2

√
k

∣∣∣∣∫ ∞
0

Rn(sn(x), y)−R(x, y)dx−γ1
∣∣∣∣→ 0. (22)

Condition (a) implies that as n→∞,

sup
0<x<∞
1/2≤y≤2

|Rn(x, y)−R(x, y)|
xβ ∧ 1

= O
((n

k

)τ)
.

Hence, as n→∞,

sup
1/2≤y≤2

√
k

∣∣∣∣∫ ∞
0

Rn(sn(x), y)−R(sn(x), y)dx−γ1
∣∣∣∣

≤
√
k sup

0<x<∞
1/2≤y≤2

|Rn(x, y)−R(x, y)|
xβ ∧ 1

∣∣∣∣∫ ∞
0

(sn(x))
β ∧ 1dx−γ1

∣∣∣∣
=O

(√
k
(n
k

)τ)(
−
∫ 1/2

0
(sn(x))

βdx−γ1 −
∫ ∞
1/2

1dx−γ1

)
→ 0.

The last step follows from the following two facts. Firstly, condition (d) ensures that k = O(nα)

with α < 2τ
2τ−1 . Secondly, we have that

lim
n→∞

−
∫ 1/2

0
(sn(x))

βdx−γ1 = −
∫ 1/2

0
xβdx−γ1 <∞,

which is a consequence of (11).

To complete the proof of relation (22), it is still necessary to show that as n→∞,

sup
1/2≤y≤2

√
k

∣∣∣∣∫ ∞
0

R(sn(x), y)−R(x, y)dx−γ1
∣∣∣∣→ 0.

This is achieved by applying (12) to the R function which satisfies the Lipschitz condition:

|R(x1, y)−R(x2, y)| ≤ |x1 − x2|, for x1, x2, y ≥ 0. Hence, we proved the relation (22).
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Combining (16) and (22), we obtain that

θ k
n

U1(n/k)
= −

∫ ∞
0

R(sn(x), 1)dx
−γ1 = −

∫ ∞
0

R(x, 1)dx−γ1 + o

(
1√
k

)
, (23)

and
enθ ken

n

U1(n/k)
= −

∫ ∞
0

Rn(sn(x), en)dx
−γ1 = −

∫ ∞
0

R(x, en)dx
−γ1 + oP

(
1√
k

)
.

From the homogeneity of the R function, for y > 0, we have that∫ ∞
0

R(x, y)dx−γ1 = y1−γ1
∫ ∞
0

R(x, 1)dx−γ1 .

Hence, we get that

enθ ken
n

= e1−γ1n θ k
n
+ oP

(
U1(n/k)√

k

)
.

By applying (21), Proposition 1 and the Cramér’s delta method, we get that, as n→∞,

√
k

U1(n/k)

(
enθ ken

n
− θ k

n

)
=
√
k
(
e1−γ1n − 1

) θ k
n

U1(n/k)
+ oP (1)

P→(γ1 − 1)WR(∞, 1)
∫ ∞
0

R(s−1/γ1 , 1)ds.

which implies that to J2
P→ 0. The proposition is thus proved. �

Finally, we can combine the asymptotic relations on θ̂ k
n
and γ̂1 to obtain the proof of Theo-

rem 1.

Proof of Theorem 1 Write

θ̂p
θp

=
dγ̂1n
dγ1n
×
θ̂ k

n

θ k
n

×
dγ1n θ k

n

θp
=: L1 × L2 × L3.

We deal with the three factors separately.

Firstly, handling L1 uses the asymptotic normality of the Hill estimator. Under conditions

(b) and (c), we have that, as n→∞, √
k1(γ̂1 − γ1)

P→ Γ; (24)

see, e.g., Example 5.1.5 in de Haan and Ferreira (2006). As in the proof of Theorem 4.3.8 of

de Haan and Ferreira (2006), this leads to

√
k1

log dn
(L1 − 1)− Γ

P→ 0. (25)

Secondly, the asymptotic behavior of the factor L2 is given by Proposition 3.
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Lastly, for L3, by condition (b) and Theorem 2.3.9 in de Haan and Ferreira (2006), we have

that
U1(1/p)

U1(n/k)d
γ1
n
− 1

A1(n/k)
→ − 1

ρ1
.

Together with the fact that as n→∞,
√
k |A1(n/k)| → 0 (implied by condition (d)), we get that

U1(1/p)

U1(n/k)d
γ1
n
− 1 = o

(
1√
k

)
(26)

Following the same reasoning of (23) for p ≤ k/n, we have θp
U1(1/p)

−
∫∞
0 R(s−1/γ1 , 1)ds = o

(
1√
k

)
.

Combining this with (26), we have

L3 =
θ k

n
/U1(n/k)

θp/U1(1/p)
× U1(n/k)d

γ1
n

U1(1/p)
= 1 + o

(
1√
k

)
. (27)

Combining the asymptotic relations (25), (27) and Proposition 3, we get that

θ̂p
θp
− 1

=L1 × L2 × L3 − 1

=

(
1 +

log dn√
k1

Γ + oP

(
log dn√
k1

))(
1 +

Θ√
k
+ oP

(
1√
k

))(
1 + o

(
1√
k

))
− 1

=
log dn√
k1

Γ +
Θ√
k
+ oP

(
log dn√
k1

)
+ oP

(
1√
k

)
.

The covariance matrix of (Θ,Γ) follows from the straightforward calculation. �
Proof of Theorem 2 Write θ+p := E(X+ |Y > U2(1/p)). Then,

θ̂p
θp

=
θ̂p

θ+p
×
θ+p
θp
.

Hence, it suffices to prove that
θ̂p
θ+p

follows the asymptotic normality stated in Theorem 1 and

θp
θ+p

= 1 + o
(

1√
k

)
.

We first show that (X+, Y ) satisfies conditions (a) and (b) of Section 2.1. Let F̃1 be the

distribution function of X+ and Ũ1 =
(

1

1−F̃1

)←
. It is obvious that U1(t) = Ũ1(t), for t >

1
1−F1(0)

.

Hence X+ satisfies condition (b).

Before checking condition (a) for (X+, Y ), we prove that, as t→∞,

tP (X < 0, 1− F2(Y ) < 1/t) = O(tτ ). (28)
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Observe that condition (a) implies that

sup
1/2≤y≤2

|y −R(t, y)| = O(tτ ). (29)

Because of the homogeneity of R, we have 1 − R(ct, 1) = O(tτ ) for any c ∈ (0,∞). Hence, (28)

is proved by

tP (X < 0, 1− F2(Y ) < 1/t)

=1− tP (X > 0, 1− F2(Y ) < 1/t)

=1− tP (1− F1(X) < 1− F1(0), 1− F2(Y ) < 1/t)

≤1−R(t(1− F1(0)), 1) + |tP (1− F1(X) < 1− F1(0), 1− F2(Y ) < 1/t)−R(t(1− F1(0)), 1)|

=O(tτ ).

Now we show that (X+, Y ) satisfies condition (a), that is, as t→∞,

sup
0<x<∞
1/2≤y≤2

∣∣∣tP (1− F̃1(X
+) < x/t, 1− F2(Y ) < y/t)−R(x, y)

∣∣∣
xβ ∧ 1

= O (tτ ) . (30)

Firstly, observe that for 0 < x ≤ t(1− F1(0)),

{1− F̃1(X
+) < x/t} = {1− F1(X

+) < x/t} = {1− F1(X) < x/t}.

Hence, the uniform convergence (in (30) ) on (0, t(1 − F1(0))] × [1/2, 2] follows from the fact

that (X,Y ) satisfies condition (a). Secondly, for x > t(1 − F1(0)), we have 1 − F̃1(X
+) < x/t.

Therefore,

sup
t(1−F1(0))<x<∞

1/2≤y≤2

∣∣∣tP (1− F̃1(X
+) < x/t, 1− F2(Y ) < y/t)−R(x, y)

∣∣∣
= sup

t(1−F1(0))<x<∞
1/2≤y≤2

(y −R(x, y))

≤ sup
1/2≤y≤2

(y −R(t(1− F1(0)), y)) = O (tτ ) ,

where the last relation follows from (29). This completes the verification of (30). As a result,

Theorem 1 applies to
θ̂p
θ+p

.

Next we show that
θp
θ+p

= 1 + o
(

1√
k

)
. By Proposition 1,

θ+p
U1(1/p)

→
∫∞
0 R

(
x−1/γ1 , 1

)
dx. By

Hölder’s inequality, condition (e) and (28),

−E(X− |Y > U2(1/p)) =−
1

p
E(X−I(X < 0, Y > U2(1/p)))
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≤1

p

(
E
∣∣X−∣∣1/γ1)γ1 (P (X < 0, Y > U2(1/p)))

1−γ1

=O(p−1+(1−τ)(1−γ1)).

Condition (b) can be written as:

lim
t→∞

U1(tx)(tx)
−γ1 − U1(t)t

−γ1

A1(t)U1(t)t−γ1
=
xρ1 − 1

ρ1
.

It follows from Theorem B.2.2 in de Haan and Ferreira (2006) that 1
U1(1/p)

= O(pγ1), as p ↓ 0.
Hence by condition (f),

θp

θ+p
=1 +

E(X− |Y > U2(1/p))

θ+p
= 1 +O

(
p−1+(1−τ)(1−γ1)

U1(1/p)

)

=1 +O
(
p−τ(1−γ1)

)
= 1 + o

(
1√
k

)
. �
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